DANUBE RIVER BASIN MANAGEMENT PLAN UPDATE 2021

ANNEX 8

Groundwater in the DRBD

GWB	Nat.	Area		uifer ceristics	Mainung	Overlying	Criteria for importance		
	part	[km²]	Aquifer Type	Confined	Main use	strata [m]	ontena for importance		
1	AT-1	1,650	K	Yes		100 1000	International and		
	DE-1	4,250	К	res	SPA, CAL	100-1000	Intensive use		
2	BG-2	13,034	F, K	Yes	DRW, AGR, IND	0-600	> 4000 km²		
	RO-2	11,340	г, к	168	DKW, AGK, IND	0-000	> 4000 KIIF		
3	MD-3	9,662	Р	Yes		0-150	> 4000 km ² , GW use, GW		
	RO-3	12,646	Г	168	DRW, AGR, IND	0-130	resource		
4	BG-4	3,308	Κ,	No	DRW, AGR, IND	0-10	> 4000 km²		
	RO-4	2,187	F-K	Yes	DRW, AOR, IND	0-10	> 4000 Kill		
5	HU-5	4,989	Р	No	DRW, IRR, IND	2-30	> 4000 km ² , GW resource,		
	RO-5	2,227	1	110	DRW, IKK, IND	2-30	DRW protection		
6	HU-6	1,034	Р	No	DRW, AGR, IRR	5-30	GW resource, DRW		
	RO-6	1,459	1	110	DRW, NOR, IRR	5-50	protection		
7	HU-7	7,098		No	DDW ACD IND		> 4000 km², GW use, GW		
	RO-7	11,355	Р	Yes	DRW, AGR, IND, IRR	0-125	resource, DRW protection		
	RS-7	10,506		No			F		
8	HU-8	1,152	_		DRW, IRR, AGR,		GW resource, DRW		
	SK-8	2,186	Р	No	IND	2-5	protection, dependent ecosystems		
9	HU-9	750		No			GW resource, DRW		
	SK-9	1,470	Р	Yes	DRW,IRR	2-10	protection, dependent ecosystems		
10	HU-10	493	K				GW resources, DRW		
	SK-10	598	K, F	No	DRW, OTH	0-500	protection, dependent ecosystem		
11	HU-11	3,337	К	Vac		0.2500	Thermal water recover		
	SK-11	563	F, K	Yes	DRW, SPA, CAL	0-2500	Thermal water resource		
12	HU-12	146	Р	No	DRW, AGR	0-10	DRW protection, dependent		
	SK-12	198	Г	INU	DIAW, AUK	0-10	ecosystems, GW resource		

Tal	ble	1:	Nom	inated	trans	bound	ary	GWBs	of	Danube	basin	wide	e importance	e
-----	-----	----	-----	--------	-------	-------	-----	------	----	--------	-------	------	--------------	---

3

Table 2: Nominated transboundar	GWBs of Danube basin wide importance
---------------------------------	--------------------------------------

					Aqu chara sat	cteri-		strata	for nce
Transboundary GWB	Nat. part	National GWB Codes	Area [km²]	Area [km²]	Aquifer Type	Confined	Main use	Overlying strata	Criteria for importance
1:	AT-1	ATGK100158	5,900	1,650	Κ	Yes	SPA, CAL	100– 1000	Intensive use
Deep Thermal	DE-1	DEGK1110		4,250					
2: Upper Jurassic – Lower Cretaceous	BG-2 RO-2	BG1G0000J3K051 RODL06	24,374	13,034 11,340	F, K	Yes	DRW, AGR, IND	0–600	>4000 km²
3:	MD-3	MDPR01	22,308	9,662	Р	Yes	DRW, AGR,	0-150	>4000 km ² ,
Middle Sarmatian - Pontian	RO-3	ROPR05		12,646			IND		GW use, GW resource
4:	BG-4	BG1G00000N049	5,495	3,308		No /	DRW, AGR,	0–10	>4000 km ²
Sarmatian	RO-4	RODL04		2,187	F-K	Yes	IND		
5: Mures / Maros	HU-5	HU_AIQ605 HU_AIQ604 HU_AIQ594 HU_AIQ593	7,216	4,989	Р	No	DRW, IRR, IND	2-30	>4000 km ² , GW resource, DRW protection
	RO-5*	ROMU20 ROMU22		2,227 1,774					
6: Somes / Szamos	HU-6	HU_AIQ649 HU_AIQ648 HU_AIQ600 HU_AIQ601	2,493	1,034	Р	No	DRW,AGR, IRR	5–30	GW resource, DRW protection
	RO-6*	ROSO01 ROSO13		1,459 1,392					
7: Upper Pannonian- Lower Pleistocene / Vojvodina / Duna- Tisza köze déli r.	HU-7	HU_AIQ528 HU_AIQ523 HU_AIQ532 HU_AIQ532 HU_AIQ590 HU_AIQ529 HU_AIQ522 HU_AIQ533 HU_AIQ486 HU_AIQ591	28,959	7,098	Ρ	No / Yes / No	DRW, AGR, IND, IRR	0-125	> 4000 km², GW use, GW resource, DRW protection
	RO-7	ROBA18		11,355					
	RS-7	RS_TIS_GW_I_1 RS_TIS_GW_SI_1 RS_TIS_GW_I_2 RS_TIS_GW_SI_2 RS_TIS_GW_I_3 RS_TIS_GW_SI_3 RS_TIS_GW_I_4 RS_TIS_GW_SI_4 RS_TIS_GW_I_7 RS_TIS_GW_SI_7 RS_D_GW_I_1 RS_D_GW_SI_1		10,506	5				
8: Podunajska Basin, Zitny Ostrov /	HU-8	HU_AIQ654 HU_AIQ572 HU_AIQ653 HU_AIQ573	3,338	1,152	Р	No	DRW, IRR, AGR, IND	2–5	GW resource, DRW protection,

Table 1			Area		Aqu chara sat	cteri-		strata	for nce
Transboundary GWB	Nat. part	National GWB Codes	Area [km ²]	Area [km²]	Aquifer Type	Confined	Main use	Overlying strata	Criteria for importance
Szigetköz, Hanság- Rábca	SK-8	SK1000300P SK1000200P		2,186					dependent ecosystems
9: Bodrog	HU-9	HU_AIQ495 HU_AIQ496	2,220	750	Р	No / Yes	DRW,IRR	2–10	GW resource, DRW
	SK-9	SK1001500P		1,470					protection, dependent ecosystems
10:	HU-10	HU_AIQ485	1,091	493	К	No	DRW, OTH	0–500	GW resource,
Slovensky kras / Aggtelek-hgs.	SK-10	SK200480KF		598	K, F				DRW protection, dependent ecosystems
11: Komarnanska Kryha / Dunántúli-khgs. északi r.	HU-11	HU_AIQ558 HU_AIQ552 HU_AIQ564 HU_AIQ660	3,900	3,337	К	Yes	DRW, SPA, CAL	0– 2,500	Thermal water resource
	SK-11	SK300010FK SK300020FK		563	F, K				
12:	HU-12	HU_AIQ583	344	146		No	DRW, AGR	0–10	DRW
Ipel / Ipoly	SK-12	SK1000800P		198	Р				protection, dependent ecosystems, GW resources

*...GWBs overlying

Explanation to Table 1 and 2

Transboundary GWB	ICPDR GWB code which is a unique identifier and the name
Nat. part	Code of national shares of ICPDR GWB
National GWB Codes	National codes of the individual GWBs forming the national part of a transboundary GWB of basin wide importance.
Area	Whole area of the transboundary GWB covering all countries concerned / Area of national shares in $\rm km^2$
Aquifer characterisation	Aquifer Type: Predom. \mathbf{P} = porous/ \mathbf{K} = karst/ \mathbf{F} = fissured. Multiple selections possible: Predominantly porous, karst, fissured and combinations are possible. Main type should be listed first.
	Confined: Yes / No
Main use	DRW = drinking water / AGR = agriculture / IRR = irrigation / IND = Industry / SPA = balneology / CAL = caloric energy / OTH = other. Multiple selection possible.
Overlying strata	Indicates a range of thickness (minimum and maximum in metres)
Criteria for importance	If size $< 4\ 000\ \text{km}^2$ criteria for importance of the GW body have to be named, they have to be bilaterally agreed upon.

Table 3: Number of monitoring stations and density per GWB

		0111011	-		na density	·		OUANTI			A	
			CHEMIC	4L		Associat	ed to	QUANTI	Υ .		Associate	ed to
Transboundary GWB	Nat. part	Area [km²]	Sites	km²/ site	Sites bilaterally agreed for data exchange	Drinkin g water protect ed areas	Eco- system s	Sites	km²/ site	Sites bilaterally agreed for data exchange	Drinkin g water protect ed areas	Eco- system s
1	AT-1 DE-1	1,650 4,250	4 4	413 1,063	_2 _2	-	-	3 4	550 1,063	_2 _2	-	-
Deep Thermal	Σ	5,900	8	738				7	843			
2	BG-2	13,034	9	1,448	2	yes	-	10	1,303	2	yes	-
Upper Jurassic –	RO-2	11,340	26	436	4	,	-	1	11,340	4	0	-
Lower		······							·····			
Cretaceous	Σ	24,374	35	696				11	2,216			
3	MD-3	9,662	6	1,610				7	1,380			
Sarmatian –	RO-3	12,646	19	666	0	-	-	17	744	0	0	-
Pontian	Σ	22,308	25	892				24	930			
	BG-4	3,308	7	473	2	yes	-	5	662	2	yes	-
4	RO-4	2,187	18	122	4		-	18	122	4	0	-
Sarmatian	Σ	5,495	25	220				23	239			
	HU-5	4,989	125	40	6	94	5	110	45	5	20	8
		2,227	20	111				16	139			
5	RO-5*	1,774	3	591	5	0	-	3	591	5	0	-
Mures/Maros	Σ	7,216	148	48				129	56			
	HU-6	1,034	25	41	5	12	4	18	57	1	2	2
		1,459	33	44				115	13			
6	RO-6*	1,392	6	232	2	0		7	199	2		
Somes/Szamos	Σ	2,493	64	39				141	18			
7	HU-7	7,098	159	45	0	105	14	151	47	0	22	15
Upper Pannonian	RO-7	11,355	44	258		0	-	24	473		0	-
- Lower Pleisto-	RS-7	10,506	11	955	0	yes	**	93	113	0	**	**
cene / Vojvodina / Duna-Tisza												
köze deli r.	Σ	28,959	214	135				268	108			
8	HU-8	1,152	59	20	0	24	18	108	100	24	31	22
Podunajska	SK-8	2,186	133	16	0	**	**	274	8	136	**	**
Basin, Zitny		2,100	100	10	U			217		100		
Ostrov /												
Szigetköz,												
Hanság-Rábca	Σ	3,338	192	17				382	9			
	HU-9	750	12	62	0	6	0	16	47	12	0	2
9	SK-9	1,470	93	16	0	**	**	92	16	8	**	**
Bodrog	Σ	2,220	105	21				108	21			
10	HU-10	493	13	38	0	10	6	16	31	9	6	6
Slovensky kras	SK-10	598	7	85	0	**	**	22	27	3	**	**
/Aggtelek-hsg.	Σ	1,091	20	55				38	29			
11	HU-11	3,337	23	167	0	20	1	48	70	10	5	0
Komarnanska	SK-11	563	4	141	0	**	**	3	188	-	**	**
Kryha /												
Dunántúli-khgs. Északi r.	Σ	3,900	27	144				51	76			
LSZANI I.	2 HU-12	3,900 146	6	29	0	6	3	5 1 7	21	1	0	2
10	HU-12 SK-12	146 198	6 26	29 8	0	0 **	3 **	19	10	7	U **	2
12 Ipel / Ipoly	• • • • • • • • • • • • • • • • • • • •	190 344	20 32	ہ 11	U			19 26	10			
iper / ipoly	Σ	544	52	11				20	15			

*...GWBs overlying; ** no information; ² unrestricted data exchange on demand; + will be updated

Explanation to Table 3

Transboundary GWB	ICPDR GWB code which is a unique identifier and the name
Nat. part	Code of national shares of ICPDR GWB
•	Area of the whole transboundary ICPDR GWB covering all countries concerned and of
Area	the national shares of the ICPDR GWB in km ² .
CHEMICAL / QUANTITY	
Sites	Number of monitoring sites - Reference year (AT/DE 2018/19, BG 2016/19, RO
Sites	2017/19, SK 2018)
km²/site	Area in km ² represented by each site – Reference year (AT/DE 2018/19, BG 2016/19,
KIII-/Site	RO 2017/19, SK 2018)
Number of sites bilaterally	Number of monitoring sites for which transboundary data exchange is bilaterally
agreed for data exchange	agreed.
Associated to	
Drinking water protected areas	Number of monitoring sites associated to drinking water protected areas
Ecosystems	Number of monitoring sites associated to ecosystems

	AT/DE	BG	RS	HU	MD	RO	SK
Transboundary GWB	1	2,4	7	5-12	3	2 - 7	8-12
C	HEMICAL (with e	stimatio	n of fre	equency)			
Oxygen	1/a	>1/a	1/a	1/6; <1/a		1/a***	>1/a
pH-value	1/a	>1/a	1/a	>1/a*		1/a	>1/a
Electrical conductivity	1/a (cont. DE)	>1/a	1/a	>1/a*		1/a	>1/a
Nitrate	1/a	>1/a	1/a	>1/a*		1/a	>1/a
Ammonium	1/a	>1/a	1/a	>1/a*		1/a	>1/a
Temperature	cont.	>1/a	1/a	>1/a*		1/a	>1/a
Further parameters, e.g. major ions	x**	х	1/a	Х		Х	Х
		-			_		
operational		х		х		х	х
Q	UANTITY (with e	stimatio	n of fre	equency)			
GW levels/well head pressure	Х	х	х	х		Х	х
spring flows		х		х		Х	х
Flow characteristics							х
Extraction (not obligatory)	Х						
Reinjection (not obligatory)	Х						

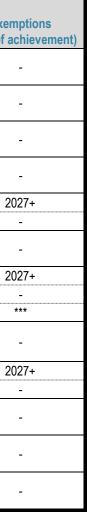
Table 4: Parameters and frequency for the surveillance monitoring program

Remarks:

Transboundary GWB:	Code of transboundary GWB of Danube basin wide importance
>1/a:	More than 1 per year
x:	Parameter is measured
*	In the starting year
**	A yearly program and a five year monitoring program were established. Further parameters in
	DE are chloride, sulphate and total hardness
***	Monitoring frequency is according to surveillance monitoring program. The frequency is
	>1/year (2/y) in case of operational monitoring program

