via donau – Österreichische Wasserstraßen-Gesellschaft mbH

Environmentally sustainable improvement of IWT on the Danube

DI Markus Simoner June 25th 2007, Cernavoda

Agenda

- 1. via donau company profile
- 2. Ecological impacts of IWT
- 3. European activities to promote IWT
- 4. Framework conditions for competitive Danube navigation

via donau – Österreichische Wasserstraßen-Gesellschaft mbH

via donau – company profile

via donau is ...

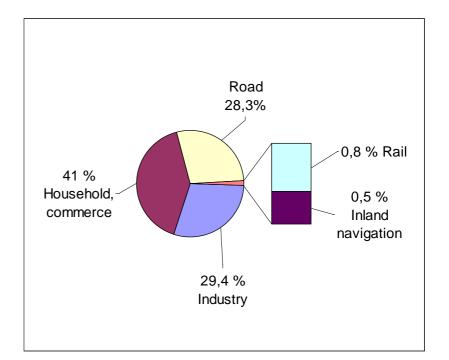
- ... the Austrian national waterway operator
- ... owned by the Ministry of Transport Innovation and Technology
- ... responsible for 351 km of the Danube waterway

Waterway administration & maintenance

Development of inland navigation

Traffic management

Sites via donau



via donau – Österreichische Wasserstraßen-Gesellschaft mbH

Ecological impacts of IWT

Environmental performance of IWT (1)

- IWT is a **safe** and **environmentally friendly** transport mode
- Low contribution to total traffic emissions due to very low share of total traffic energy consumption (road + rail + IWT, where IWT's share is about 1,5 %!)
- IWT cannot solve the problematics associated with the achievement of Kyoto target, but it can significantly contribute to it

Distribution of final energy consumption by sector in EU 25 (2003) Source: EEA

Environmental performance of IWT (2)

- IWT in **comparison** to **road** transport:
 - On average approx. 1/3 energy consumption, CO₂ emissions (per tkm)
 - HC, CO emissions significantly lower
 - **SO_x** emissions high due to sulphur content in fuel
 - Improvement potential w.r.t. NO_x and PM high compared to road transport adapting fast to new technologies
 - Engine age higher, engine replacement rate slower

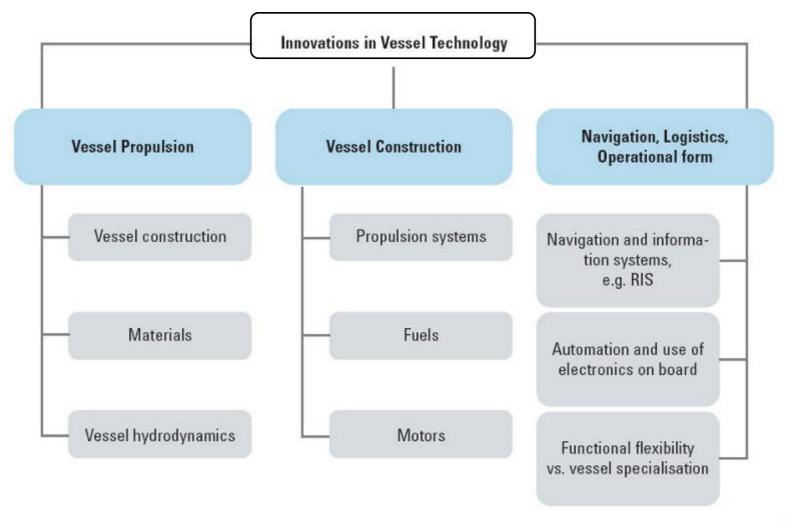
Ecological impacts of IWT

IWT has ecological impacts on:

The river through waterway infrastructure and low-water regulation

- River engineering measures (training walls, groynes)
- Maintenance works (dredging)
- 2) The environment (emissions, waste) through the operation of vessels
 - Emissions: CO₂, HC, CO, SO_x, NO_x, PM
 - Waste
 - Ship-borne (used oil, bilge water, others)
 - Waste caused by cargo (washing water, slops)
 - Environmental pollution through ship accidents

