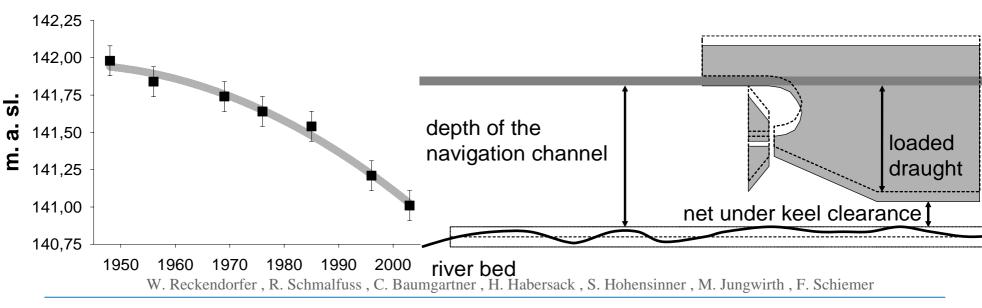
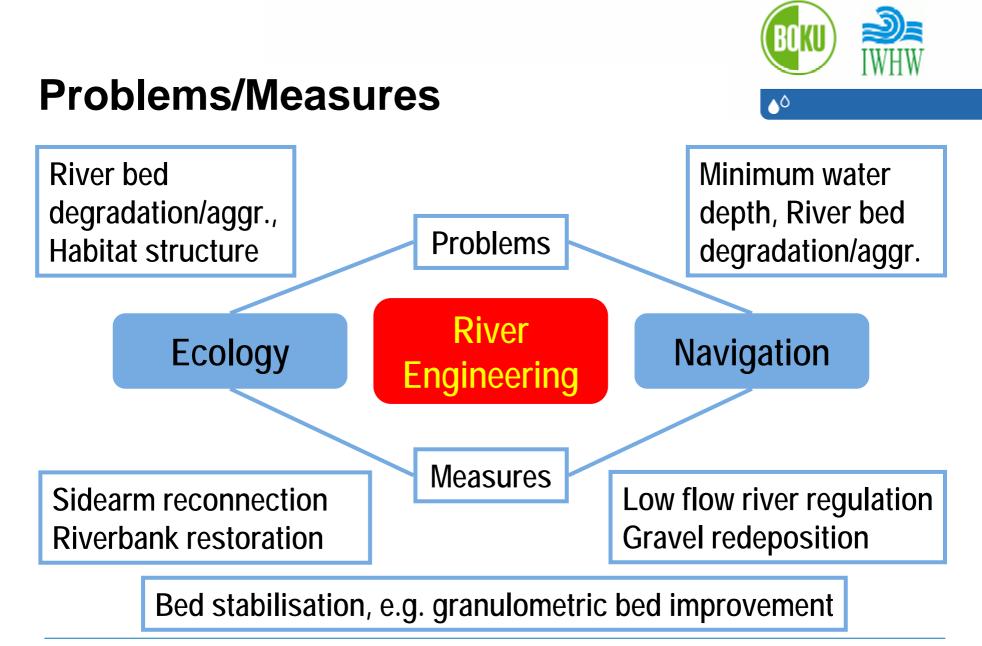
Ecology, Navigation and Sustainable Planning in the Danube River Basin

BOKU - University of Natural Resources and Applied Life Sciences, Vienna Institute of Water Management, Hydrology and Hydraulic Engineer

H. HABERSACK


Outline


- 1. General introduction
- 2. Possible approach
- 3. Examples of measures

Problems

- Ecological degradation
- Navigation limitations

Ecological framework conditions

University of Natural Resources and Applied Life Sciences Vienna Department of Water, Atmosphere and Environment

- Large river systems (LRS) are complex ecological unities, with exchange processes with the adjoining ecosystems
- LRS are multidimensional ecosystems, where natural disturbances (floods, droughts) are key elements → highly dynamic nature of riverine landscapes
- This results in frequently changing connectivity conditions and heterogeneous habitat composition
- The EU Water Framework Directive aims to reach a good ecological status of running water until 2015

Jungwirth, 2007

Effects of navigation on the riverine environment

- river straightening for flood control and/or navigation
- river engineering measures that impair the original hydro-morphology (e.g. bedload transport, connectivity)
- and/or impair natural composition of ecological communities (e.g. by devastation of habitats)
- navigation needs lead to a stabilized, single thread river channel, monotonous aquatic environment that lacks instream structures with smooth gradients and connectivity conditions towards adjacent floodplains
- river bed stabilization and dredging due to elimination of ecologically important instream structures result in a monotonous aquatic environment

A new planning approach

University of Natural Resources and Applied Life Sciences Vienna Department of Water, Atmosphere and Environment

- As intended by the EU-WFD catchment wide planning and cross border cooperation are necessary and call for multi-disciplinary planning and decision processes
- The same is given by the new EU-Flood Directive
- A so called "Leitbild" (vision, target view) uses natural reference conditions as an environmental orientation
- Also navigation development needs a long reach approach, including integrated measures to improve the existing situation

Jungwirth, 2007

Philosophy for a joint Danube approach

- Development of a common planning philosophy for improving Navigation AND Ecology
- A prerequisite for planning of an environmentally sound navigation is a common language across disciplines
- From the beginning all parties (ministries to NGOs) have to be involved in the planning
- First, problems and needs for navigation and ecology as well as navigation pressures have to be clearly identified
- Both, issues on pressures and measures should become a common understanding

Planning principles (examples)

University of Natural Resources and Applied Life Sciences Vienna Department of Water, Atmosphere and Environment