GWB	Nat. part														
		Chemical Status 2015	Status Pressure Types 2015	Significant upward trend (parameter)	Trend reversal (parameter)	Risk 2013 → 2021	Risk Pressure Types →2021	Exemptions from 2021	Chemical Status 2021	Status Pressure Types 2021	Significant upward trend (parameter)	Trend reversal (parameter)	Risk 2019→2027	Risk Pressure Types →2027	Exemptions (Year of achievement)
GWB-1	AT-1 DE-1	Good	-	-	-	-	-	-	Good	-	-	-	-	-	-
GWB-2	BG-2 RO-2	Good	-	-	-	-	-	-	Good	-	-	- Cl	· _	-	-
GWB-3	MD-3 RO-3	Good	-	-	-	Risk -	PS, DS, WA -	-	Good	-	-	-	-	-	-
GWB-4	BG-4 RO-4	Good	-	-	-	-	-	-	Good Poor	- DS	-	-	- Risk	- DS	- 2027
GWB-5	HU-5	Poor	DS	SO4	-	Risk	DS	2027	Poor	DS	NO3, NH4, EC, SO4	Cr. Dh	Risk	DS	2027+
GWB-6	RO-5 HU-6 RO-6	Good	-	NH4 -	-	-	-	-	Good	-	-	Cr, Pb -	-	-	-
GWB-7	HU-7 RO-7	Poor	DS	NO ₃	-	Risk	DS	2027	Poor	DS	-	- PO4, CI	Risk	DS	2027+
GWB-7	RO-7 RS-7	Good Good*	-	-	-	-		-	Good Good	-	-	- PO4, CI	-	-	-
GWB-8	HU-8 SK-8	Good Good	-	- NH4, NO3, CI, As, SO4	-	-	- PS, DS		Good	-	PO4	NH4 ^{, ***} , Cl ^{***} , SO4, TOC	- Risk	- PS, DS	-
GWB-9	HU-9 SK-9	Good	-	-	-	-	-	-	Good Poor	DS, PS	NH4 PO4	- NH4 [,]	Risk	DS	2027+
GWB-10	HU-10 SK-10	Good	-	-	-	-	-	-	Good	-	-	-	Risk	PS	-
GWB-11	HU-11 SK-11	Good Unknown	-	- Unknown*	-	-	-	-	Good	-	-	-	-	-	-
GWB-12	HU-12 SK-12	Good Poor	DS DS	NO3 SO4	-	Risk	-	-	Good Poor	- DS	-	-	- Risk	- DS	- 2027+

Table 5: Groundwater QUALITY: Risk and Status Information of the ICPDR GW-bodies over a period of 2013 to 2027


'-' means 'No'; * The status information is of low confidence as it is based on risk assessment; ** Not yet discussed; *** The trend was partially reversed, it means for some sites identified with significant upward trends in the 2nd RBMP. TOC - total organic carbon

Explanation: see next page

GWB	Nat. part			Danube RBM Pla	n 2015				Danube RBM Plan 2	2021	
		Quantitative Status 2015	Status Pressure Types 2015	Risk 2013 → 2021	Risk Pressure Types →2021	Exemptions from 2021	Quantitative Status 2021	Status Pressure Types 2021	Risk 2019 → 2027	Risk Pressure Types →2027	Exem (Year of ac
GWB-1	AT-1 DE-1	Good	-	-	-	-	Good	-	-	-	
GWB-2	BG-2 RO-2	Good	-	-	-	-	Good	-	-	-	
GWB-3	MD-3 RO-3	Good	-	-	-	-	Good	-	-	-	
GWB-4	BG-4 RO-4	Good	-	-	-	-	Good	-	-	-	
	HU-5	Poor	WA	Risk	WA	2027	Poor	WA	Risk	WA	20
GWB-5	RO-5	Good	-	-	-	-	Good	-	-	-	
GWB-6	HU-6 RO-6	Good	-	-	-	-	Good	-	-	-	
	HU-7	Poor	WA	Risk	WA	2027	Poor	WA	Risk	WA	20
GWB-7	RO-7	Good	-	-	-	-	Good	-	-	-	
	RS-7	Poor*	WA	Risk	WA	**	Poor	WA	Risk	WA	ż
	HU-8	Poor	WA	Risk	WA	2027	Cood				
GWB-8	SK-8	Good	-	-	-	-	Good	-	-	-	
GWB-9	HU-9	Cood					Poor	OP	Risk	OP	20
GWB-9	SK-9	Good	-	-	-	-	Good	-	-	-	
GWB-10	HU-10 SK-10	Good	-	-	-	-	Good	-	- Risk	- WA	
GWB-11	HU-11 SK-11	Good Unknown	_	-	-	-	Good	-	-	-	
GWB-12	HU-12 SK-12	Good	-	-	-	-	Good	-	-	-	

Table 6: Groundwater QUANTITY: Risk and Status Information of the ICPDR GW-bodies over a period of 2013 to 2027

- ... no / not applicable; * ... Status information is of low confidence as it is based on risk assessment; ** ... not yet discussed; ***... information will be provided, when the Plan is officially adopted.

Explanation to Table 5 and Table 6

Explanation to Tuble 5 and Tuble 6					
GWB	ICPDR GWB code which is a ur	nique identifier.			
Nat. part	Code of national shares of ICPD	R GWBs			
Danube RBM Plan 2015	Danube RBM Plan 2021				
[Chemical/Quantitative] Status 2015	Status 2021	Good / Poor / Unknown			
Status Pressure Types 2015	Status Pressure Types 2021	Indicates the significant pressures causing poor status in 2015. $AR =$ artificial recharge, $DS =$ diffuse sources, $PS =$ point sources, $OP =$ other significant pressures, $WA =$ water abstractions			
Significant upward trend (parameter)	Significant upward trend (parameter)	Indicates for which parameter a significant sustained upward trend has been identified.			
Trend reversal (parameter)	Trend reversal (parameter)	Indicates for which parameter a trend reversal could have been achieved.			
Risk 2013→2021	Risk 2019→2027	Risk / - (which means 'no risk')			
Risk Pressure Types →2021	Risk Pressure Types →2027	Indicates the significant pressures causing risk of failing to achieve good status in 2021. AR = artificial recharge, DS = diffuse sources, PS = point sources, OP = other significant pressures, WA = water abstractions			
Exemptions from 2021	Exemptions (Year of achievement)	Indicates the year by when good status is expected to be achieved.			

10

Table 7: Groundwater QUALITY: Status 2021 - Reasons for failing good groundwater chemical status in 2021 for the ICPDR GW-bodies.

GWB	GWB Name	National part	Year of status assessment	Chemical Status 2021	Which parameters cause poor status	Failed general assessment of GWB as a whole	Saline or other intrusion	Failed achievement of Article 4 objectives for associated surface waters	Significant damage to GW dependent terrestrial ecosystem	Art 7 drinking water protected area affected
				good /poor	parameter	Yes / - / Unknown (parameter)	Yes / - / Unknown (parameter)	Yes / - / Unknown (parameter)	Yes / - / Unknown (parameter)	Yes / - / Unknown (parameter)
GWB-1	Deep GWB – Thermal Water	AT-1 DE-1	2020	Good	-	-	-	-	-	-
GWB-2	Upper Jurassic – Lower Cretaceous GWB	BG-2 RO-2	2019 2017	Good	-	-	-	-	-	-
GWB-3	Middle Sarmatian - Pontian GWB	MD-3 RO-3	2018 2017	Good	-	-	-	-	-	-
GWB-4	Sarmatian GWB	BG-4 RO-4	2019 2017	Good Poor	- NO ₃	- Yes	-	-	-	-
GWB-5	Mures / Maros	HU-5	2020	Poor	NO3, SO4, NH4, CI,	-	-	-	-	Yes (NO ₃ , SO ₄ , NH ₄ , Cl)
		RO-5	2017		NO ₃	Yes				-
GWB-6	Somes / Szamos	HU-6 RO-6	2020 2017	Good	-	-	-	-	-	-
GWB-7	Upper Pannonian – Lower Pleistocene /	HU-7 RO-7	2020 2017	Poor Good	NO ₃	Yes (NO ₃₎	-	-	_	-
	Vojvodina / Duna-Tisza köze deli r.	RS-7	2019	Good	-	-				
GWB-8	Podunajska Basin, Zitny Ostrov / Szigetköz, Hanság-Rábca	HU-8 SK-8	2020 2013-2018	Good	-	-	-	-	-	-
GWB-9	Bodrog	HU-9 SK-9	2020 2013-2018	Good Poor	- NH4, PO4	Yes	-	-	-	-
GWB-10	Slovensky kras / Aggtelek-hgs.	HU-10 SK-10	2020 2013-2018	Good	-	-	-	-	-	-
GWB-11	Komarnanska Kryha / Dunántúli-khgs. északi r.	HU-11 SK-11	2020 2013-2018	Good	-	-	-	-	-	-
GWB-12	Ipel / Ipoly	HU-12 SK-12	2020 2013-2018	Good Poor	- NO3, SO4, PO4	- Yes	-	-	-	-

'-' means 'No'; * The status information is of low confidence as it is based on risk assessment;

Table 8: Groundwater QUALITY: Risk 2027 - Reasons for risk of failing good groundwater chemical status in 2027 for the ICPDR GW-bodies.

GWB	GWB Name	National part	Year of risk assessment	,at risk' 2021	Which parameters cause risk	Failed general assessment of GWB as a whole	Saline or other intrusions	Failed achievement of Article 4 objectives for associated surface waters	Significant damage to GW dependent terrestrial ecosystem	Art 7 drinking water protected area affected
				Risk / -	parameter	Yes / - / Unknown (parameter)	Yes / - / Unknown (parameter)	Yes / - / Unknown (parameter)	Yes / - / Unknown (parameter)	Yes / - / Unknown (parameter)
GWB-1	Deep GWB – Thermal Water	AT-1 DE-1	2020	-	-	-	-	-	-	-
GWB-2	Upper Jurassic – Lower Cretaceous GWB	BG-2 RO-2	2019 2017	-	-	-	-	-	-	-
GWB-3	Middle Sarmatian - Pontian GWB	MD-3 RO-3	2017	-	-	-	-	-	-	-
GWB-4	Sarmatian GWB	BG-4 RO-4	2019 2017	- Risk	- NO3	- Yes	-	-	-	-
GWB-5	Mures / Maros	HU-5	2018	Risk	NH4, glyphosate*, Cl, SO4	Yes (NH4)	-	-	-	Yes (NO ₃ , Cl, SO ₄₎
GWB-6	Somes / Szamos	RO-5 HU-6	2017 2018	<u> </u>	NO ₃	Yes _				-
		RO-6 HU-7	2017	Risk	Glyphosate*, EC,	Yes (NH ₄ , NO ₃)				NO3, EC
GWB-7	Upper Pannonian – Lower Pleistocene / Vojvodina / Duna-Tisza köze deli r.	R0-7	2018 2017	-	NH4, NO3 -	-	-	-	-	-
GWB-8	Podunajska Basin, Zitny Ostrov /	RS-7 HU-8 SK-8	2019 2018 2020	- -	- - - NH4	-	_	-	-	- Yes
GWB-9	Szigetköz, Hanság-Rábca Bodrog	HU-9 SK-9	2020 2018 2020	Risk Risk	NH4 NH4 NH4, PO4	- Yes	-	-	-	Yes (NH4)
GWB-10	Slovensky kras / Aggtelek-hgs.	HU-10 SK-10	2020	Risk	TCE	-	-	-	-	TCE
GWB-11	Komarnanska Kryha / Dunántúli-khgs. északi r.	HU-11 SK-11	2018 2020	-	-	-	-	-	-	-
GWB-12	Ipel / Ipoly	HU-12 SK-12	2020 2018 2020	- Risk	- NO3, PO4, SO4	- Yes	-	-	-	-

'-' means 'No'; * based on single data after risk assessment period

Table 9: Groundwater QUANTITY: Status 2021 - Reasons for failing good groundwater quantitative status in 2021 for the ICPDR GW-bodies.

GWB	GWB Name	National part	Year of status assessment	Quantitative status 2021	Exceedance of available GW resource	Failed achievement of Article 4 objectives for associated surface waters	Significant damage to GW dependent terrestrial ecosystem	Uses affected (drinking water use, irrigation etc.)	Intrusions detected or lik to alterations of flow direct level chan
				good / poor	Yes / - / Unknown	Yes / - / Unknown	Yes / - / Unknown	Yes / - / Unknown If yes, which?	Yes / - Unknow
GWB-1	Deep GWB – Thermal Water	AT-1 DE-1	2020	Good	-	-	-	-	-
GWB-2	Upper Jurassic – Lower Cretaceous GWB	BG-2 RO-2	2019 2017	Good	-	-	-	-	-
GWB-3	Middle Sarmatian - Pontian GWB	MD-3 RO-3	2017	Good	-	-	-	-	-
GWB-4	Sarmatian GWB	BG-4 RO-4	2019 2017	Good	-	-	-	-	-
GWB-5	Mures / Maros	HU-5 RO-5	2020 2017	Poor Good		-	Yes -	-	-
GWB-6	Somes / Szamos	HU-6 RO-6	2020 2017	Good	-	-	-	-	-
GWB-7	Upper Pannonian – Lower Pleistocene / Vojvodina / Duna- Tisza köze deli r.	HU-7 RO-7 RS-7	2020 2017 2019	Poor Good Poor	Yes - Yes	- - Unknown	Yes - Unknown	- - Yes	- - - Unknow
GWB-8	Podunajska Basin, Zitny Ostrov / Szigetköz, Hanság-Rábca	HU-8 SK-8	2020 2013-2017	Good	-	-	-	-	-
GWB-9	Bodrog	HU-9 SK-9	2020 2013-2017	Poor Good	Yes -	-	-	-	Unknow -
GWB-10	Slovensky kras / Aggtelek-hgs.	HU-10 SK-10	2020 2013-2017	Good	-	-	-	-	-
GWB-11	Komarnanska Kryha / Dunántúli- khgs. északi r.	HU-11 SK-11	2020 2015-2017	Good	-	-	-	-	-
GWB-12	Ipel / Ipoly	HU-12 SK-12	2020 2013-2017	Good	-	-	-	-	-

likely to happen due rections resulting from anges
/- / own
_
own
own

Table 10: Groundwater QUANTITY: Risk 2027 - Reasons for risk of failing good groundwater quantitative status in 2027 for the ICPDR GW-bodies.