The first domain is subject of the ongoing process – the joint statement should minimise the ecological impacts of future infrastructure improvement measures



IWT has the lowest CO₂ emissions

- Example transport relation Constanta Vienna
- CO₂ emissions caused by the transport of one container (TEU):
 - Danube: **349** kg CO₂ / TEU **(100%)**
 - Rail: 567 kg CO₂ / TEU (162%)
 - Road: 933 kg CO₂ / TEU (267%)


Areas of innovation for fleet

viadonau/

Emission reduction technologies

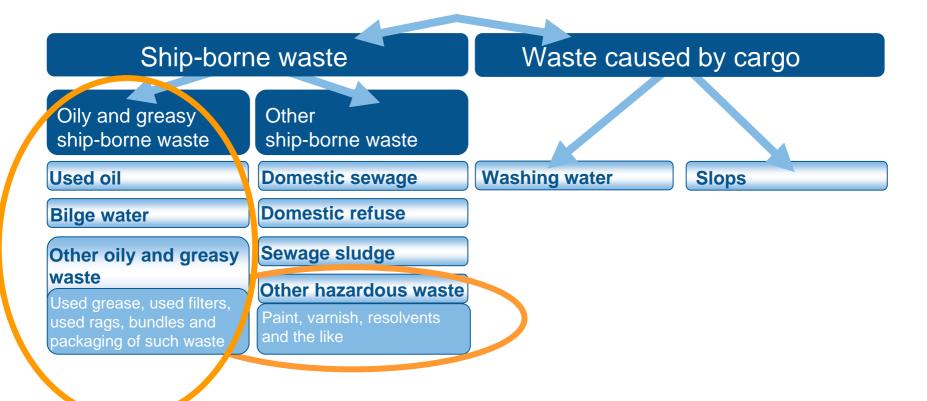
Emission reduction potentials

Achievable reduction potential with different emission reduction technologies. Initial situation is a vessel according to CCNR I standards without application of emission reduction technologies.

	NO _x	PM	Fuel consumption	CO ₂	SOx
After treatment techniques					
SCR (Selective catalytic reduction)	-81%	-35%	-7,5%	-7.5%	none
PMF (Particulate matter filter)	none	-85%	+2%	+2%	none
Drive management systems					
ATM (Advising tempomaat)	-10%	-10%	-10%	-10%	none
Diesel fuel quality / substitutes					
BD (Bio diesel)	+10%	-5%	+15%	-65%	~100%
BDB (Bio diesel blend, 20 % BD)	+2%	-1%	+3%	-13%	~20%
LSF (Low sulphur fuel)	none	-17%	none	none	~100%
New engine technologies					
NGE (Natural gas engine)	-98.5%	-97.5%	+4.5%	-10%	100%

Outlook on emissions (1)

- EC considers introduction of low sulphur fuel to IWT (300 ppm in 2009, 10 ppm in 2011)
- Implementation of NAIADES will contribute directly to a more environmentally friendly fleet (action: *improve logistics efficiency,* environmental and safety performance of IWT) => EU project PLATINA
- Research and feasibility studies are required with respect to the application of new technologies like NGE and fuel cells to inland navigation



Outlook on emissions (2)

- Research with respect to new vessel concepts leading to less fuel consumption per tkm by improved hydrodynamics and lighter construction has to be carried out => first step taken with EU project 2Create
- National subsidy programmes for a modern and environmentally friendly fleet have to be established and enhanced as they are not sufficient yet – modernisation of vessel engines is an important topic
- IWT must remain the most environmentally friendly transport mode

Waste caused by inland navigation

WAste management for inland Navigation on the DAnube

WANDA

Programme

• Interreg (forthcoming call, autumn 2007)

Motivation

• Development and implementation of a sustainable and transnationally coordinated approach in ship waste management along the Danube

Objectives

- Protection of water resource Danube by implementing preventive measures
- Preparation of transnationally coordinated ship waste management concepts, setting the basis for implementation and elaboration of an international financing model for oily and greasy ship waste

