Nutrient Management Plans for Farms included in Nitrate Vulnerable Zones in Romania

Catalin SIMOTA

National Research and Development Institute for Soil Science Agrochemistry and Environment - ICPA Bucharest - Romania

Maximum application rate

The application rate of fertilizer N has to be based on a balance between the foreseeable N requirements of the crops, and the N supply to the crops from the soil and other sources, including the amount of available N in the soil at the moment when the crop starts to use it, the supply of available N through atmospheric deposition, irrigation water, biological fixation and the net mineralization of organic N in the soil during the growing season, the supply of available N through livestock manures, composts, residues, wastes and/or any fertilizer

Farm classification related to environmental standards

• Farms over 100 Animal Units needs an Environment Permit that requires a detailed nutrient management plan provided by County Soil Testing Laboratory (OSPA) based on soil sampling (at least at four years) in all fields where manure is spreaded.

According with FADN classification these farms are "very big" and "extra"

 Farmers with less than 100 AU are encouraged to ask for similar nutrient management plans.
Alternative, it is to comply with Maximum Nutrient Application Standards calculated for their pedo-climatic conditions and cropping system

Maximum nutrient application standards

Use of simulation modelling on long-time climatic series with local pedo-transfer functions for all suitable crop rotations.

Simulation model : ROIMPEL using algorithms for water and nitrogen component dynamics provided by SWAT model

Maximum nutrient application standards

Expected yields based on land marking system : 0 – 100 points based on soil, climate and terrain characteristics + standard crop yield value per point

In each administrative unit (NUTS5: comuna) are designated using soil and terain maps + climate data areas covered by 5 land classes having a given average land mark

	A	В	С	D	E	F	G	Н		J	K	L	M	N	0	P	Q	B	S	Т	Ε
1						Date m	asurate			Selectare p	orofile din										
2	Intro	oduceti dat	tele generale	e de sol		Evaluari ba	zate pe tip	Selectare : dia sebasa	situri vecine	lista de situr	ri vecine din										
3			-		-	0	ol	din receaua	monitoring	reteaua me	onitoring										
4							*														
5	Calcu	uleaza func	tiile de pedo	otransfer		Exe	scuta														Γ
6							t –														Г
7	Inti	roduceti da	atele meteri	lunare		Exe	ecuta	•													F
8			atele meteo	lanare			T														F
9																					Г
10					1		¥														F
11	Ca	ilculati dina	amica apei in	i sol si		Executa	- An mediu		Executa - Anu	al											F
12		transpi	ratia actuala	1			T														F
12											Manager	nent aunoi									F
14	Introd	duceti nivel	lul recoltei a	steptate			1				manager	inent ganor									F
15	pe pe	entru cultur	a actuala si	cel al	-	- Exc	•cuta	4				Class terer		2		Frequite a	an madiu		Execute	, deura de	F
16	rec	oltei obtin	iute pentru o	ultura	-		1	r				Tabel cinte				Executary			Executa	- Cildai	F
17		prem	ergatoare									i abei sinte	24			017114		1	VIZUA		F
10			-		1											1204		1	VIZUAI		-
10					1																H
20	Introduc	ceti param	etri pentru g	estionarea			1														H
20	res	sturilor veg	etale / Calci	uleaza		Exe	• cuta	(H
21	minera	alizarea si i	imobilizarea	resturilor			1	_													H
22		Ve	egetale																		H
23					-		-														H
24																					H
25	Introdu	ooti oorom	otri poptru a	octionarea]		1														⊢
26	aunaiului	de greid I (Palaulaasa r	estionarea	-	- Fe	▼ 														⊢
27	ganoiaiai	ue graju ru	Laiculeaza i	meranzarea	- '			_													H
28		azotu	iui organic																		H
29					-																L
30							-														L
31																					L
32					1		¥			L											L
33	Calculea	aza necesa	ar ingrasami	nte minerale		Executa	- An mediu		Execut	a - Anual											L
34	L				1																L
35																					L
36						VIZUA	LIZARE	_													L
37																					L
38																					

Maximum nutrient application standards

Simulation runs for all NUTS5 units included in NVZ are executed by ICPA for all crops in the area.