GWB	GWB Name	National part	Year of risk assessment	ʻat risk' 2027	Exceedance of available GW resource	Failed achievement of Article 4 objectives for associated surface waters	Significant damage to GW dependent terrestrial ecosystem	Uses affected (drinking water use, irrigation etc.)	Intrusions detected or likely to happen due to alterations of flow directions resulting from level changes
				Risk / -	Yes/- / Unknown	Yes / - / Unknown	Yes/-/ Unknown	Yes / - / Unknown If yes, which?	Yes /- / Unknown
GWB-1	Deep GWB – Thermal Water	AT-1 DE-1	2020	-	-	-	-	-	-
GWB-2	Upper Jurassic – Lower Cretaceous GWB	BG-2 RO-2	2019 2017	-	-	-	-	-	-
GWB-3	Middle Sarmatian - Pontian GWB	MD-3 RO-3	2018 2017	-	-	-	-	-	-
GWB-4	Sarmatian GWB	BG-4 RO-4	2019 2017	-	-	-	-	-	-
GWB-5	Mures / Maros	HU-5 RO-5	2020 2017	Risk -		-	Yes -	-	-
GWB-6	Somes / Szamos	HU-6 RO-6	2020 2017	-	-	-	-	-	-
GWB-7	Pleistocene / Vojvodina / Duna-	HU-7 RO-7	2020 2017	Risk -	Yes -		Yes -	-	-
	Tisza köze deli r.	RS-7	2019	Risk	Yes	Unknown	Unknown	Yes, DW	Unknown
GWB-8	Podunajska Basin, Zitny Ostrov / Szigetköz, Hanság-Rábca	HU-8 SK-8	2020 2017	-	-	-	-	-	-
GWB-9	Dedreg	HU-9	2020	Risk	Yes				
GWD-9	Bodrog	SK-9	2017	-	-	-	-	-	-
GWB-10	Slovensky kras / Aggtelek-hgs.	HU-10 SK-10	2020 2017	Risk	-	- Yes	_	-	-
GWB-11	Komarnanska Kryha / Dunántúli-	HU-11 SK-11	2020 2017	-	-	-	-	-	-
GWB-12	Ipel / Ipoly	HU-12 SK-12	2020 2017	-	-	-	-	-	-

- means 'No';

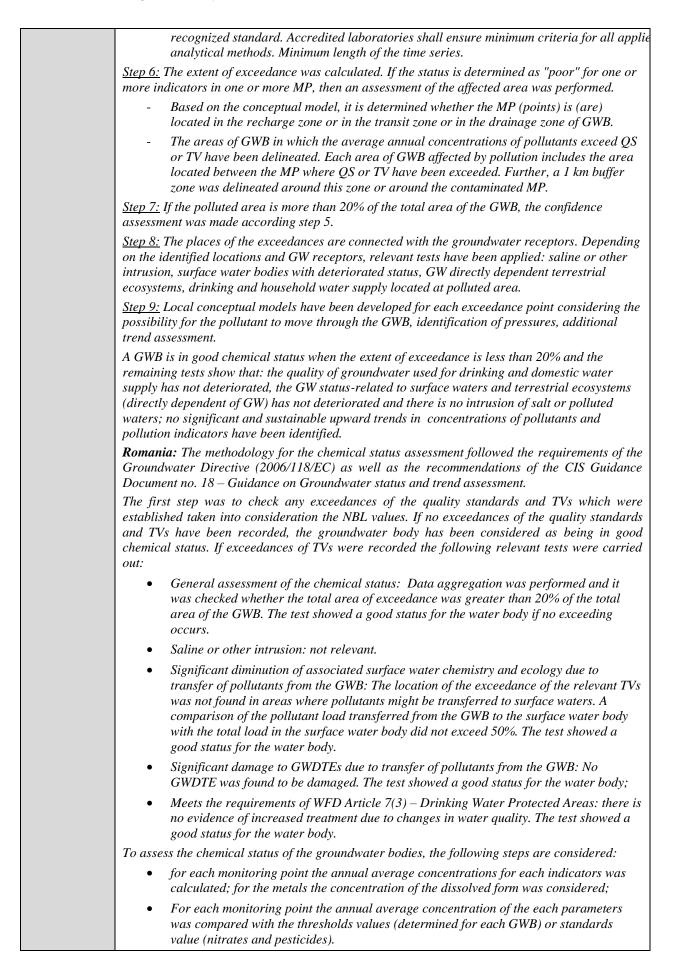
likely to happen due rections resulting from anges
/- / own
own

Table 11: Summary table: Groundwater threshold values

		GWB-1	GWE	3-2	GWB-3	GW	B-4	G	WB-5	GV	VB-6	GWB-	7		GWB-8	GV	VB-9	GW	B-10	GWB-11	GWB	3-12
Parameter	unit		BG-2	RO-2	RO-3	BG-4	RO-4	RO-5	HU-5	HU-6	RO-6	HU-7	R0-7	HU-8	SK-8	HU-9	SK-9	HU-10	SK-10	HU-11 SK-11**	HU-12	SK-12
Ammonium	mg/l		0.4487	0.5	6.4	0.38	0.7	0.5–1.9	2–5	2–5	0.5–1.3	2–5	6.4	1–2	0.26	2–5	0.30	0 .5	0.27	0.5–no TV	2	0.90
AOX	µg/l								20	20		20		20		20		20		20–no TV	20	
Arsenic	µg/l		7.6	10	10	7.7	10	40		-	10				6		6		5.5			6
Benzene	µg/l			10	10		10	10			10		10		0.8		0.8		0.8			0.8
Cadmium	µg/l		3.8	5	5	3.9	5	5	5	5	5	5	5	5	3.0	5	3.0	5	2.7	5–no TV	5	2.9
Chloride	mg/l		189	250	250	188.75	250	250	250-500	250	250	250	250	250	135.8-137.3	250	147.4	250	131.8	250–no TV	250	135.7
Chromium	µg/l		38.875		50	38.25		50			50		50		26		27		25			26
COD Mn	mg O2/I		3.975			3.8625																
Conductivity	µS/cm		1640.625			1713.6			2500-4000	2500		2500-4000		2500		2500		2500		2500–no TV	2500	
Copper	µg/l		152.7		100	150.1		100			100		100		1001-1002		1004		1001			1003
Cyanides	mg/l		0.04			0.04																
Iron total	mg/l		0.1607			0.15									0.125-0.135		0.150		0.105			0.150
Lead	µg/l		8.1	10	10	7.6	10	10–20	10	10	30–70	10	10	10	6.5-7.0	10	9.0	10	5.5	10–no TV	10	7.0
Manganese	mg/l		0.038			0.038									0.030		0.030		0.027			0.100
Mercury	µg/l		0.8	1	1	0.8	1		1	1	1	1	1	1	0.7-0.8	1	0.7	1	0.6	1–no TV	1	0.6
Nickel	µg/l		15.05		20	15.5	20	20			20		20									
Nitrates**	mg/l		38.5			39.87												25		25–50–no TV		
Nitrites	mg/l		0.3801	0.5	0.5	0.375	0.5	0.5			0.5		0.5		0.26		0.26		0.26			0.26
Phenols	µg/l							2			2		4									
Phosphates	mg/l		0.3805	0.5	1.4	0.3798	0.5	0.5–0.6			0.5		1		0.22		0.22		0.24			0.24
Orthophosphate	mg/l								2–5	0.5–2		1–5		1		1–2		0.25		0.25-no TV	2	
Sodium	mg/l		156.75			158.25									104.5-105.8		111.0		52.3			119.8
Sulphates	mg/l		192	250	250	189	250	250	250–500	250	250	250–500	250	250	148.9–157.6	250	167.4	250	167.6	250–no TV	500	140.8
Tetrachloroethylen	µg/l		7.5*	10	10	7.5*	10	10	10	10	10	10	10	10	7.5*	10	7.5*	10	7.5*	10	10	7.5*
Trichlorethylene	µg/l		*	10	10	*	10	10	10	10	10	10	10	10	7.5*	10	7.5*	10	7.5*	10	10	7.5*
Zinc	mg/l		0.777		5	0.7537	5	5			5		5									
Pesticides total**			0.375			0.375																

*...7.5 for Tetrachloroethylen + Trichlorethylene; ** the quality standards for nitrates (50 mg/l) and for pesticides (0.1 for individual pesticides and relevant metabolites and 0.5 for total pesticides) are not mentioned in the table. **...The criterion for evaluating the chemical status of geothermal GWB is the stability of the chemical composition

Methodologies of status and trend assessment of the ICPDR GW-bodies


GWB-1: Deep Groundwater Body – Thermal Water

GWB-1		National share	AT-1 DE-1	Status 2021 for GW							
				Chemical (substance)	Quantity						
List of individual	GW-bodies forming	AT	ATGK100158	Good	Good						
the whole national	l share (national code	DE	DEGK1110	Good	Good						
incl. country code)										
Description/Cha racterisation of the ICPDR GW- body	The thermal groundwater of the Malm karst (Upper Jurassic) in the Lower Bavarian and Upper Austri Molasse Basin is of transboundary importance. It is used for spa purposes and to gain geothermal energy The geothermal used water is totally re-injected in the same aquifer. The transboundary GW-body covers a total area of 5,900 km ² ; the length is 155 km and the width is up 55 km. The aquifer is Malm (karstic limestone); the top of the Malm reaches a depth of more than 1,000 below sea level in the Bavarian part and 2,000 m in the Upper Austrian part. The groundwater recharge is mainly composed of subterranean inflow of the adjacent Bohemian Massif and infiltration of precipitation in the northern part of the GWB area. The total groundwater recharge was determined to 820 l/s. The GW-body is selected as of basin-wide importance because of its intensive use. An expert group takes care for the permanent bilateral exchange of information and a sustainable transboundary use.										
Description of	Chemical Status										
status assessment methodology.	The chemical status of the deep GWB will be described on the basis of measurement and analysis data according to a procedure agreed between the two states. The decisive parameters for the evaluation of the qualitative status of near-surface GWBs (such as nitrate and pesticides) are not relevant for deep GWBs.										
	As expected, the parameters measured in the GWB extending over 5900 km ² differ (in some cases considerably) from site to site. This is due to regionally different geo-hydraulic conditions. Therefore the description of the qualitative status cannot be made in the same way as that for near-surface GWBs (on the basis of aggregated data), but made on the basis of measurement and analysis data available at every individual measuring site. Contrary to near-surface GWBs, it should be considered that, due to the utilization of the waters (balneological and thermal uses), good status is not only not achieved if the concentration of certain contents rises above a certain level, but also if it falls below it. The available data is presently not sufficient to identify precisely enough the scope of fluctuations relevant for individual parameters at the individual measuring sites.										
	Good chemical status is considered to be reached if the threshold value (TV) of the decisive parameters neither exceed nor fall below the scope of fluctuations determined for every measuring site. It is planned to examine the current selected scope of fluctuations on the basis of many years of monitoring, (at least over a period of 10 years) and to adapt them, where required.										
	In any case, the GWB is considered to be in a good chemical status if at least 75% of the measuring sites meet good status.										
	The following parameters are used as a basis for the determination of the qualitative status of the deep GWB: temperature, electrical conductivity, total hardness, sulphate and chloride.										
	Quantitative Status										
	No Changes since 200										
			indwater and surface wat		ecosystems.						
		· ·	an be described by mean.	0							
	at groundwater n	neasuring sites and v									
	abstractions.		n between the thermal wa								
	Apart from Bad Füssing (records since 1948), no long-term monitoring of pressure potentials that would be significant for a trend analysis is available.										
	this balancing an exp about 25% was record available).	loitation of the avail ded, which correspo	er balancing was carried able thermal water resou nds to a good quantitative	rces by thermal water e status (at least 30%)	abstractions of of the quantity						
			as been considerably red gs the obligation to reinje								

	Good quantitative status could be even further improved on the basis of the level of hydraulic pressure in the thermal waters of Bad Füssing which has risen again since then. With a view to the regionally uneven distribution of the available quantity, water abstraction points and abstracted water quantities, a sub-division of the balance area into sub-areas can be made. For these areas the decisive balance parameters can be determined separately							
Groundwater threa relationships	shold value	No changes since 20	015					
Verbal description assessment metho		No changes since 2015						
Verbal description reversal assessme		No changes since 2015						
Threshold values	per GWB							
Polli	utant / Indicator	TV (or range) [unit]	NBL (or range) [unit]	Level of TV establishment (national, RBD, GWB)	Related to risk in this GWB [yes/-]			

GWB-2: Upper Jurassic – Lower Cretaceous GWB

GWB-2		National share	BG-2, RO-2	Status 2021 fo GW							
				Chemical (substance)	Quantity						
List of individua	l GW-bodies	BG-2	BG1G0000J3K051	Good Good							
	le national share	RO-2	RODL06	Good	Good						
(national code in	ncl. country code)										
Description/C haracterisation of the ICPDR GW-body	Bulgaria: The starting point for identifying the geographical boundaries of the GWB BG1G0000J3K051 (Upper Jurassic-Lower Cretaceous) is the geological boundaries. After that additional sub-division on the basis of groundwater flow lines and piezometric heads. The lithological composition of GWB is: limestones, dolomitic limestones and dolomites. Overlying strata consists of marls, clays, sands, limestones, pebbles and loess. The age of the above mentioned deposits is Hauterivian, Sarmatian, Pliocene and Quaternary. With the exception of small cropped out areas the GWB is very well protected. There is no significant impact on the GWB. The main use of groundwater is for drinking water, agriculture and industry supply.										
	Romania: Criteria for delineation is development of Upper Jurassic-Lower Cretaceous permeable deposits and water content in these deposits. The lithological composition is limestones, dolomitic limestones and dolomites. Overlying strata consists of marls, clays, sands, limestones, pebbles and loess. The age of the above mentioned deposits is Hauterivian, Sarmatian, Pliocene and Quaternary.										
	Groundwater body RODL06- Valachian Platform has great extension and partially covers Valah platform. It is a transboundary water body of great potential, the depth aquifer having partially a free level (in the sector adjacent to the Danube) and is quartered in calcareous formations, sometime fissured and karstic, with regional extension in the whole South Dobrogea. These deposits are characterized by a hydraulic communication through an aquitard.										
	From the geological point of view, this aquifer complex has a complex structure, being divided by a system of major older than the Sarmatian fault with orientations approximately NNE-SSW and WNW-ESE.										
	Excluding small cropped out areas the GWB is very well protected. The main use is for drinking water supply, agriculture and industry supply. In Romania the GWB has an interaction with Lake Siutghiol situated near the Black Sea.										
	The criterion for selection as 'important' is for both GWBs the size which exceeds 4,000 km ²										
Description of	Chemical Status										
status assessment	Bulgaria: Assessment of the chemical status of groundwater has been done by carrying out the following tests and steps:										
methodology.	GQA-Test: General assessment of the chemical status of GWB.										
	<u>Step 1:</u> Calculation of arithmetic means per monitoring point (MP) for each indicator for the period 2017-2020. Values below LoQ are replaced by $\frac{1}{2}$ LoQ.										
	<u>Step 2:</u> Comparison of arithmetic means with the lowest QS or TVs (EQS, intrusion of salt or polluted waters, drinking water standard or other).										
	<u>Step 3: A</u> ssessment	of the chemical st	atus in the area of the MP	:							
	- If for all in	dicators, the stati	is is "good", then the GWI	3 in the area of the	e MP is "good";						
	- If for one or more indicators, the status is "poor", then the GWB in the area of the MP is "poor". In this case, a careful analysis was carried out of the primary hydrochemical data. If the data are doubtful or insufficiently reliable, the indicator (indicators) are rejected from the final assessment and a respective justification for this is presented.										
	Step 4: If in the areas of all MP the status is good, the GWB is determined 'good' and no other tests are needed.										
	Step 5: The confidence of the assessment is determined by the following criteria:										
			oints in GWB: low (1 MP c gh (1 MP on area <50 km		?); medium (1						
			ving requirements: All ana DS EN ISO / IEC-17025 o								