Key activities

WANDA

- Coordinated elaboration of national ship waste management concepts
- Preparation and implementation of pilot actions
- Development of financing model for oily and greasy ship waste
- Harmonisation and coordination activities

via donau – Österreichische Wasserstraßen-Gesellschaft mbH

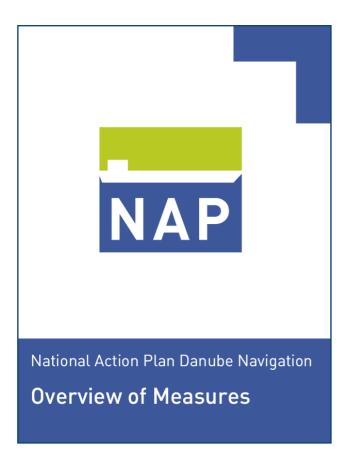
European activities to promote sustainable inland waterway transport

NAIADES Action Programme

- Presented by the European Commission on 17 January 2006
- Multi-annual Action Programme in order to foster transport by inland waterways in Europe (2006 – 2013)
- Objectives: Increase competitiveness of inland waterway transport & integrate into door-to-door logistics chains
 More freight transport on European inland waterways
- Addressees: EU member states, industry, social partners, river commissions, European Commission and other EU institutions

Adoption process of NAIADES

1	COUNCIL OF THE EUROPEAN UNION				
	Council Conclusions on the promotion of inland waterway transport				
	2139th TRANSPORT, TELECOMMUNICATIONS and ENERGY Council meeting Linembourg, 3-9 June 2006				
The	Council adopted the following conclusions:				
тв	E COUNCIL OF THE EUROPEAN UNION				
1.	Having regard to the White Paper "European Transport Policy for 2010: time to decide";				
2.	Considering the importance of transport for the development of the European economy and the need of raising the wavainability of the European transport system:				
k	Recognizing the multi-purpose nor of waterways and the potential countribution that initial waterways transport can andre so dismainlang unstanded estavation effects of framport. For estatamer through a samer efficient to ord energy and these reasons on polations is sure of the anamophers, so well as through safer freight transport-operations and reduced congention on counts:				
4.	Recognizing the availability of few capacity on inland waterways, the position of inland waterways transport both in its available and as part of multi-model chains in the Trans- European Transport Networks and the possibility to increase inland waterway transport with relatively low infinatracture costs;				
5.	Acknowledging that if inlined waterway transport is to thrite, that progress needs to be conservably driven and due sport from infrastructure, adverty has the primary responsibility for interstructure in and development of this sector.				

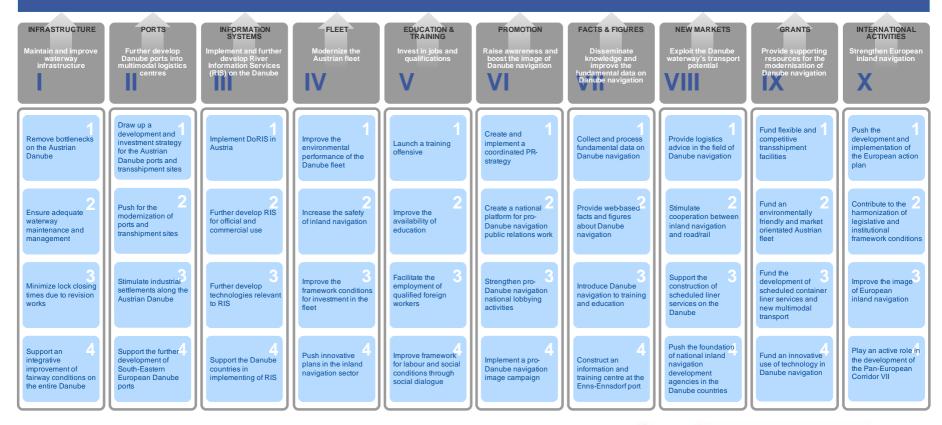


- Adoption of "Council Conclusions on the promotion of inland waterway transport" on 8 – 9 Juni 2006 in Luxembourg
- Resolution of the European Parliament on the promotion of inland waterway transport on 26th October 2006
 Viadonali

via donau – Österreichische Wasserstraßen-Gesellschaft mbH

National Austrian action plan for an active IWT policy

Austrian Action Plan Danube Navigation


- Comprehensive and dynamic planning and decision-making instrument for Austrian inland navigation policy until 2015
- Austrian implementation strategy of the European NAIADES action programme
- Catalogue of measures developed in cooperation with the inland navigation sector and environmental stakeholders