Output values (average N, P and K) maximum fertiliserrates are included in tables to be used by local farmers

http://icpa.ro/proiecte/Suport_curs/Plan_Nutrienti/N.html

STANDARDE MAXIME PENTRU APLICAREA NUTRIENTILOR cu N, P si K (Kg/ha)

Pentru evaluarea cantitatii maxime de ingrasaminte minerale cu N, P si K care se pot aplica pentru o fertilizare echilibrata scadeti din valorile corespunzatoare cazului Dvs definit prin :

- cultura insamintata
- cultura premergatoare
- clasa de calitate a terenului

aportul de N, P si K furnizat prin ingrasamintele organice calculat pe baza numarului de animale din ferma / exploatatie agricola in fisierul <<Calculator Doze NPK gunoi de grajd.xls>>

ATENTIE! - Cantitatea de azot din surse organice nu poate depasi 170 Kg N / ha

LOCALITATEA : BONTIDA JUDET : CLUJ Cod SIRSUP : 56210

-> GRAU DE TOAMNA dupa:

GRAU DE	I TOAMNA					
Clasa	N	P	K	P205	К2О	
1	218	49	111	112	133	
2	187	42	95	96	114	
3	39	8	20	18	24	
4	87	19	44	43	53	
5	45	10	23	22	27	
ORZ DE	TOAMNA					
Clasa	N	P	K	P205	K20	
1	219	49	112	112	134	
2	187	42	95	96	114	
3	39	8	20	18	24	
4	88	19	45	43	54	
5	45	10	23	22	27	
PORUMB						
Clasa	N	P	K	P205	К2О	
1	219	49	112	112	134	
2	188	42	96	96	115	
3	39	8	20	18	24	
4	88	19	45	43	54	
5	45	10	23	22	27	
SFECLA	DE ZAHAR					
Clasa	N	P	K	P205	К2О	
1	231	51	118	116	142	
2	198	44	101	100	121	
3	39	8	20	18	24	
4	98	22	50	50	60	
5	55	12	28	27	33	
CARTOFI	-					
Clasa	N	P	K	P205	K20	
1	224	50	114	114	137	
2	191	42	97	96	116	
3	39	8	20	18	24	
4	90	20	46	45	55	
5	46	10	23	22	27	
FLOAREA	SOARELUI	-				
Clasa	N	P	K	P205	К2О	
1	218	49	111	112	133	
2	187	42	95	96	114	
3	39	8	20	18	24	
4	87	19	44	43	53	

- This is total Nitrogen (mineral + organic)
- Calculator for nitrogen content in manure considering animal species and management system gives the organic nitrogen available for application in farm
- Maximum organic nitrogen rate is the minimum value between 170 kg_N ha⁻¹ and maximum nutrient application rate

Recommendations for establishing Action Programmes under Directive 91/676/EEC concerning the protection of waters against pollution caused by nitrates from agricultural sources

Contract number N°07 0307/2010/580551/ETU/B1

Consortium

DLO-Alterra Wageningen UR DLO-Plant research International Wageningen UR NEIKER, Derio, Spain Institute of Technology and Life Sciences (ITP), Warsaw, Poland

Swedish Institute of Agricultural and Environmental Engineering (JTI), Uppsala

Environmental stratification (pedo-climatic zones)