	• The GWB is of good chemical status when no EQS or TV is exceeded in any monitoring point.
	 The GWB is of poor chemical status when EQS or TV are exceeded at monitoring points representing more than 20% of the GWB surface.
	Quantitative Status
	Bulgaria: The assessment considered data from national and self-monitoring of groundwater abstraction facilities according to the issued permits. The main criteria for assessing good quantitative status are the exploitable (available) groundwater resources of GWB and the groundwater level. To verify compliance with the requirements of the WFD, various tests were performed. The assessment was based on data from 2017–2020 and trends were assessed, with data from 2007–2020. The following tests were performed:
	- Water balance test: the assessment of the GW level downward trend is an indication that, the available GW resources were exceeded and the GWB is in poor status.
	- Surface water test and terrestrial ecosystem test: both not applicable in BG-2 as surface water bodies and terrestrial ecosystems are not associated/connected.
	- Saline intrusion test: not relevant
	Romania: The criterion for risk assessment of the quantity status is based on trend assessment evolution of the groundwater levels. The quantitative status has been assessed taking into account the CIS Guidance no.18. The following criteria have been used:
	water balance
	• the connection with surface waters
	• the influence on the terrestrial ecosystems which depend directly on the GWB
	• the effects of saline or other intrusions
	The quantitative status analysis has been done for the GWB level by comparing the average of the hydrostatic level from 2017 (reference year) with the multiannual average during the whole observation period
Groundwater	Receptors considered:
threshold	Romania: Drinking Water standards
value relationships	Bulgaria: Drinking Water standards
relationships	
	Consideration of NBL and EQS (environmental quality standards, drinking water standards) in the TV establishment:
	Romania: The methodology for TV establishment in Romania has been developed according to CIS Guidance No. 18. NBL are the key elements in the process of TV setting. As described above, during the TV establishment, the NBL have been compared with the drinking water standards. The maximum allowable concentrations (MAC) provided by the Law no.458/2002 as amended, were chosen as TV where NBL are smaller than MAC. Where NBL are higher than MAC, a small addition of 0.2 NBL was used, in order to avoid misclassification of the respective GWB (TV = NBL + 0.2 NBL = 1.2 NBL).
	The updated list of TVs established for each GWB was published in the new Order of the Minster no. 621/2014 approving TV for GWBs from Romania.
	Bulgaria: The methodology for TV determination in Bulgaria has been developed according to CIS Guidance No. 18. TVs are determined by comparing NBLs with criterial values (CVs). CVs is the concentration of a pollutant (without taking into account the NBLs), which, if exceeded, could lead to a distortion of the criteria for good status. CVs should take into account the risk assessment and receptors of groundwater. The NBL were established for each GWB as a result of the project report 'Assessment of the natural hydrochemical background of the substances composition of groundwater in Bulgaria" (GEOFUND V-402), 1998' NBLs are available for Ca, Mg, SO4, Cl, HC03, Total hardness, Cu,
	Pb, Zn, As, Fe, F, Al, Mn, Cr, Co, V, J, Ag, Ni, Na, K. The NBLs were determined for each hydrogeological classes (5 classes) in the 90th percentile and 50th percentile (median) of the statistical sample. Criterial values (CVs) have been drinking water standards according to the Bulgarian
	<i>Regulation N-9.</i> <i>When NBL > CV, the TV is equal to NBL.</i>
	When $CV > NBL$, the $TV = NBL + Ktv^*$ (CV-NBL). $0 < Ktv < 1$

	Ktv is usually between 0.5 and 0.75, as recommended and providing reasonable assurance. Ktv <0.5 has a large certainty and is used for GWBs, which have important economic significance and are the sole source of drinking water supply of settlements. This value should be used for such GWB to which they are attached particularly valuable wetlands presence of dependent PA terrestrial ecosystems. The higher value (0.75) is used in all other cases or GWBs already classified bodies at risk.
Verbal description of the trend	Bulgaria: The trend analysis is based on recognized statistical methods such as regression method and a time series of data from 2012 to 2019 (using annual values, semi-annual or quarterly values).
assessment methodology	Based on regression analysis is assessed whether there is a break in the trend i.e. after sustained upward trend follows sustained downward trend or the opposite case the sustained downward trend is followed by sustained upward trend.
	• Initially, the entire curve of the experimental data is approximated by a polynomial curve of degree 2 (quadratic regression curve).
	• If there is detected a maximum in the polynomial curve it means that a change of the direction of the trend is available - from ascending to descending.
	• If there is detected a minimum in the polynomial curve it means that a change of the direction of the trend is available - from descending to ascending.
	• Then, (in case of available maximum) the entire curve is divided into two branches: 1st branch – till the date of the maximum and the second branch - after the peak.
	 In case with available minimum: 1st branch – till the date of the minimum and the second branch - after the minimum.
	• Data from the first and second branch are considered separately and are approximated by linear trends (straight lines). The date at which it crossed the two approximating straight lines corresponds to the date at which it changes the direction of the linear trend - from ascending to descending or from descending to ascending
	By extrapolation of the second (falling) trend can be predicted date at which the starting concentration (75% GWQS in our case 60% TV) will be reached
	Romania: In order to assess the trend in pollutant concentrations, the results of the chemical analysis from the monitoring points have been used. Minimum period of analysis was at least 17 years (2000–2017).
	The methodology for identifying significant upper trends consists in adjustment and aggregation of the data from each monitoring points on groundwater bodies. The trend analysis was done using the Gwstat program.
	The steps used for trend assessment were:
	• Identifying the monitoring points and the associated results of chemical analysis, assessment of data series, for each year of reference period (2000–2017)
	• Establishment of baseline concentration for each parameter as the average concentration registered during the year 2000
	• Calculation of annual average for the available data in each monitoring point
	• Significant upward trends were identified by Gwstat software, based on Anova Test
Verbal description of the trend reversal assessment methodology	Bulgaria: The starting point for trend reversal should be placed where the concentration of the pollutant reaches 75% of the groundwater quality standard or 75% of the threshold value of the relevant pollutant. Selected starting points should be possible to reverse trends in the most effective way before pollutant concentrations can cause irreversible changes in groundwater quality. When we have GWB who responds too slowly to changes, there may be a need for an early starting point and vice versa - for responsive GWB should be chosen starting point at a later moment. Initially, the entire curve of the experimental data is approximated by a polynomial curve of
	degree 2 (quadratic regression curve). If there is detected a maximum in the polynomial curve it means that a change of the direction
	of the trend is available - from ascending to descending. If there is detected a minimum in the polynomial curve it means that a change of the direction of the trend is available - from descending to ascending.

	<i>Then, (in case of available maximum) the entire curve is divided into two branches:</i> 1^{st} <i>branch – till the date of the maximum and the second branch - after the peak</i>					
	In case with	use with available minimum: 1^{st} branch – till the date of the minimum and the second branch er the minimum.				
	v		an ah ana aonai dana da an anatah	and any approximate	I had line and	
			anch are considered separately e at which it crossed the tw			
			it changes the direction of the			
		or from descending t		,		
	By extrapola	ntion of the second (f	alling) trend can be predicted of	date at which the start	ing	
	concentratio		ur case 60% TV) will be reache			
		-	ment methodology consists also	o in the use of Gwstat .	software.	
			ue series can be characterized l			
			(analysis period). Thus, by ap			
			end is identified, if in the first			
		e pollutant concentra	n the slope of the trend is nega ation tendency:	live. The stages of the	metnoa oj	
	• opt	imizing the choice of	f time sections regarding the sh	ape of the resulting m	odel	
			nce of the rift for the simple lin	ear regression model l	based on	
	the	square of the residu	e sum			
			test to verify that the 2-section.	s model is significantly	more than	
	a si	mple regression mod	del.			
Threshold	d values per GWB					
					Related	
				Level of TV	to risk in	
				establishment	this	
	Pollutant /	TV (or range)		(national, RBD,	GWB	
	Indicator	[unit]	NBL (or range) [unit]	GWB)	[yes/-]	
RO	Nitrates	50 mg/l		National	-	
RO	Benzen	10 μg/l		National	-	
RO RO	Tricloretilena Tetracloretilena	10 μg/l		National National	-	
RO	Ammonium	10 μg/l 0.5 mg/l	0.31mg/l	GWB	-	
RO	Chlorides	250 mg/l	73,87 mg/l	GWB	-	
RO	Sulphates	250 mg/l	71,44 mg/l	GWB	-	
RO	Nitrites	0.5 mg/l	0.039 mg/l	GWB	-	
RO	Phosphates	0.5 mg/l	0.08 mg/l	GWB	-	
RO	Cadmium	0.005 mg/l	0.0001mg/l	GWB	-	
RO	Mercury	0.001 mg/l	0.000042 mg/l	GWB	-	
RO	Lead	0.01 mg/l	0.0011 mg/l	GWB	-	
RO	Arsenic Nitratas	0.01 mg/l	0.00075 mg/l	GWB	-	
BG BG	Nitrates Pesticides sum	38.5 mg/l 0.375 µg/l	2.2 mg/l	GWB GWB	-	
BG BG	Arsenic	0.0076 mg/l	0.0004 mg/l	GWB		
BG	Lead	0.0070 mg/l	0.0026 mg/l	GWB		
BG	Cadmium	0.0038 mg/l	0.0002 mg/l	GWB		
BG	Mercury	0.0008 mg/l	0.0002 mg/l	GWB		
BG	Ammonium	0.4487 mg/l	0.295 mg/l	GWB		
BG	Chlorides	189 mg/l	6 mg/l	GWB		
BG	Sulphates	192 mg/l	18 mg/l	GWB		
BG	Tri + Tetrachlo- roethyle	7.5 μg/l		GWB		
BG	Conductivity	1640.625 µS/cm	562.5 μS/cm	GWB		
BG	Manganese	0.038 mg/l	0.022 mg/l	GWB		
BG	Total Iron	0.1607 mg/l	0.043 mg/l	GWB		
BG	Nitrites	0.3801 mg/l	0.0207mg/l	GWB		
BG	Sodium	156.75 mg/l	27 mg/l	GWB		

BG	Chromium	38.875 mg/l	5.5 μg/l	GWB
BG	Cupper	0.1527 mg/l	0.0108 mg/l	GWB
BG	Nikel	15.05 μg/l	0.2 μg/l	GWB
BG	Zink	0.777 mg/l	0.109 mg/l	GWB
BG	COD - Mn	3.975 mgO2/l	0.9 mgO2/l	GWB
BG	<i>PO4</i>	0.3805 mg/l	0.022 mg/l	GWB
BG	Cyanides	0.04 mg/l	0.01 mg/l	GWB

GWB-3: Middle Sarmatian - Pontian GWB

GWB-3		National share	MD-3 RO-3	Status 2021 for each national GWB?	
				Chemical (substance)	Quantity
List of individua	al GW-bodies		MDPR01	Good	Good
	ole national share		ROPR05	Good	Good
(national code in	ncl. country code)				
Description/C haracterisation of the ICPDR GW-body	deposits on the terr River Basins. Lithol thin layer. Geologic Buglovian, Volhynia Sarmatian deposits considered that the the Early Buglovian Meotian boundary, Lithologically, the v medium grain-size (350 meters. Hydrogeologically of areal differences, of differences of quant The overlying strata The groundwater is The criterion for set Republic of Moldov lines; chemical and interaction. The MI <u>Silurian - Cretaceon</u> for centralized wate limestone, sandston from 50-60 m to 100 Dominating values m/day, Km=10-50 r heterogenous. In the and dominating hyd south chemical com sulphate-sodium an increases to 2-10 m <u>Baden-Sarmatian</u> a water supply. Water sand, sometimes cla	itories of Neamt, Baca logically, the water-be cally, the wells have pro- an, Basarabian and C thickness is highly van Sarmatian deposits un a is lacking. The upper is difficult to assign d vater-bearing deposits (sands, rarely gravels) and hydrochemically, f quantitative and qua- titative order are espe- a is represented by cla- mainly used for drink lection as "important pa: Criteria for deline one quantitative statu O GWB consists of five us aquifer (S-K2) is sp or supply only in the nu- e, with interlayers of O-120 m. Water bearin of hydraulic conductive n2/day). The chemical e northern part of the loccarbonate-sulphate position of the aquifer d hydrocarbonate so g/l. quifer (N1b-s) is the n r-bearing layers are ra- tys, marls and gypsum	the GWB was the deve au and Vaslui districts, earing deposits are con- ierced the following su- hersonian. The wells a riable, going from 295 aconformably overlay boundary of Sarmatia ue to the lack of sure p s are constituted of this), sometimes with lens the investigation of we litative order, both how cially due to the Sarma y of about 50 meters to sing water supply, agru consists in its size the ation are: geological h us; GWB vulnerability; e deep aquifers. pread on the whole terr orthern part of the bas Silurian marls and arg ng capacity of the aquity vity and transmissivity l composition of the Si basin fresh groundwas r the characteristics is lium type and the amount nost productive and me epresented by limestor at 25 m. In the norther	situated in the Si astituted of sands ab-stages of the Sa lata have indicate in (Iaşi) to 886 m the Late Badeniar an, respectively the baleontological ele n layers with fine aspect, situated a ells data has revea rizontally and ver- atian deposits gra hickness. icultural and indu- at exceeds 4,000 k boundaries; groun surface-groundw ritory of the basin in. Groundwater rilites with total th fers vary in a wid are rather low (K lurian-Cretaceous ters with minerali, ions are detected. changing to hydr unt of total dissolv ost important for o the with interlayers ifer reaches 50 m,	ret and Prut and sandstones urmatian: d that the ($Barlad$). It is a ones, because the Sarmatian- ements. towards t depth of 30– aled important tically. The in size. strial supplies. cm^2 . adwater flow vater and it is used is contained in ickness varying fe range. C=0.12-0.37 s aquifers is sation <1g/1 Going to the ocarbonate- red solids centralized of fine grained in some places