Catalogue of measures

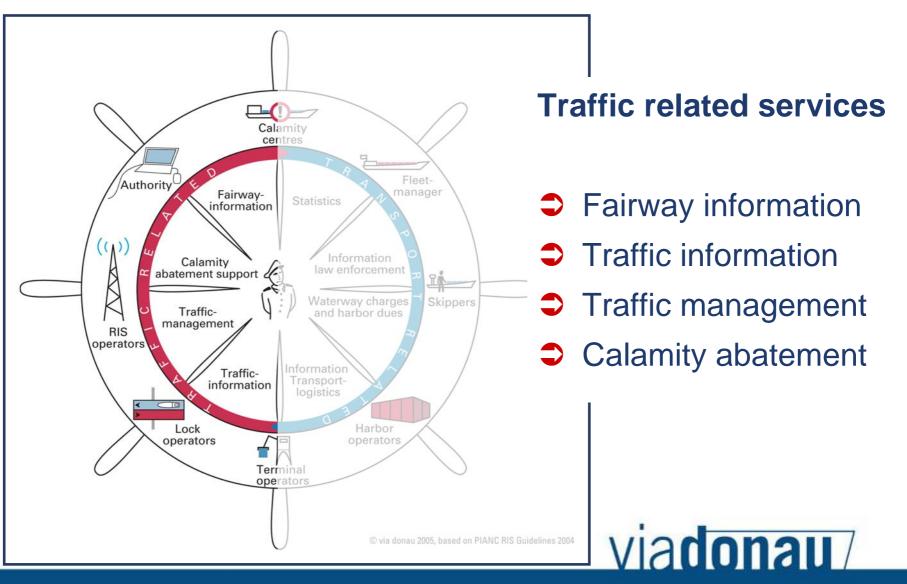
COMPREHENSIVE STRENGTHENING OF DANUBE NAVIGATION WITHIN THE AUSTRIAN FREIGHT TRANSPORT SYSTEM