- implementation of measures according to given river morphological processes
- integrated design of regulation structures, equally regarding hydraulic, morphological and ecological criteria
- realisation of measures in an adaptive form
- definition of width and depth specifically for the central part of the navigation channel
- optimal use of the potential for river bank restoration and side channel reconnection

The planning principles should be commonly agreed creating a winning situation for ecology and navigation

Navigation pressures on ecology and integrated measures to improve navigation and environmental sustainability

- Identification of navigation pressures and design of corresponding integrated measures to simultaneously improve navigation and eocology
- Needs for ecology and navigation have to be specified for the basin-wide and sectional scale
- Integrated measures should clearly reflect, that the aims of navigation and ecology are weighted equally
- Thus, simultaneously with engineering measures to improve navigation, the full potential for river restoration to improve the ecology should be used

Navigation, ecological needs and respective examples of measures

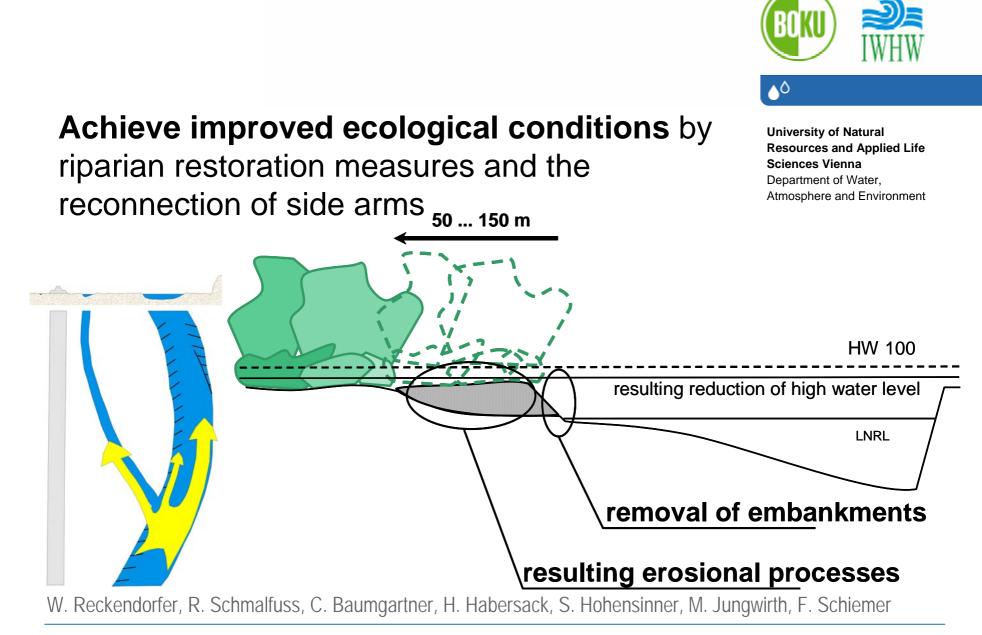
Navigation Needs	Navigation Measures	General Effects	Pressures/ Effects on Ecology	Ecological Needs	Environmental Measures
Minimum water depth	Transformation of the shipping way towards outer bank and deep water sections, low water regulation, dredging and refilling of material	Increase of water level at low flows	River channelization due to low water regulation, reduction of morpho- dynamics	Minimization of river engineering measures	River restoration (esp. river banks and floodplains)
Minimization of lateral flow velocity	Improvements of the flow field at confluences with tributaries and reconnected side channels by river engineering	Low cross sectional flow velocities	Reduced morpho- dynamics of confluences, less cross sectional flow velocity	No restriction to river bank and side channel dynamics	Side channel reconnection and restoration of tributary confluences

Navigation, ecological needs and respective examples of measures

Navigation Needs	Navigation Measures	General Effects	Pressures/ Effects on Ecology	Ecological Needs	Environ- mental Measures			
No sudden changes in flow field, flow velocity	Limitation of flow velocity changes	Low spatial variability of boundary conditions for navigation	Modified flow field compared to more natural conditions	Development of flow field and flow velocities towards Leitbild conditions	Development of river eng. measures to improve flow field variability			
Predictable position and geometry of navigation channel	Minimization of sudden sedimentation by use of groins, dredging and refilling	Less interruption / disturbance for navigation	Modified sediment transport / river morphology, habitat alteration	Variable water depths, flow widths, grain sizes, low lateral river bed gradients	Restoration measures leading to high var. of water depth, channel widths etc.			
No extreme trend towards river bed aggradation / degr. of the main channel	E.g. groins (aggr.), dredging and refilling of material, / river bed widening, (degr.)	Dynamic river bed stability	Also a need for ecology as the pressure is not resulting from the driver navigation	No extreme trend towards river bed aggr. / degradation of the main channel	Specific groins, dredging and refilling of material, / river bed widening			

Navigation, ecological needs and respective examples of measures

University of Natural **Resources and Applied Life Sciences Vienna** ter. **Environmental Measures Ecological Needs** Environment Preservation or improvement of river Channel morphodynamics morphology: no river bed pavement, keeping of morphodynamics, specific groin forms to improve morphodynamics, avoiding of groin fields Initiation of more nature-like river **River bank morphodynamics** banks: river bank restoration, removal of bank protection, side erosion, declinant groins to enhance side erosion Floodplain / wetland / sidearm Lateral connectivity reconnection, more water in the floodplain/alluvial area, improvement of habitats



University of Natural Resources and Applied Life Sciences Vienna Department of Water, Atmosphere and Environment

Ecology, navigation and

25. 6. 2007