	sediments outcrop to the pre-Quaternary surface and these areas coincide with the recharge zones of the aquifer. Groundwater is discharging into the valley of Prut's tributaries. Southwards Baden-Sarmatian aquifer occurs deeper and near the village Gotesti it was detected by drilling at the depth of 572 m.Hydraulic properties of the aquifer are rather poor. Hydraulic conductivity reaches 1–12 m/day, with mean values of 5 m/day, transmissivity is also low – only 5–20 m ² /day. Capacity of wells varies in a range of 0.09–8l/s.
	When water bearing rocks are composed of limestones they contain fresh or slightly mineralised hydrocarbonate-calcium-sodium water with mineralization below 1 g/l. Such areas, however, are rather scarce and groundwaters with mineralization above 1 g/l are prevailing in the basin.
	<u>Upper Sarmatian Meotic</u> aquifer system (N1s3-m), which can be included in this GWB is only partially exploited for groundwater abstraction in the southern part of the river basin. Sarmat- Meotis deposits in the area are represented by fine-grained sands and clay with the lenses of quartz sand with total thickness of the aquifer 60–70 m. This sand is water-bearing and contains good quality water. The thickness of water bearing layers is 4–5 m. Yields of exploitation wells vary between 3 and 7 m ³ /h. Waters from the aquifer system are supplying the needs of several enterprises. Near the Prut river valley yields of the wells increase to 10 m ³ /h with the drawdown of up to 30 m. This aquifer contains hydrocarbonate-sodium waters with total mineralization of 1-1.5 g/l. In some areas chemical composition changes to sulphate-hydrocarbonate-sodium and mineralization increases to 2 g/l. Hydraulic parameters of the aquifer are rather poor: hydraulic conductivity varies between $0.8-5$ m/day with mean values of 2.3 m/day and transmissivity changes in a range of $10-25$ m ² /day, mean being 5 m ² /day.
	Groundwater monitoring results over three wells for the period from 2005 to 2009 indicate a decrease in the level of groundwater. The rate of decrease is 0.5–1.4 meter per year. This can be attributed to an increase in the water abstraction from the operating wells located in the vicinity.
	<u>Middle Sarmatian (Congeriev) aquifer</u> (N1s2) is used for a centralised water supply in the southern part of Republic of Moldova. Groundwater is contained in fine-grained sands with interlayers of clays, sandstones and limestones. Thickness of water bearing sediments varies from 5–15 m to 40–50 m with mean values of 20–30 m. Hydraulic properties of water bearing sands are quite poor. Hydraulic conductivity changes from 0.6 to 1.9 m/day average being 1.3 m/day. Transmissivity values are also very low and do not exceed 20–50 m ² /day. Depth to groundwater aquifer depends on the landscape and varies from 1.5 to 100 m. Yields of wells vary from 5 to 75 l/s. When hydrocarbonate-sulphate-chloride anions dominate in groundwater its mineralisation is below 1.5 g/l. When chloride–hydrocarbonate and sodium ions prevail total mineralization increases up to 2 g/l. Monitoring of the aquifer indicates a slight decrease in groundwater level with the rate of 0.4–0.65 m/a.
	 <u>Pontian aquifer (N2p)</u> is spread in the southern part of Republic of Moldova. Water bearing sediments are composed of sandy clays with interlayers of sand and shell limestone with the total thickness of 70–80 m.Prevailing hydraulic properties of water bearing sands are rather poor. Hydraulic conductivity changes from 3.5–3.7 with mean values of 3 m/day. Transmissivity coefficient varies between 18–45 m²/day in some places (e.g. Giurgiulesti village) increasing to 250–260 m²/day. Depth to groundwater aquifer depends on the landscape and varies from 2 to 125 m. Yields of wells vary from 1.1–2.3 l/s, increasing southwards to 3.7–7.6 l/s. Near the village of Taraklia few springs are discharging into Prut river valley with the capacity of 8–9 l/sec. Aquifer contains fresh groundwater with mineralisation <1 g/l (figure 2.6) and prevailing ions of hydrocarbonate -sulphate-chloride-sodium, sometimes sulphate –hydrocarbonate-sodium. Groundwater from this aquifer is used for drinking and agricultural water supply.
Description of	Chemical Status
status assessment methodology.	Republic of Moldova: The methodology for the chemical status assessment followed the requirements of the Groundwater Directive (2006/118/EC) as well as the recommendations of the CIS Guidance Document no. 18 – Guidance on Groundwater status and trend assessment.
	Romania: The methodology for the chemical status assessment followed the requirements of the Groundwater Directive (2006/118/EC) as well as the recommendations of the CIS Guidance Document no. 18 – Guidance on Groundwater status and trend assessment.
	The first step was to check any exceedances of the quality standards and TVs which were established taken into consideration the NBL values. If no exceedances of the quality standards and TVs have been recorded, the groundwater body has been considered as being in good

chemic out:	al status. If exceedances of TVs were recorded the following relevant tests were carried
•	General assessment of the chemical status: Data aggregation was performed and it was checked whether the total area of exceedance was greater than 20% of the total area of the GWB. The test showed a good status for the water body if no exceeding occurs.
٠	Saline or other intrusion: not relevant.
•	Significant diminution of associated surface water chemistry and ecology due to transfer of pollutants from the GWB: The location of the exceedance of the relevant TV was not found in grass where pollutants might be transforred to surface waters.

•	Significant alminution of associated surface water chemistry and ecology due to
	transfer of pollutants from the GWB: The location of the exceedance of the relevant TVs
	was not found in areas where pollutants might be transferred to surface waters. A
	comparison of the pollutant load transferred from the GWB to the surface water body
	with the total load in the surface water body did not exceed 50%. The test showed a
	good status for the water body.

- Significant damage to GWDTEs due to transfer of pollutants from the GWB: No *GWDTE* was found to be damaged. The test showed a good status for the water body;
- Meets the requirements of WFD Article 7(3) Drinking Water Protected Areas: there is no evidence of increased treatment due to changes in water quality. The test showed a good status for the water body

To assess the chemical status of the groundwater bodies, the following steps are considered:

- for each monitoring point the annual average concentrations for each indicator was calculated; for the metals the concentration of the dissolved form was considered;
- For each monitoring point the annual average concentration of the each parameters was compared with the thresholds values (determined for each GWB) or standards value (nitrates and pesticides).
- The GWB is of good chemical status when no EQS or TV is exceeded in any monitoring point.
- The GWB is of poor chemical status when EQS or TV are exceeded at monitoring points representing more than 20% of the GWB surface.

Quantitative Status:

Republic of Moldova: The criterion for risk assessment of the quantity status is based on trend assessment evolution of the groundwater levels. The quantitative status has been assessed taking into account the CIS Guidance № 18

Romania: The criterion for risk assessment of the quantity status is based on trend assessment evolution of the groundwater levels. The quantitative status has been assessed taking into account the CIS Guidance № 18. The following criteria have been used:

- water balance
- the connection with surface waters
- the influence on the terrestrial ecosystems which depend directly on the GWB
- the effects of saline or other intrusions

The quantitative status analysis has been done for the GWB level by comparing the average of the hydrostatic level from 2017 (reference year) with the multiannual average levels during the whole period.

Groundwater	Receptors considered:
threshold	Romania: Drinking Water standards
value relationships	Republic of Moldova:
	Consideration of NBL and EQS (environmental quality standards, drinking water standards) in the TV establishment:
	Romania: The methodology for TV establishment in Romania has been developed according to CIS Guidance No. 18. NBL are the key elements in the process of TV setting. As described previously, during the TV establishment, the NBL have been compared with the drinking water standards. The maximum allowable concentrations (MAC) provided by the Law no.458/2002 as amended, were chosen as TV where natural background levels (NBL) are smaller than MAC.

				gher than MAC, a small addition		l, in order	
to avoid misclassification of the respective GWB ($TV = NBL + 0.2 NBL = 1.2 L$). The updated list of TVs established for each GWB was published in the new Or				the Minster			
		no. 621/2014	approving TV for g	groundwater bodies from Roman	via.		
Verbal description the trend		chemical and at least 22 ye	alysis from the moni ears (1996-2018).	o assess the trend in pollutant co toring points have been used. M	inimum period of ana	lysis was	
assessmen methodolo	-		n the monitoring pol	trend in pollutant concentration ints have been used. Minimum po			
		of the data fr		significant upper trends consists g points on groundwater bodies.			
		The steps use	ed for trend assessm	ent were:			
				ing points and the associated res es, for each year of reference pe		lysis,	
		• Esta	ablishment of baseli	ne concentration for each paran d during the year 2000			
			0	werage for the available data in	each monitoring poin	nt	
			-				
		-		ds were identified by Gwstat sof			
description the trend reversal	description of the trendThis method change with distribution assessmentdescription of the trenddistribution of positive, and		Trend reversal assessment methodology consists also in the use of Gwstat software. hod assumes that the time series can be characterized by two linear trends with a slope within the time interval (analysis period). Thus, by applying the 95% quantile of the fron, a reversal of the trend is identified, if in the first section the slope of the trend is and in the second section the slope of the trend is negative. The stages of the method of the pollutant concentration tendency:				
		• optimizing the choice of time sections regarding the shape of the resulting model;					
		_		nce of the rift for the simple line			
		the square of the residue sum;					
	• coi		ducting a statistical mple regression mo	test to verify that the 2-sections del.	model is significantly	more than	
Threshold	d value	es per GWB					
			l	1		Related	
	Pollu Indic	tant / ator	TV (or range) [unit]	NBL (or range) [unit]	Level of TV establishment (national, RBD, GWB)	to risk in this GWB [yes/-]	
RO	Nitra		50 mg/l		National	-	
RO	Benze		10 μg/l		National	-	
RO	Tricl	oretilena	10 μg/l		National	-	
RO	-	cloretilena	10 μg/l		National	-	
RO		onium	6.4 mg/l	5,34 mg/l	GWB	-	
RO	Chlorides		250 mg/l	78,87 mg/l	GWB	-	
RO	Sulphates Nitrites		250 mg/l	192 mg/l	GWB CWP	-	
RO RO	-	tes phates	0,5 mg/l 1,4 mg/l	0.34 mg/l 1,13 mg/l	GWB GWB	-	
RO		mium	0,05 mg/l	0.0003033 mg/l	GWB	-	
RO	Nickel		0,02 mg/l	0.00053 mg/l	GWB	-	
RO	Copp		0,1 mg/l	0.00307 mg/l	GWB	-	
RO	Zinc		5 mg/l	0.02425 mg/l	GWB	-	
RO	Cadn		0,005 mg/l	0.0000455 mg/l	GWB	-	
RO	Merc		0,001 mg/l	0.000003385 mg/l	GWB	-	
RO RO	Lead Arser		0,01 mg/l 0,01 mg/l	0.0001825 mg/l 0.003175 mg/l	GWB GWB	-	
ΛU	Arsei		0,01 mg/l	0.0031/3 mg/l	GWD	-	

GWB-4: Sarmatian GWB

GWB-4		National share BG-4 RO-4		Status 2021 for each national GWB?		
				Chemical (substance)	Quantity	
List of individua	ll GW-bodies	BG-4	BG1G00000N049	Good	Good	
	le national share	RO-4	RODL04	Poor (nitrates)	Good	
(national code in	ncl. country code)					
Description/C haracterisation of the ICPDR GW-body	 The starting point for identifying the boundaries of the GWB BG1G000000N049 Sarmatian is the geological boundaries. The lithological composition of water-bearing deposits is as follows: in Bulgaria: limestones, sands; Overlying strata consists of loess and loesses clays and clays. The age of the above mentioned deposits is Quaternary. The GWB is vulnerable with cropped out regions of limestones and sandstones or covered with loess. GWB main use is for drinking water supply, agriculture and industry supply. Romania: Criteria for delineation are the development of Sarmatian permeable deposits is oollitic limestones and organogenic limestone. Overlying strata consists of loess and clays. The GWB is well protected in the clay covered areas, but is vulnerable to pollution in pre-dominantly loess and sands covered areas. This explains nitrate contamination in some areas. GWB main use is for drinking water supply, and also agricultural and industrial purposes. 			is is as follows: we mentioned tones and riculture and deposits and deposits is y covered reas. This purposes.		
	The main pressures	s are agriculture activities, waste landfills and less industrial plants.				
	The criterion for se	iterion for selection as "important" is the size, which exceeds 4000 km ² .				
Description of status assessment methodology.	<u>Chemical Status</u> Bulgaria: Assessment of the chemical status of groundwater has been done by carrying out the following tests and steps: GQA-Test: General assessment of the chemical status of GWB.					
	<u>Step 1:</u> Calculation of arithmetic means per monitoring point (MP) for each indicator for the period 2017-2020. Values below LoQ are replaced by $\frac{1}{2}LoQ$.					
	<u>Step 2:</u> Comparison of arithmetic means with the lowest QS or TVs (EQS, intrusion of salt or polluted waters, drinking water standard or other).					
	<u>Step 3: A</u> ssessment	of the chemical st	atus in the area of the MP.	:		
	- If for all indicators, the status is "good", then the GWB in the area of the MP is "good";					
	- If for one or more indicators, the status is "poor", then the GWB in the area of the MP is "poor". In this case, a careful analysis was carried out of the primary hydrochemical data. If the data are doubtful or insufficiently reliable, the indicator (indicators) are rejected from the final assessment and a respective justification for this is presented.					
	Step 4: If in the areas of all MP the status is good, the GWB is determined 'good' and no other tests are needed.					
	Step 5: The confidence of the assessment is determined by the following criteria:					
	 Density of the monitoring points in GWB: low (1 MP on area > 200 km²); medium (1 MP on area 50–200 km²), high (1 MP on area <50 km²); 					
	accordanc recognized	e with standard B standard. Accrea	DS EN ISO / IEC-17025 o	nalytical methods are validated in 5 or other equivalent internationally ensure minimum criteria for all appl es.		
		tep 6: The extent of exceedance was calculated. If the status is determined as "poor" for one or nore indicators in one or more MP, then an assessment of the affected area was performed.				
- Based on the conceptual model, it is determined whether the MP (points) located in the recharge zone or in the transit zone or in the drainage zon						