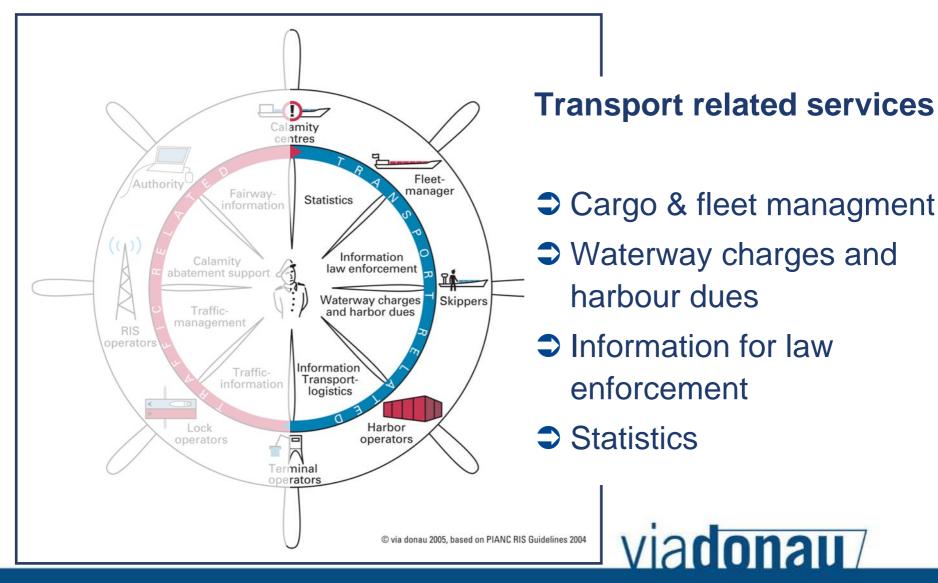
viadonau/

via donau – Österreichische Wasserstraßen-Gesellschaft mbH

Selected projects of via donau with relevance to environmental protection

Donau River Information Services





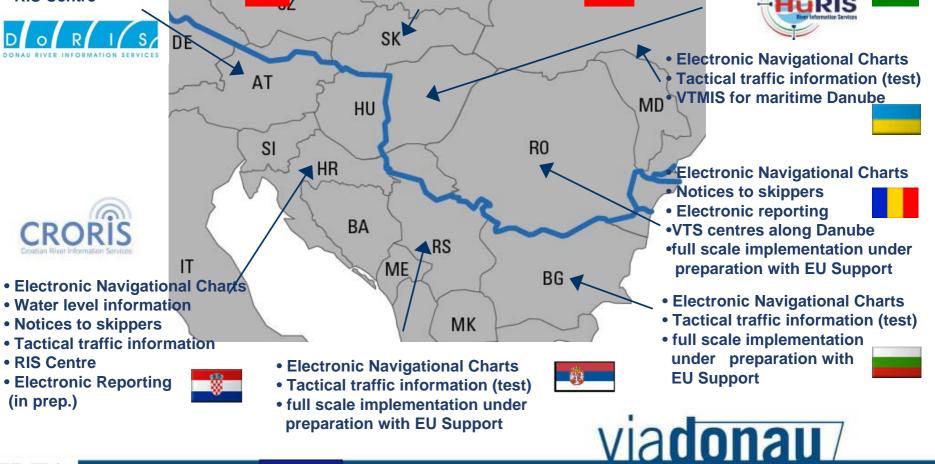
www.doris.bmvit.gv.at

River Information Services (RIS)

River Information Services (RIS)

DoRIS Components

- 23 base stations
- 9 work stations at Danube locks
- 12 fixed authority work stations
- 15 mobile work stations
- 1 national control center
- Equipped ships (per 24.05.07): 78 passenger vessels 198 cargo vessels 25 authority vessels 301 total



Status Quo of RIS on the Danube (June 07)

- Electronic Navigational Charts
- Water level information
- Notices to skippers
- Electronic reporting (in prep.)
- Tactical traffic information
- RIS Centre

- Electronic Navigational Charts
- Notices to skippers
- Electronic reporting (in prep.)
- Tactical traffic information (in prep.)
- Electronic Navigational Charts
- Notices to skippers
- Calamity abatement support
- Tactical traffic information
- RIS Centre

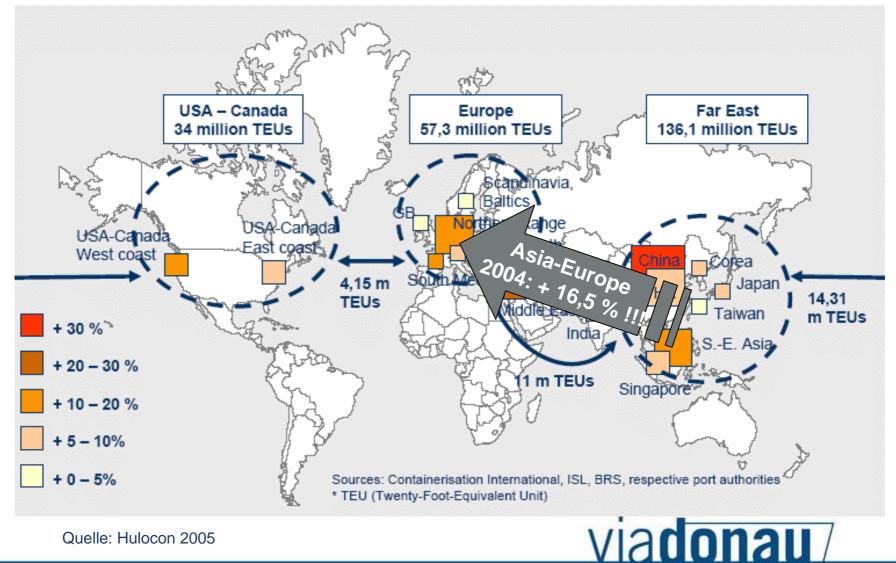
RIS Centre

(in prep.)