Environmental Stratification of Europe

		Crop:											
EnZs	Risk	Wheat	Grain maize	Other cereals	Rape seed	Sun flower	Potatoes	Sugar beets	Vegetables	Grassland **	Silage maize	Citrus	Olives
ALN	Low	60-90	80-140	60-100	50-80	50-80	80-130	80-150	60-100	50-80	140-200		
	Medium	30-40	50-80	40-60	30-40	30-50	40-70	80-130	30-50	30-50	80-140		
	High	20-40	30-50	20-40	20-30	20-30	30-50	50-90	20-30	20-30	60-100		
ALS	Low	80-140	100-170	60-100	80-140	40-60	70-120	120-160	110-180	60-100	190-250	190-310	50-150
	Medium	50-80	60-100	40-60	50-90	20-40	40-70	90-150	60-110	40-60	120-200	60-90	50-100
	High	40-60	40-70	20-40	40-60	10-20	20-40	70-110	40-70	20-40	80-140	0-10	0-50
ATN	Low Medium High	140-230 80-130 50-80	140-240 80-130 50-80	90-150 50-80 30-40	100-170 50-90 30-50		200-250 120-200 80-130	130-200 110-180 70-120	140-230 80-130 50-80	160-270 90-150 60-90	190-250 120-190 80-130		
ATC	Low Medium High	130-220 80-130 50-80	140-230 80-130 50-80	100-170 50-90 30-50	100-160 50-90 30-50	50-80 20-30 0-10	200-250 120-200 80-130	130-200 130-200 90-150	130-210 70-110 40-70	150-250 140-230 100-170	150-250 90-150 60-90	140-230 40-60 0-10	0-150 0-100 0-50
BOR	Low Medium High	50-80 30-50 20-30		40-70 20-40 20-30	20-40 10-20 0-10		80-130 50-80 30-50	90-150 60-100 40-70	100-160 60-100 40-60	60-90 30-60 20-40	130-210 80-130 60-90		
CON	Low Medium High	90-150 60-90 40-60	80-130 50-80 30-50	50-80 30-50 20-30	90-150 60-100 40-70	40-60 20-30 10-20	90-150 50-90 30-60	130-200 100-160 70-120	100-170 60-100 40-70	80-140 50-80 30-60	200-250 120-200 90-140	130-220 40-60 0-10	0-100 0-75 0-50
LUS	Low Medium High	120-200 70-120 50-80	130-220 80-130 50-80	70-120 40-60 20-40	110-180 60-100 40-70	50-90 30-40 10-20	100-170 60-100 40-60	130-200 130-200 100-170	120-210 70-120 40-70	70-110 40-60 20-30	150-240 90-140 60-90	140-240 40-70 0-10	0-100 0-75 0-50

Table 5. Indicative* N recommendations (kg N per ha per year) for major crop species per environmental zone, as related to the risks of leaching and run-off. These recommendations are based on statistical records of crops yields. Various crops are irrigated and N deriving from irrigation water should be accounted for.

	•	Crop:											
EnZs	Risk	Wheat	Grain	Other	Rape	Sun	Potatoes	Sugar	Vegetables	Grassland	Silage	Citrus	Olives
			maize	cereals	seed	flower		beets		**	maize		
MDN	Low	40-150	160-260	30-40	90-160	20-40	100-160	130-200	170-280	40-200	220-250	190-310	0-100
	Medium	30-40	100-160	10-20	60-100	10-20	60-100	100-170	110-180	20-40	140-230	50-90	0-75
	High	20-30	70-120	10-20	40-70	5-15	40-70	80-130	70-120	10-20	100-170	0-10	0-50
MDM	Low	50-90	150-250	30-50	90-150	30-50	100-170	130-200	160-260	30-60	230-250	190-320	0-100
	Medium	30-50	90-150	10-20	50-90	20-30	60-100	90-150	100-160	20-30	150-240	60-90	0-75
	High	20-30	60-100	0-20	40-60	5-15	40-70	60-110	70-110	0-20	100-170	0-10	0-50
	•		•				•	•	•		•		
MDS	Low	30-50	170-280	20-30	40-70		100-170	130-200	180-300	30-50	220-250	190-310	0-100
	Medium	20-30	110-180	10-20	30-50		60-100	130-200	120-190	20-30	140-230	60-90	0-75
	High	20-30	80-130	10-20	20-30		40-70	100-170	80-140	10-20	100-170	0-10	0-50
NEM	Low	70-120	90-140	40-60	50-80		60-90	110-190	70-120	60-100	150-250		
	Medium	50-80	50-90	20-40	30-50		30-60	80-130	40-70	40-70	100-160		
	High	40-60	40-60	20-30	20-40		20-40	60-90	30-50	30-50	70-110		
PAN	Low	50-80	70-110	40-60	50-90	40-60	70-120	130-200	60-100	30-50	130-210	180-310	0-100
	Medium	30-60	40-70	30-50	40-60	30-40	40-70	110-180	40-60	20-30	80-140	50-90	0-75
	High	30-40	30-50	20-40	30-50	20-30	30-50	80-130	30-40	10-20	60-100	0-10	0-50

*Expressed in fertilizer N equivalents. Recommendation have to be tuned to local records concerning N export, soil N recovery, N harvest index and N supply from atmospheric deposition, irrigation water and the mineralization of crop residues and manure residues

??