- The areas of GWB in which the average annual concentrations of pollutants exceed QS or TV have been delineated. Each area of GWB affected by pollution includes the area located between the MP where QS or TV have been exceeded. Further, a 1 km buffer zone was delineated around this zone or around the contaminated MP.
<u>Step 7:</u> If the polluted area is more than 20% of the total area of the GWB, the confidence assessment was made according step 5.
<u>Step 8:</u> The places of the exceedances are connected with the groundwater receptors. Depending on the identified locations and GW receptors, relevant tests have been applied: saline or other intrusion, surface water bodies with deteriorated status, GW directly dependent terrestrial ecosystems, drinking and household water supply located at polluted area.
<u>Step 9:</u> Local conceptual models have been developed for each exceedance point considering the possibility for the pollutant to move through the GWB, identification of pressures, additional trend assessment.
A GWB is in good chemical status when the extent of exceedance is less than 20% and the remaining tests show that: the quality of groundwater used for drinking and domestic water supply has not deteriorated, the GW status-related to surface waters and terrestrial ecosystems (directly dependent of GW) has not deteriorated and there is no intrusion of salt or polluted waters; no significant and sustainable upward trends in concentrations of pollutants and pollution indicators have been identified.
Romania: The methodology for the chemical status assessment followed the requirements of the Groundwater Directive (2006/118/EC) as well as the recommendations of the CIS Guidance Document no. 18 – Guidance on Groundwater status and trend assessment.
The first step is to check any exceedances of the quality standards and TVs which were established taken into consideration the NBL values. If no exceedances of the quality standards and TVs are recorded, the groundwater body is considered as being in good chemical status. If exceedances of TVs or quality standards are recorded the following relevant tests are carried out:
• General assessment of the chemical status: Data aggregation is performed and it is checked whether the total area of exceedance is greater than 20% of the total area of the GWB. In case there are no exceedances, the test indicate a good status for the water body.
• Saline or other intrusion: not relevant.
• Significant diminution of associated surface water chemistry and ecology due to transfer of pollutants from the GWB: the location of the exceedance of the relevant TVs was not found in areas where pollutants might be transferred to surface waters; a comparison of the pollutant load transferred from the GWB to the surface water body with the total load in the surface water body did not exceed 50%. The test show a good status for the water body if these criteria are achieved.
• Significant damage to GWDTEs due to transfer of pollutants from the GWB: No GWDTE was found to be damaged. The test show a good status for the water body if this criteria is achieved;
• Meets the requirements of WFD Article 7(3) – Drinking Water Protected Areas: there is no evidence of increased treatment due to changes in water quality.
To assess the chemical status of the groundwater bodies, the following steps are considered.
• for each monitoring point the annual average concentrations for each indicator was calculated; for the metals the concentration of the dissolved form was considered;
• For each monitoring point the annual average concentration of the each parameters was compared with the thresholds values (determined for each GWB) or standards value (nitrates and pesticides).
• The GWB is of good chemical status when no EQS or TV is exceeded in any monitoring point.
• The GWB is of poor chemical status when EQS or TV are exceeded at monitoring points representing more than 20% of the GWB surface.
The chemical status of the GWB RODL06 is poor, considering the results of applying the methodology for chemical status assessment

	Quantitative Status
	Bulgaria: The assessment considered data from national and self-monitoring of groundwater abstraction facilities according to the issued permits. The main criteria for assessing good quantitative status are the exploitable (available) groundwater resources of GWB and the groundwater level. To verify compliance with the requirements of the WFD, various tests were performed. The assessment was based on data from 2017–2020 and trends were assessed, with data from 2007–2020. The following tests were performed:
	- Water balance test: the assessment of the GW level downward trend is an indication that, the available GW resources were exceeded and the GWB is in poor status.
	- Surface water test and terrestrial ecosystem test: both not applicable in BG-2 as surface water bodies and terrestrial ecosystems are not associated/connected.
	- Saline intrusion test: not relevant
	Romania: The criterion for risk assessment of the quantity status is based on trend assessment evolution of the groundwater levels. The quantitative status has been assessed taking into account the CIS Guidance no.18. The following criteria have been used:
	water balance
	• the connection with surface waters
	• the influence on the terrestrial ecosystems which depend directly on the GWB
	• the effects of saline or other intrusions
	The quantitative status analysis has been done for the GWB level by comparing the average of the hydrostatic level from 2017 (reference year) with the multiannual average levels during the whole observation period.
Groundwater	Receptors considered:
threshold	Romania: Drinking Water standards
value relationships	Bulgaria: Drinking Water standards
	Consideration of NBL and EQS (environmental quality standards, drinking water standards) in the TV establishment:
	Romania: The methodology for TV establishment in Romania has been developed according to CIS Guidance No. 18. NBL are the key elements in the process of TV setting. As described above, during the TV establishment, the NBL have been compared with the drinking water standards. The maximum allowable concentrations (MAC) provided by the Law no.458/2002 as amended, were chosen as TV where NBL are smaller than MAC. Where NBL are higher than MAC, a small addition of 0.2 NBL was used, in order to avoid misclassification of the respective GWB (TV = NBL + 0.2 NBL = 1.2 NBL).
	The updated list of TVs established for each GWB was published in the new Order of the Minster no. 621/2014 approving TV for GWBs from Romania.
	Bulgaria: The methodology for TV determination in Bulgaria has been developed according to CIS Guidance No. 18. TVs are determined by comparing NBLs with criterial values (CVs). CVs is the concentration of a pollutant (without taking into account the NBLs), which, if exceeded, could lead to a distortion of the criteria for good status. CVs should take into account the risk assessment and receptors of groundwater. The NBL were established for each GWB as a result of the project report 'Assessment of the natural hydrochemical background of the substances composition of groundwater in Bulgaria" (GEOFUND V-402), 1998' NBLs are available for Ca, Mg, SO4, Cl, HC03, Total hardness, Cu, Pb, Zn, As, Fe, F, Al, Mn, Cr, Co, V, J, Ag, Ni, Na, K. The NBLs were determined for each hydrogeological classes (5 classes) in the 90th percentile
	and 50th percentile (median) of the statistical sample. Criterial values (CVs) have been drinking water standards according to the Bulgarian Regulation N-9. When NBL > CV, the TV is equal to NBL.
	When $CV > NBL$, the $TV = NBL + Ktv^*$ ($CV-NBL$). $0 < Ktv < 1$ Ktv is usually between 0.5 and 0.75, as recommended and providing reasonable assurance. Ktv <0.5 has a large certainty and is used for GWBs, which have important economic significance and are the sole source of drinking water supply of settlements. This value should be used for such GWB to which they are attached particularly valuable wetlands presence of

	dependent PA terrestrial ecosystems. The higher value (0.75) is used in all other cases or GWBs already classified bodies at risk.
Verbal description of the trend	Bulgaria: The trend analysis is based on recognized statistical methods such as regression method and a time series of data from 2012 to 2019 (using annual values, semi-annual or quarterly values).
assessment methodology	Based on regression analysis is assessed whether there is a break in the trend i.e. after sustained upward trend follows sustained downward trend or the opposite case the sustained downward trend is followed by sustained upward trend.
	• Initially, the entire curve of the experimental data is approximated by a polynomial curve of degree 2 (quadratic regression curve).
	• If there is detected a maximum in the polynomial curve it means that a change of the direction of the trend is available - from ascending to descending.
	• If there is detected a minimum in the polynomial curve it means that a change of the direction of the trend is available - from descending to ascending.
	• Then, (in case of available maximum) the entire curve is divided into two branches : 1st branch – till the date of the maximum and the second branch - after the peak.
	 In case with available minimum: 1st branch – till the date of the minimum and the second branch - after the minimum.
	• Data from the first and second branch are considered separately and are approximated by linear trends (straight lines). The date at which it crossed the two approximating straight lines corresponds to the date at which it changes the direction of the linear trend - from ascending to descending or from descending to ascending
	By extrapolation of the second (falling) trend can be predicted date at which the starting concentration (75% GWQS in our case 60% TV) will be reached
	Romania: In order to assess the trend in pollutant concentrations, the results of the chemical analysis from the monitoring points have been used. Minimum period of analysis was at least 17 years (2000–2017).
	The methodology for identifying significant upper trends consists in adjustment and aggregation of the data from each monitoring points on groundwater bodies. The trend analysis was done using the Gwstat program.
	The steps used for trend assessment were:
	• Identifying the monitoring points and the associated results of chemical analysis, assessment of data series, for each year of reference period (2000–2017)
	• Establishment of baseline concentration for each parameter as the average concentration registered during the year 2000
	• Calculation of annual average for the available data in each monitoring point
	• Significant upward trends were identified by Gwstat software, based on Anova Test
Verbal description of the trend reversal assessment methodology	Bulgaria: The starting point for trend reversal should be placed where the concentration of the pollutant reaches 75% of the groundwater quality standard or 75% of the threshold value of the relevant pollutant. Selected starting points should be possible to reverse trends in the most effective way before pollutant concentrations can cause irreversible changes in groundwater quality. When we have GWB who responds too slowly to changes, there may be a need for an early starting point and vice versa - for responsive GWB should be chosen starting point at a later moment.
	Initially, the entire curve of the experimental data is approximated by a polynomial curve of degree 2 (quadratic regression curve).
	• If there is detected a maximum in the polynomial curve it means that a change of the direction of the trend is available - from ascending to descending.
	• If there is detected a minimum in the polynomial curve it means that a change of the direction of the trend is available - from descending to ascending.
	• Then, (in case of available maximum) the entire curve is divided into two branches: 1 st branch – till the date of the maximum and the second branch - after the peak
	In case with available minimum: 1^{st} branch – till the date of the minimum and the second branch - after the minimum.

attr

. .

Data from the first and second branch are considered separately and are approximated by linear trends (straight lines). The date at which it crossed the two approximating straight lines corresponds to the date at which it changes the direction of the linear trend - from ascending to descending or from descending to ascending

By extrapolation of the second (falling) trend can be predicted date at which the starting concentration (75% GWQS in our case 60% TV) will be reached .Practically for the second RBMP we have used 60 % from the TV.

Romania: Trend reversal assessment methodology consists also in the use of Gwstat software. This method assumes that the time series can be characterized by two linear trends with a slope change within the time interval (analysis period). Thus, by applying the 95% quantile of the distribution, a reversal of the trend is identified, if in the first section the slope of the trend is positive, and in the second section the slope of the trend is negative. The stages of the method of reversing the pollutant concentration tendency:

- optimizing the choice of time sections regarding the shape of the resulting model;
- *examining the significance of the rift for the simple linear regression model based on the square of the residue sum;*
- conducting a statistical test to verify that the 2-sections model is significantly more than a simple regression model.

Threshol	d values per GWB				
	Pollutant / Indicator	TV (or range) [unit]	NBL (or range) [unit]	Level of TV establishment (national, RBD, GWB)	Related to risk in this GWB [yes/-]
RO	Nitrates	50 mg/l		National	Yes
RO	Benzen	10 µg/l		National	-
RO	Tricloretilena	10 µg/l		National	-
RO	Tetracloretilena	10 µg/l		National	-
RO	Ammonium	0.7 mg/l	0.504 mg/l	GWB	-
RO	Chlorides	250 mg/l	189 mg/l	GWB	-
RO	Sulphates	250 mg/l	120.5 mg/l	GWB	-
RO	Nitrites	0,5 mg/l	0.069 mg/l	GWB	-
RO	Phosphates	0,5 mg/l	0.21 mg/l	GWB	-
RO	Nickel	0,02 mg/l	0.035 mg/l	GWB	-
RO	Zinc	5 mg/l	0.355 mg/l	GWB	-
RO	Cadmium	0.005 mg/l	0.000202 mg/l	GWB	-
RO	Mercury	0.001 mg/l	0.00012 mg/l	GWB	-
RO	Lead	0.01mg/l	0.001 mg/l	GWB	-
RO	Arsenic	0.01 mg/l	0.0013 mg/l	GWB	-
BG	Nitrates	39.87 mg/l	9.49mg/l	GWB	-
BG	Pesticides sum	0.375 μg/l		GWB	-
BG	Arsenic	0.0077 mg/l	0.0007mg/l	GWB	-
BG	Lead	0.0076 mg/l	0.0005 mg/l	GWB	-
BG	Cadmium	0.0039 mg/l	0.0005 mg/l	GWB	-
BG	Mercury	0.0008 mg/l	0.0002 mg/l	GWB	-
BG	Ammonium	0.3758 mg/l	0.0031mg/l	GWB	-
BG	Chlorides	188.75 mg/l	5 mg/l	GWB	-
BG	Sulphates	189 mg/l	6 mg/l	GWB	-
BG	Tri+Tetraclo- retilena	7.5 μg/l		GWB	
BG	Conductivity	1713.6 µS/cm	854.5 μS/cm	GWB	-
BG	Manganese	0.0379 mg/l	0.016 mg/l	GWB	-
BG	Total Iron	0.1513 mg/l	0.005 mg/l	GWB	-
BG	Nitrites	0.375 mg/l	0.0001 mg/l	GWB	-
BG	Sodium	158.25 mg/l	33 mg/l	GWB	-
BG	Chromium	38.25 mg/l	3 μg/l	GWB	-
BG	Cupper	0.1501 mg/l	0.003 mg/l	GWB	-

BG	Nikel	15.5 μg/l	$2 \mu g/l$	GWB	-
BG	Zink	0.7537 mg/l	0.015 mg/l	GWB	
BG	COD - Mn	3.8625 mgO2/l	0.45 mgO2/l	GWB	-
BG	PO4	0.3798 mg/l	0.0195 mg/l	GWB	-
BG	Cyanides	0.04 mg/l	0.01 mg/l	GWB	-

GWB-5: Mures / Maros

GWB-5		National share	HU-5 RO-5	Status 2021 for each national GWB?	
				Chemical (substance)	Quantity
List of individuation forming the who	al GW-bodies ble national share	HU	HU_AIQ605	Poor (NH4, NO ₃ , SO ₄ , Cl)	Good
	ncl. country code)	HU	HU_AIQ604	Good	Good
``	, , , , , , , , , , , , , , , , , , ,	HU	HU_AIQ594	Poor (NH ₄ , NO ₃ , SO ₄)	Poor
		HU	HU_AIQ593	Good	Good
		RO	ROMU20	Poor (nitrates)	Good
		RO	ROMU22	Good	Good
of the ICPDR GW-body	abstraction in one of The basin of the SE deposits of different Maros/Mures River GWBs in both coun it was possible to se four water bodies of the surface to a dep Underneath them an Quaternary strata, 1 400–500 m corresp Two Quaternary wa On the Romanian me ROMU20) and Low lithologically chara significantly coarse the Hungarian side, sandy-silt, sand and improves towards ti m/day). The coverin On the Romanian su In Hungary both coo (HU_AIQ604, HU_ bodies of the upwar below the surface in Mm3/year). At pres layers, there is a pe system (app. 15 Mm	country influences the part of the Great Hit tages, which are pro- forms the Pleistocent tries. Despite the dif- elect the relevant wa ontaining cold water th of 30 m, namely the re two porous GWBs include some parts of onding to the surface the bodies have been ride, two water bodies ethod there is a sepa- ter Pleistocene (GWL icterised by pebbles, r with better permean the lower 100 m of a clay, and the upper the surface (the hydra ag layer is mainly sa- ide, the upper water onfined and unconfin AIQ605) and mainly af flow system (HU_i thungary. Recharge ent, because of the c rmanent recharge fr a ³ /year) and large ar	g water purposes for le e water availability in angarian Plain is filled ogressively thinning in the part of the strata. T ferences in the delined ter bodies from the trat- ter ungary (HU), two the shallow GWBs (HU) (GWB HU_AIQ604, 14 f the Upper- Pannonia e separating cold and a selected in Romania. the selected in the trating horizon at the la B ROMU22) age of the sands and clayey inter- ter is mainly sand w the source of the the source of the ter confined conditions of the source of the ter confined conditions of the source of t	the other. I up with more that Romania. The alli he aquifer is divid tion method of the nsboundary point o contain Quatern V_AIQ605, HU_AI HU_AIQ593), whi in deposits as well thermal waters). ransboundary eva imit of the Upper (e strata. Both water r-layers, but the up ing the same sepa Pleistocene strata i ith gravel, so that e aquifers ranges I 3 m thickness. d the lower is cong the southern water plus ocal important f water abstracted ter to the deep gro- overed layers also	n 2000 m thick avial fan of the ed into several e two countries, of view. Of the ary strata from Q594). ch, besides l (to a depth of luation because GWB er bodies can be oper part is ration line on is silty-sand, permeability between 5–30 fined. er bodies for the water r table is 2–4 m ce (15 from the deep oundwater contribute to