Project is funded by the European Union (EC / DG-TREN / TEN-T)

Environmental benefits of DoRIS

- Reduced fuel consumption / less emissions through better fairway information
 - water depth info in electronic navigational charts (ENCs)
 - better resource management at locks and in ports
- Increased traffic safety through
 - tactical traffic image on board of vessel
 - continuous monitoring of hazardous goods
- Reduced impact of accidents through
 - improved calamity abatement / traceability of accidents
- Higher share of IWT in transport market / less emissions through
 - acceleration of logistical processes
 - close-to-real-time tracking of shipments


via donau – Österreichische Wasserstraßen-Gesellschaft mbH

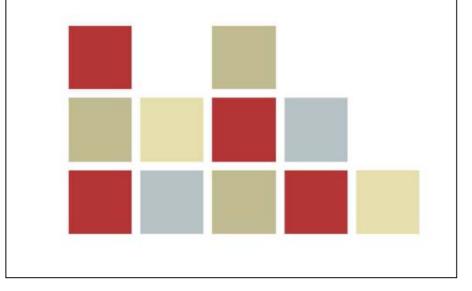
Project COLD Container Liner Service Danube

Enormous growth of container traffic

Project COLD Container Liner Service Danube

- Austrian Romanian initiative
- Provides unbiased and comprehensive information on potentials to all interested stakeholders
- Feasibility study covering:
 - Starting situation: Congestion in North Sea ports, worldwide growth of container transport etc.
 - Market and peer analysis: Container market in Austria, Hungary and Slovakia, forecast 2010 – 2020, rail tariffs
 - Inland navigation concept
 - Analysis of supply chain Krems Shanghai in terms of duration, cost and environmental balance
 - Conclusions and recommendations for action

Conclusions


- Alternative routing via Constanta and Danube highly attractive for trade between Asia and Central Europe:
 - ⇒ Significant advantage in total cost (10-30 %)
 - ⇒ Similar transit time for total supply chain
 - Environmental balance very positive (16 % less CO₂ per container)

CONTAINER LINER SERVICE DANUBE

An Assessment of the Opportunities and Risks of Container Transport on the Danube River between Austria and the Black Sea

FINAL REPORT, Vienna at August 2008

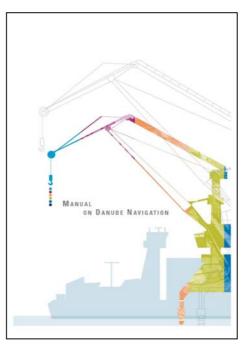
Feasibility Study of Container Liner Services on the Danube

Download: <u>www.via-donau.org/cold</u> resp. www.via-donau.org/en/cold

Ines

Inland Navigation eLearning System

- = eLearning Platform for the Danube
- Target groups
 - Logistics schools
 - Universities and Fachhochschulen
 - Pracititioners
 - Private individuals
- 7 learning topics prepared for 3 learning levels
 - Content is clearly structured
 - Usage of multimedia material, interactive elements, pictures and graphs
- Access free of charge for all interested parties at <u>www.ines.info</u>



Manuals on Danube Navigation

viadonau/

via donau – Österreichische Wasserstraßen-Gesellschaft mbH

Framework conditions for competitive Danube navigation

Competitive factors of freight transport


main factors: 1. transport price 2. quality of service

The predominant factor is transport price in relation to quality indicators. Quality:

- Reliability
 - punctuality just in time and door-to-door
 - Care for cargo (no damage to cargo during transport)
 - Integration into logistics chains interfaces between modes of transport
- Regularity of transport service (liner services)
- Speed
- Security
- Environmental compatibility