• 187 kg_N ha⁻¹ \longleftrightarrow 60 – 90 kg_N ha⁻¹

+

Interdiction periods for applying manure

Recommendations for establishing Action Programmes

Table 4. Minimum manure storage capacity (months of manure production) per environmental zone (ENZ) based on the probability of a precipitation surplus, periods of drought and frost and unforeseeable weather extremes

Nr	ENZs	Type of crops	grown
		100% Arable	100% Grassland
1	ALN – alpine north	>10	>9
2	ALS - alpine south	>9	>6
3	ATN – Atlantic north	>8	>7
4	ATC – Atlantic central	>7	>3
5	BOR – boreal	>8	>7
6	CON - continental	>7	>4
7	LUS – Lusitanian	>8	>4
8	MDN - Mediterranean north	>5	>2
9	MDM – Mediterranean mountains	>8	>3
10	MDS - Mediterranean South	>3	>3
11	NEM – Nemoral	>7	>5
12	PAN – Pannonian	>6	>3
13	ANA – Anatolian	>6	>2

Using national climatic data for the evaluation of time interval with temperatures below 5⁰

			Interval de timp
			pennu stabiliea
		Interval de intersisers pentru	capacitatii de
ZVN		aplicana ingréséminé br	stocare (buri)
1	Prut Superior	13 Noismbris - 34 Martis	3
2	Prot Inferior	17 Noismbris - 18 Martis	5
3	Sine † Superior	S Noismbris - 39 Martis	6
+	Sine + Inferior 1	17 Noismbris - 17 Martis	5
5	Sine + Inferior 3	19 Noismbris - 15 Martis	5
1	Lunca Dunanii 1	24 Noismbris - 13 Martis	5
7	Islomits Inferiosra	18 Noismbris - 13 Martis	5
8	Islomita Superioara	23 Octombris - 19 Aprilis	7
9	Lunca Dunani ?	24 Noismbris - 12 Martis	5
10	Vedea	20 Noismbris - 14 Martis	5
11	Cahnatui	20 Noismbris - 13 Martis	5
12	Mos tis to a	22 Noismbris - 12 Martis	5
13	Arms Superior	11 Noismbris - 25 Martis	5
14	Arges Indenier	20 Noismbris - 14 Martis	j
15	Neaile y	20 Noismbris - 15 Martis	j
14	Olt Smerier	1 Nojambris - 4 Aprilia	4
17	Brasov	29 Octombris - 10 Anrilia	
15	Та са так	7 Nojembris - 28 Martie	
19	Ollat	17 Nojembrie - 14 Martie	3
20	Olt Inferier	21 Nojambris - 13 Martis	
21	Lunca Durati 3	24 Majambris - 11 Martia	
22	Tin Smorier	11 Noismbris - 19 Martia	1
23	Decreation – Jiet	22 Nojambris - 11 Martia	1
94. 94	I me a Dimarii 4	74 Majambari - O Martia	
2 T 2 S	Tim Tafa risr	20 Majarakan - 13 Martia	
2.2 9.6	Mana, Trank Smarth	13 Majambris - 22 Martis	
97 97	Bam	22 Maintaine 22 Martin	
17 19	De ga De lácel Ferrerélezetété	11 Mainten Lais - 30 Martin	
10 10	Managan Canagian	20 Octore late - 7 Analia	
30	Strait Superior	0 Majam kriz - 22 Martia	•
50 21	Menter Tellino	21 Mainten lain 10 Martin	
22	Compain de Marte Caismai	20 Mainer heit 12 Martie	
22	Campa de Vest-Clistil	12 Mainesheit 22 Martis	
2.2 2.4	Declarity de Mariner Cristeri	10 Note more - 10 marte	
лт 3.6			
3.0	Podeni liancinancelli	10 NOLEMORE - 11 MARCE	
2 8 2 72	AGINGS INDING	15 POSTROB - 15 MARTS	3
27 30	15A a '	+ NOBELLOID - 31 HATE	
15 10	Somes Superior	I Nominium - 4 Aprilie	
59 18	macm.	11 Notembre - 18 Marte	
4U 40	Lie one ges 3 mil	AS NODER OTS 14 Martis	
†⊥	Lunca Lunsan)	15 Nommers - 14 Marte)
42	Podisul Dobro gai	29 Noismbris - 14 Martis	5

??

Storage capacity:

> 7

5 months