	(uncertain value based on limited available knowledge). The direction of the groundwater flow is from the recharge area to the discharge areas (main river valleys and zones with groundwater level close to the surface) i.e. from SE to N and NW					
Description of	Chemical status					
status assessment methodology.	Romania: The methodology for the chemical status assessment followed the requirements of the Groundwater Directive (2006/118/EC) as well as the recommendations of the CIS Guidance Document no. 18 – Guidance on Groundwater status and trend assessment.					
	The first step is to check any exceedances of the quality standards and TVs which were established taken into consideration the NBL values. If no exceedances of the quality standards and TVs are recorded, the groundwater body is considered as being in good chemical status. If exceedances of TVs or quality standards are recorded the following relevant tests are carried out:					
	• General assessment of the chemical status: Data aggregation is performed and it is checked whether the total area of exceedance is greater than 20% of the total area of the GWB. In case there are no exceedances, the test indicate a good status for the water body.					
	• Saline or other intrusion: not relevant.					
	• Significant diminution of associated surface water chemistry and ecology due to transfer of pollutants from the GWB: the location of the exceedance of the relevant TVs was not found in areas where pollutants might be transferred to surface waters; a comparison of the pollutant load transferred from the GWB to the surface water body with the total load in the surface water body did not exceed 50%. The test show a good status for the water body if these criteria are achieved.					
	• Significant damage to GWDTEs due to transfer of pollutants from the GWB: No GWDTE was found to be damaged. The test show a good status for the water body if this criteria is achieved;					
	• Meets the requirements of WFD Article 7(3) – Drinking Water Protected Areas: there is no evidence of increased treatment due to changes in water quality.					
	To assess the chemical status of the groundwater bodies, the following steps are considered:					
	• For each monitoring point the annual average concentrations for each indicator was calculated; for the metals the concentration of the dissolved form was considered;					
	• For each monitoring point the annual average concentration of the each parameters was compared with the thresholds values (determined for each GWB) or standards value (nitrates and pesticides).					
	• The GWB is of good chemical status when no EQS or TV is exceeded in any monitoring point.					
	• The GWB is of poor chemical status when EQS or TV are exceeded at monitoring points representing more than 20% of the GWB surface.					
	The chemical status of the GWB ROMU20 is poor, considering the results of applying the methodology for chemical status assessment.					
	Hungary: Assessment of the chemical status of GWBs was conducted: Analysing of the chemical data of individual monitoring points within each of the GWBs; Identifying of the pressures - sources of pollution; The NBLs were calculated and used to determine TVs. TVs have been determined according to CIS Guidance No. 18. Contamination limits have been determined for all indicators listed in Annex II Part B of Directive 2006/118/EC and indicators of the report under Art. 5 of Directive 2006/118/EC.					
	The following parameters were investigated:					
	a) NBL was determined for the following components: nitrate, ammonium, specific conductivity, sulphate, chloride, arsenic, cadmium, lead, mercury, orthosphosphate					
	b) For each monitoring point the median concentration of each parameters of the studied period was compared to the TVs (determined for each GWB) or standards values (in the case of nitrates, metals and pesticides).					
	c) Different tests were conducted to assess GWB status: Diffuse pollution test (nitrate, ammonium, orthosphosphate), Drinking water supply tests for numerous elements or components in both drinking water wells and monitoring wells and trend analysis based on the data of the surveillance monitoring system. Studied components of these					

	tests are: nitrate, ammonium, chloride, sulphate, specific conductivity, mercury, lead,
	cadmium, pesticides and organics, furthermore in the trend analysis pH and dissolved oxygen.
	d) Based on these tests, GWB was evaluated.
	Quantitative Status
	Romania: The criterion for risk assessment of the quantity status is based on trend assessment evolution of the groundwater levels. The quantitative status has been assessed taking into account CIS Guidance No.18. The following criteria have been used:
	water balance
	• the connection with surface waters
	• the influence on the terrestrial ecosystems which depend directly on the GWB
	• the effects of saline or other intrusions
	The quantitative status analysis has been done for the GWB level by comparing the average of the hydrostatic level from 2017 (reference year) with the multiannual average levels during the whole observation period.
	Hungary: To determine the overall quantitative status for a GWB, a series of tests should be applied that considers the impacts of anthropogenically induced long-term alterations in groundwater level and/or flow. Each test will assess whether the GWB is meeting the relevant environmental objectives. The quantitative status has been assessed taking into account CIS Guidance No.18. The following criteria have been used:
	<u>GW alteration (Drawdown) test</u>
	Water Balance test
	Surface Water Flow test
	Groundwater Dependent Terrestrial Ecosystems (GWDTE)
	Saline or other Intrusion test
Groundwater threshold value	Receptors considered Romania: Drinking Water standards Hungary: Drinking water
relationships	
	Consideration of NBL and EQS (environmental quality standards, drinking water standards) in the TV establishment:
	<i>Romania:</i> The methodology for TV establishment in Romania has been developed according to CIS Guidance No. 18. NBL are the key elements in the process of TV setting.
	As described previously, during the TV establishment, the NBL have been compared with the drinking water standards. The maximum allowable concentrations (MAC) provided by the Law no.458/2002 as amended, were chosen as TV where NBL are smaller than MAC. Where background levels are higher than MAC, a small addition of 0.2 NBL was used, in order to avoid misclassification of the respective GWB ($TV = NBL + 0.2 NBL = 1.2 NBL$).
	The updated list of TVs established for each GWB was published in the new Order of the Minster no. 621/2014 approving TV for groundwater bodies from Romania.
	Hungary:
	EQS for herbicides and total pesticides, tri-, tetrachloroethylenes based on 201/2001. (X.25.) Gov. decree and the 6/2009. (IV.14.) KvVM-EüM-FVM common ministerial decree in correspondence to I. Annex of the 2006/118/EC directive.
	In Hungary, more than 95% of drinking water ensured from subsurface waters, so for all other components the DWS is applicable.
	For those GWBs where the NBL was higher than the DWS due to natural hydro-geological reasons, the TVs for ammonium, SO4 and EC were defined by taking into account these higher values, as described in Guidance Document No. 18.
Verbal description of the trend	Romania: In order to assess the trend in pollutant concentrations, the results of the chemical analysis from the monitoring points have been used. Minimum period of analysis was at least 17 years (2000-2017).

methodology aggregation of the				lata from each mon	cant upper trends consists in a itoring points on groundwater ogram. The steps used for tren	bodies. The tren		
			ying the monitoring points and the associated results of chemical analysis, ment of data series, for each year of reference period (2000–2017)					
			shment of baseline concentration for each parameter as the average tration registered during the year 2000					
Calcula			itio	n of annual average	e for the available data in each	h monitoring poin	t	
			cant upward trends were identified by Gwstat software, based on Anova Test					
		ë i	sess the trend of pollutant concentrations, chemical data of the surveillance					
monitoring syste			ems were used for the period of 2000 to 2012. The trend analysis was done ogram package of Man-Kendall method with fitted Sen slope. The steps used					
					of all components for all monit l excluding time series with les			
		• The treas well.		of groundwater bod	ly level aggregates of yearly a	nnual data were a	issessed	
					ard trends were identified on S od with Sen's slope.	95 and 90% signij	ficance	
the trend reversal assessmen	description of the trend reversal assessment methodologyThis method assum change within the it distribution, a reve positive, and in the reversing the pollu • optimizing • examining the square • conducting than a simdescription of treversal assessment methodologyThis method assum change within the it distribution, a reve positive, and in the reversing the pollu • optimizing 			es that the time seri- me interval (analys resal of the trend is in second section the s ant concentration to the choice of time s the significance of of the residue sum; a statistical test to ple regression mode	sections regarding the shape of the rift for the simple linear re verify that the 2-sections mod	o linear trends wi he 95% quantile the slope of the the The stages of the f the resulting ma egression model b lel is significantly	th a slope of the rend is method of odel; ased on more	
Threshol	d valu	es per GWB						
	1	-					Related	
						Level of TV	to risk	
						establishment	in this	
				TV (or range)		(national,	GWB	
	Poll	utant / Indicator		[unit]	NBL (or range) [unit]	RBD, GWB)	[yes/-]	
HU	Nitre	ates	50) mg/l	0,5-12.1 mg/l	GWB	Yes	
HU	Amn	nonium		5 mg/l	1,97-4.54 mg/l	GWB	Yes	
HU		ductivity		500-4000 µS/cm	1210-2500 µS/cm	GWB	-	
HU	Sulfe			50-500 mg/l	20-481 mg/l	GWB	Yes	
HU	-	oride		50-500 mg/l	32,5-300 mg/l	GWB	Yes	
HU		phosphate		5 mg/l	0.65-1.71 mg/l	GWB		
HU	-	Cadmium		ug/l	0.16-0.83 μg/l	national	-	
HU		Lead Management) μg/l	2.7-5 μg/l 0.39-0.49 μg/l	national	-	
HU HU		Mercury Frichlorethylene		иg/l) µg/l	0.59-0.49 µg/l	national national	-	
HU HU	Trichlorethylene Tetrachloroethylene			μg/l		national	-	
HU	Absorbed organic halogens AOX) μg/l		national	-	
HU	Pest	icides by ponents	0,	1 µg/l		national	-	
HU		icides all	0,	5 µg/l		national	-	
RO	Nitre	ates		mg/l		National	Yes	

RO	Benzen	10 µg/l		National	-
RO	Tricloretilena	10 µg/l		National	-
RO	Tetracloretilena	10 µg/l		National	-
RO	Ammonium	0.5–1.9 mg/l	0.216–1.56 mg/l	GWB	-
RO	Chlorides	250 mg/l	66.755–179.57 mg/l	GWB	-
RO	Sulphates	250 mg/l	102.04–193.99 mg/l	GWB	-
RO	Nitrites	0,5 mg/l	0.046–0.2 mg/l	GWB	-
RO	Phosphates	0,5–0.6 mg/l	0.134–0.5 mg/l	GWB	-
RO	Chromium	0,05 mg/l	0.006296–0.00811mg/l	GWB	-
RO	Nickel	0,02 mg/l	0.009–0.00836 mg/l	GWB	-
RO	Copper	0.1 mg/l	0.0113–0.0117 mg/l	GWB	-
RO	Zinc	5 mg/l	0.125–0.0274 mg/l	GWB	-
RO	Cadmium	0.005 mg/l	0.0035 mg/l	GWB	-
RO	Lead	0.01-0.02 mg/l	0.0075–0.01316 mg/l	GWB	-
RO	Arsenic	0.04 mg/l	0.0289 mg/l	GWB	-
RO	Phenols	0.002mg/l	0.0015 mg/l	GWB	-

GWB-6: Somes / Szamos

GWB-6		National share	HU-6 RO-6	Status 2021 for each national GWB?		
				Chemical (substance)	Quantity	
List of individua	al GW-bodies	HU	HU_AIQ649	Good	Good	
	ole national share	HU	HU_AIQ648	Good	Good	
	ncl. country code)	HU	HU_AIQ600	Good	Good	
	•	HU	HU_AIQ601	Good	Good	
		RO	ROSO01	Good	Good	
		RO	ROSO13	Good	Good	
haracterisation of the ICPDR GW-body	Hungarian-Romani the borders. The a inhabitants in Roma lowland character transpiration from g The recharge zone a status of the terrest neighbouring count described below. General description The Somes/Szamos	sit of the Somes/Szamos River extends on both sides of the northern part of the nian border. It is also connected to the aquifer system lying in Ukraine close to aquifer system supplies drinking water to a population of approx. 170,000 mania and 50,000 inhabitants in Hungary. On the Hungarian side, due to the er and upward flow system, the terrestrial ecosystems require surplus a groundwater; 7% of the area of the water body is under nature conservation. e is in Romania and Ukraine, thus the available groundwater resource and the extrial ecosystems on the Hungarian side depend on the lateral flow from the entries. The Romanian and Hungarian parts of the water body complex are on as River has formed a 30–250 m thick alluvial deposit fivided into several GWBs in both countries. Despite the differences in the				
	delineation method the transboundary p Four water bodies strata from the su HU_AIQ600). Und Quaternary strata 400–500 m corresp This Holocene-Plei, the Upper- and L overlapping each of of delineation, the of are vertically unifie	of the two countries, point of view. containing cold wat urface to a depth erneath are the por include some parts of onding to the surface stocene formation is ower-Pleistocene st ther, covering a surface cold part of the Upp ed. The Hungarian po	WBs in both countrie , it was possible to self of 30 m, namely th ous GWBs (HU_AIQ of the Upper- Pannoni e separating cold and divided vertically in R rata. In Romania tw ace of 1,440 km ² . Acco er-Pannonian and the art can be characterise s applied. The area co	ect the relevant we Two of them com e shallow GWB 648, HU_AIQ601 an deposits as we thermal waters. Comania by the how or water bodies ording to the Hung el only by an upw	ater bodies from tain Quaternary s (HU_AIQ649,), which beside ell, to a depth of rizon separating are considered, garian approach Holocene layers ard flow system,	