Inland navigation as a system

"Hardware" of the IWT system:

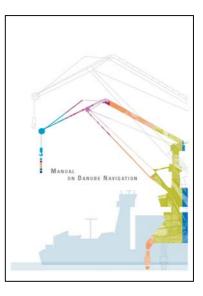
- waterway infrastructure (navigation fairway width and depth)
- ports (interface for transshipment and auxiliary services)
- vessels (means of transport)

[©] via donau I 43

Cost factors for operating a vessel

- Standby costs = fixed costs
- Operating costs = variable costs (fuel consumption)

Total costs = fixed costs + variable costs


Standby costs amount 70 - 80% of total costs

Operating costs amount 20 - 30% of total costs

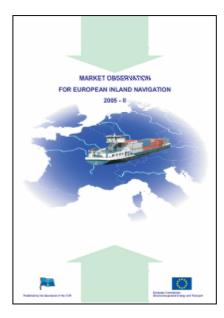
Standby costs and daily rates of vessels

Operating Mode	A 14 h/d	C 24 h/d	C 24 h/d		C 24 h/d
Vessel category	MCV	MCV	MCPV	PL	Push boat (Danube)
Current value €	500,000	1,000,000	1,150,000	290,000	1,900,000
Operator	Private	Private	Company	Company	Company
tdwat/Drive power	1,350 t	2,000 t	2,000 t	1,700 t	2,200 kW
Days in use/year	320	320	330	330	330
Costs in €/year					
Crew	112,000	173,000	184,000	-	207,000
Repairs	25,000	30,500	32,500	9,000	50,000
Insurance	15,000	23,000	23,000	7,300	39,000
Miscellaneous	20,000	23,000	11,000	-	14,500
Amortisation/Depreciation ¹	40,000	80,000	92,000	23,200	152,000
Interest ²	15,000	30,000	34,500	8,700	57,000
Overhead shipping company (30 %)	-	-	113,000	14,500	155,700
Total costs	227,000	359,500	490,000	62,700	674,700
Daily costs	709	1,123	1,485	190	2,045

'Assumed remaining period of use 12.5 years

²6% of 50% of the current value

Source: Manual on Danube navigation, via donau

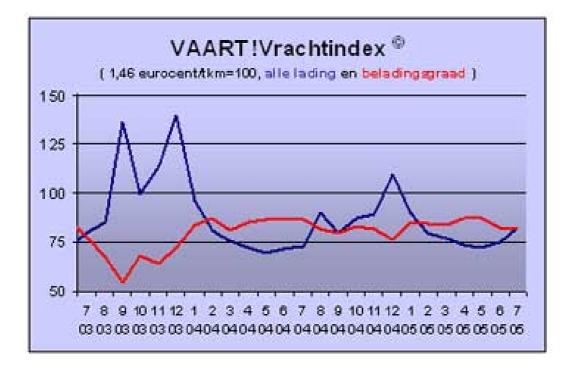


Operating costs (fuel consumption)

Development of average annual fuel price:

Year	2002	2003	2004	2005
Price of 100 litres, in euros	28.50	30.07	35.88	46.67

Source: Market Observation for European Inland Navigation 2005, CCR and EK

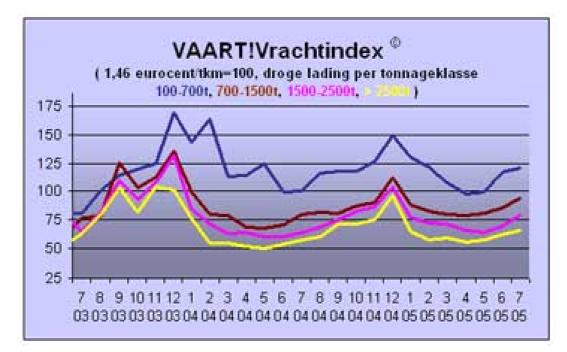

Criteria for competitiveness

Freight rates depend on:

- Cost structure of IWT (fixed and variable costs)
- Possible utilization degree of vessels
- Market situation (competitive position towards road and rail)
 - transport relation
 - type of good
 - logistics factors

Interdependency of utilization degree of vessels and freight rate

Source: Vaart! freight index, the Dutch Internet portal for inland navigation: www.vaart.nl


Low water periods (as in autumn 2003) lead to lower utilization degrees of vessels and herewith to higher transport costs and prices

Impacts of insufficient and extremely varying water depths

- Failures in transport operation (waiting time, lightering, substitute traffic)
 - divergent price-performance ratio
 - reduced efficiency
 - reduced transport safety
- Necessity of high storage capacity for companies
 - limited market potential
 - reduced competitiveness of inland navigation
- Decision to opt for other transport mode!
 - smaller share of inland navigation in modal split

Interdependency of size of a vessel and freight rate

Source: Vaart! freight index, the Dutch Internet portal for inland navigation: www.vaart.nl

The vessel size has a direct relation to the freight index. As a general rule, smaller vessels have higher freight rates.

Economic reality of Danube transport

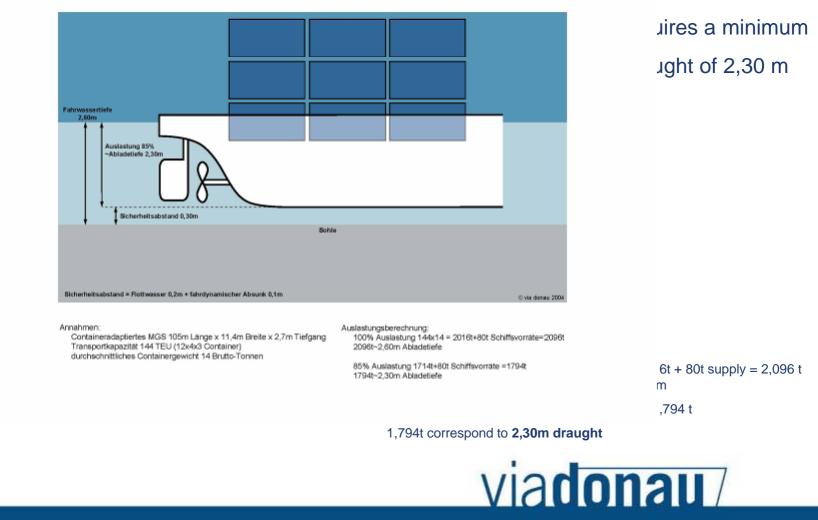
Cargo transports of an Austrian shipping company between 20.-23.10.2006

Transport Relation	vessel	tons loaded	draught	possible payload + 2 dm	difference in tons	difference in Euro
Vienna-Csepel	ху	420	13 dm	650	230	
Vienna-Csepel	ху	606	13 dm	830	224	
Vienna-Linz	ху	878	15 dm	1.050	172	
Vienna-Linz	ху	869	15 dm	1.050	181	
Vienna-Linz	ху	514	16 dm	630	116	
Vienna-Linz	ху	513	15 dm	670	157	
		3,800		4,880	1,080	8,144

If the possible draught were +2 dm, the additional income would amount to 8,144 € within this period.

One dm draught corresponds to on average 90 tons additional payload; average freight rate/ton = 7,5 €; average additional income per vessel and additional dm payload = 675 €

Competitive container transport on the Danube


Calculati

Optimised Co

Transport cap

Average conta

Wirtschaftlichkeitsberechnung Containerschiffe

Conclusion

Inland waterway transport is an interlinked system with many parameters to be taken into consideration

The river Danube is the most international river of the world with 10 riparian countries

Integrated actions, international cooperation and active national policies are needed to maintain and restore the Danube as a natural living space and habitat as well as a European transport axis!

DI Markus Simoner

via donau – Österreichische Wasserstrassen-Gesellschaft mbH A-1220 Wien, Donau-City-Strasse 1 Tel +43 (0)50 4321 1607, Fax +43 (0)50 4321 1050, markus.simoner@via-donau.org, www.via-donau.org