In Romania , the shallow (Holocene-Upper-Pleistocene) aquifer is unconfined, consisting of sands, argillaceous sands, gravels and even boulders in the eastern part, and has a depth of 25–35 m. The silty-clayey covering layer is 5–15 m thick.
The deeper (Lower-Pleistocene) aquifer is confined (it is separated from the Upper-Pleistocene part by a clay layer); its bottom is declining from 30 m to 130 m below the surface from East to West. The gravely and sandy strata (characteristic to westwards from Satu-Mare town) represent the main aquifer for water supply in the region.
In Hungary (as part of the cold water body), the Quaternary (Pleistocene) and Holocene strata are 50 m thick at the Ukrainian border and its continuously declining bottom is around 200 m below the surface at the western boundary. Mainly confined conditions characterise the Hungarian part, with a silty clayey covering layer of $1-6$ m (increasing from the NE to the SW). The Quaternary aquifer is sand or gravelly sand, and the hydraulic conductivity ranges between 10-30 m/d. It should be noted that the Hungarian water body includes the cold water bearing part of the Upper-Pannonian formation as well, to a depth of 400–500 m (under this level, thermal water of a temperature greater than 30 °C can be found).
Depth of the groundwater level (mainly pressure in confined area) below the surface ranges between 2 and 5 m in Hungary. The flow direction is from the ENE to the WSW in both countries, corresponding to the recharge and main discharge zones (rivers and area with groundwater level close to the surface).
The recharge area is in the Romanian part of the water body (and in Ukraine). In Hungary the infiltrated amount from local recharge zones supplies neighbouring discharge zones and cannot be considered as part of the available groundwater resources.
Chemical status
Romania: The methodology for the chemical status assessment followed the requirements of the Groundwater Directive (2006/118/EC) as well as the recommendations of the CIS Guidance Document no. 18 – Guidance on Groundwater status and trend assessment.
The first step is to check any exceedances of the quality standards and TVs which were established taken into consideration the NBL values. If no exceedances of the quality standards and TVs are recorded, the groundwater body is considered as being in good chemical status. If exceedances of TVs or quality standards are recorded the following relevant tests are carried out:
• General assessment of the chemical status: Data aggregation is performed and it is checked whether the total area of exceedance is greater than 20% of the total area of the GWB. In case there are no exceedances, the test indicate a good status for the water body.
• Saline or other intrusion: not relevant.
• Significant diminution of associated surface water chemistry and ecology due to transfer of pollutants from the GWB: the location of the exceedance of the relevant TVs was not found in areas where pollutants might be transferred to surface waters; a comparison of the pollutant load transferred from the GWB to the surface water body with the total load in the surface water body did not exceed 50%. The test show a good status for the water body if these criteria are achieved.
• Significant damage to GWDTEs due to transfer of pollutants from the GWB: No GWDTE was found to be damaged. The test show a good status for the water body if this criteria is achieved;
• Meets the requirements of WFD Article 7(3) – Drinking Water Protected Areas: there is no evidence of increased treatment due to changes in water quality.
To assess the chemical status of the groundwater bodies, the following steps are considered:
• For each monitoring point the annual average concentrations for each indicator was calculated; for the metals the concentration of the dissolved form was considered;
• For each monitoring point the annual average concentration of the each parameters was compared with the thresholds values (determined for each GWB) or standards value (nitrates and pesticides).
• The GWB is of good chemical status when no EQS or TV is exceeded in any

	• The GWB is of poor chemical status when EQS or TV are exceeded at monitoring points representing more than 20% of the GWB surface.
	Hungary: Assessment of the chemical status of groundwater was conducted: Analysing of the chemical data of individual monitoring points within each of the GWBs; Identifying of the pressures - sources of pollution; The background levels were calculated and used to determine threshold value. Threshold values have been determined according to CIS Guidance No. 18. Contamination limits have been determined for all indicators listed in Annex II Part B of Directive 2006/118/EC and indicators of the report under Art. 5 of Directive 2006/118/EC.
	The following parameters were investigated:
	a) Natural Background Level was determined for the following components: nitrate, ammonium, specific conductivity, sulphate, chloride, arsenic, cadmium, lead, mercury, orthophosphate
	b) For each monitoring point the median concentration of each parameters of the studied period was compared to the thresholds values (determined for each GWB) or standards values (in the case of nitrates, metals and pesticides).
	c) Different tests were conducted to assess groundwater body status: Diffuse pollution test (nitrate, ammonium, orthophosphate), Drinking water supply tests for numerous elements or components in both drinking water wells and monitoring wells and trend analysis based on the data of the surveillance monitoring system. Studied components of these tests are: nitrate, ammonium, chloride, sulphate, specific conductivity, mercury, lead, cadmium, pesticides and organics, furthermore in the trend analysis pH and dissolved oxygen.
	d) Based on these tests, groundwater body was evaluated.
	Quantitative Status
	Romania: The criterion for risk assessment of the quantity status is based on trend assessment evolution of the groundwater levels. The quantitative status has been assessed taking into account the CIS Guidance No.18. The following criteria have been used:
	water balance
	• the connection with surface waters
	• the influence on the terrestrial ecosystems which depend directly on the GWB
	• the effects of saline or other intrusions
	The quantitative status analysis has been done for the GWB level by comparing the average of the hydrostatic level from 2017 (reference year) with the multiannual average levels during the observation period.
	Hungary: To determine the overall quantitative status for a GWB, a series of tests should be applied that considers the impacts of anthropogenically induced long-term alterations in groundwater level and/or flow. Each test will assess whether the GWB is meeting the relevant environmental objectives. The quantitative status has been assessed taking into account CIS Guidance No.18. The following criteria have been used:
	<u>GW alteration (Drawdown) test</u>
	Water Balance test
	Surface Water Flow test
	Groundwater Dependent Terrestrial Ecosystems (GWDTE)
	Saline or other Intrusion test
Groundwater	Receptors considered
threshold value	Romania: Drinking Water standards
relationships	Hungary: Drinking water
	Consideration of NBL and EQS (environmental quality standards, drinking water standards) in the TV establishment:
	<i>Romania:</i> The methodology for TV establishment in Romania has been developed according to CIS Guidance No. 18. NBL are the key elements in the process of TV setting.

	As described previously, during the TV establishment, the NBL have been compared with the drinking water standards. The maximum allowable concentrations (MAC) provided by the Law
	no.458/2002 as amended, were chosen as TV where natural background levels (NBL) are smaller than MAC. Where background levels are higher than MAC, a small addition of 0.2 NBL was used, in order to avoid misclassification of the respective GWB ($TV = NBL + 0.2 NBL$ = 1.2 NBL).
	The updated list of TVs established for each GWB was published in the new Order of the Minster no. 621/2014 approving TV for groundwater bodies from Romania.
	Hungary:
	EQS for herbicides and total pesticides, tri-, tetrachloroethylenes based on 201/2001. (X.25.) Gov. decree and the 6/2009. (IV.14.) KvVM-EüM-FVM common ministerial decree in correspondence to I. Annex of the 2006/118/EC directive.
	In Hungary, more than 95% of drinking water ensured from subsurface waters, so for all other components the DWS is applicable.
	For those GWBs where the NBL was higher than the DWS due to natural hydro-geological reasons, the TVs for ammonium, SO4 and EC were defined by taking into account these higher values, as described in Guidance Document No. 18.
Verbal description of the trend	Romania: In order to assess the trend in pollutant concentrations, the results of the chemical analysis from the monitoring points have been used. Minimum period of analysis was at least 10 years (2000-2011).
assessment methodology	The methodology for identifying significant upper trends consists in adjustment and aggregation of the data from each monitoring points on groundwater bodies. The trend analysis was done using the Gwstat program.
	The steps used for trend assessment were:
	• Identifying the monitoring points and the associated results of chemical analysis, assessment of data series, for each year of reference period (2000–2011)
	• Establishment of baseline concentration for each parameter as the average concentration registered during the year 2000
	• Calculation of annual average for the available data in each monitoring point
	• Significant upward trends were identified by Gwstat software, based on Anova Test
	Hungary : To assess the trend of pollutant concentrations, chemical data of the surveillance monitoring systems were used for the period of 2000 to 2012. The trend analysis was done using Matlab program package of Man-Kendall method with fitted Sen slope. The steps used for trend assessment were:
	• During the assessment trend of all components for all monitoring objects were created using yearly average data and excluding time series with less than 4 data points.
	• The trend of groundwater body level aggregates of yearly annual data were assessed as well.
	 Significant upward or downward trends were identified on 95 and 90% significance level using Man-Kendall method with Sen's slope.
Verbal description of the trend reversal assessment methodology	Romania: Trend reversal assessment methodology consists also in the use of Gwstat software. This method assumes that the time series can be characterized by two linear trends with a slope change within the time interval (analysis period). Thus, by applying the 95% quantile of the distribution, a reversal of the trend is identified, if in the first section the slope of the trend is positive, and in the second section the slope of the trend is negative. The stages of the method of reversing the pollutant concentration tendency:
	• optimizing the choice of time sections regarding the shape of the resulting model;
	• examining the significance of the rift for the simple linear regression model based on the square of the residue sum;
	• conducting a statistical test to verify that the 2-sections model is significantly more than a simple regression model.
	<i>Hungary:</i> To assess the trend reversal of pollutant concentrations two consecutive time period was compared and evaluated
Threshold valu	es per GWB

	Pollutant / Indicator	TV (or range) [unit]	NBL (or range) [unit]	Level of TV establishment (national, RBD, GWB)	Related to risk in this GWB [yes/-]
HU	Nitrates	50 mg/l	1-11.5 mg/l	GWB	-
HU	Ammonium	2-5 mg/l	1.5-3.3 mg/l	GWB	-
HU	Conductivity	2500 µS/cm	649-1787 µS/cm	GWB	-
HU	Sulfate	250 mg/l	17.8-184 mg/l	GWB	-
HU	Chloride	250 mg/l	21.4-138 mg/l	GWB	-
HU	Orthophosphate	0.5-2 mg/l	0.11-0.92 mg/l	GWB	
HU	Cadmium	5 μg/l	0.04-0.16 µg/l	national	-
HU	Lead	10 μg/l	0.38-4.7 μg/l	national	-
HU	Mercury	1 μg/l	0.005-0.27 µg/l	national	-
HU	Trichlorethylene	10 μg/l		national	-
HU	Tetrachloro ethylene	10 µg/l		national	-
HU	Absorbed organic halogens AOX	20 µg/l		national	-
HU	Pesticides by components	0,1 μg/l		national	-
HU	Pesticides all	0,5 μg/l		national	-
RO	Nitrates	50 mg/l		National	-
RO	Benzen	10 µg/l		National	-
RO	Tricloretilena	10 μg/l		National	-
RO	Tetracloretilena	10 μg/l		National	-
RO	Ammonium	0.5-1.3 mg/l	0.22-1.05 mg/l	GWB	-
RO	Chlorides	250 mg/l	19.46-51.5 mg/l	GWB	-
RO	Sulphates	250 mg/l	19,01- 91.78 mg/l	GWB	-
RO	Nitrites	0.5 mg/l	0.08- 0.15 mg/l	GWB	-
RO	Phosphates	0.5 mg/l	0.16-0.41 mg/l	GWB	-
RO	Chromium	0.05 mg/l	0.0071-0.010 mg/l	GWB	-
RO	Nickel	0.02 mg/l	0.011-0.005 mg/l	GWB	-
RO	Copper	0.1 mg/l	0.0153-0.024 mg/l	GWB	-
RO	Zinc	5 mg/l	0.26-0.262 mg/l	GWB	-
RO	Cadmium	0,005 mg/l	0.00085-0.0023 mg/l	GWB	-
RO	Mercury	0,001 mg/l	0.000035-0.00002 mg/l	GWB	-
RO	Lead	0.03-0.07 mg/l	0.022-0.055 mg/l	GWB	-
RO	Arsenic	0.01mg/l	0.0021- 0.006 mg/l	GWB	-
RO	Phenols	0.002mg/l	0.001- 0.0013 mg/l	GWB	-

GWB-7		WB-7 National share HU-7 RO-7		Status 2021 for each national GWB?	
			RS-7	Chemical (substance)	Quantity
List of individua	al GW-bodies	HU	HU_AIQ528	Good	Good
	ble national share	HU	HU_AIQ523	Good	Good
	ncl. country code)	HU	HU_AIQ532	Good	Good
`	5 /	HU	HU_AIQ487	Good	Good
		HU	HU_AIQ590	Good	Good
		HU	HU_AIQ529	Good	Poor
		HU	HU_AIQ522	Good	Poor
		HU	HU_AIQ533	Good	Poor
		HU	HU_AIQ486	Good	Poor
		HU	HU_AIQ591	Poor (NO ₃)	Good
		RO	ROBA18	Good	Good
		RS	RS_TIS_GW_I_1	Good	Poor
		RS	RS_TIS_GW_SI_1	Good	Good
		RS	RS_TIS_GW_I_2	Good	Poor
		RS	RS_TIS_GW_SI_2	Good	Good
		RS	RS_TIS_GW_I_3	Good	Poor
		RS	RS_TIS_GW_SI_3	Good	Good
		RS	RS_TIS_GW_I_4	Good	Poor
		RS	RS_TIS_GW_SI_4	Good	Good
		RS	RS_TIS_GW_I_7	Good	Poor
		RS	RS_TIS_GW_SI_7	Good	Good
		RS RS	RS_D_GW_I_1 RS_D_GW_SI_1	Good Good	Poor Good
haracterisation of the ICPDR GW-body	 The whole aquifer system of the Danube-Tisza region stretches from the foothills of the norther mountainous region of Hungary to the Danube in Serbia, where the river flows to the south-eas The western boundary is the Danube itself downstream of Budapest in Hungary but after crossin the Hungarian border it enlarges towards Slavonia (western part of Backa in Croatia). The eastern boundary is somewhat east from the Tisza River in Hungary and in Serbia it includes the Banat as well, whose eastern part is in Romania. The Danube, Tisza and Timis Rivers ar important discharge-lines but cannot be considered as pure hydrodynamic boundaries, since there is some flow under the river in the deeper aquifer that is not discharged into the river. The porous aquifer system between the Danube and Tisza Rivers is the biggest geological unit of the Pannonian Basin. It lies mainly in Hungary and Serbia, with a smaller part in Croatia an Romania. Serbia and Hungary have selected it as an important transboundary GWB complet because: (i) size, (ii) importance in supplying drinking water for the population and (iii) the nee to satisfy the water demand of agriculture and industry, (iv) protected areas cover a large part of the GWB complex (protection zones for vulnerable drinking water resources, natur conservation areas and nitrate-sensitive areas). In Serbia, the area of the whole Dunav aquifer system is 17,435 km² (the areas of Backa an Banat). However, the transboundary importance is related only to the GWBs adjacent to the stat borders with Hungary (a total of 6 GWBs: 3 shallow (RS_TIS_GW_SI_1; RS_TIS_GW_SI_2), an with Romania (a total of 6 GWBs: 3 shallow (RS_TIS_GW_SI_4; RS_TIS_GW_SI_2), an with Romania (a total of 6 GWBs: 3 shallow (RS_TIS_GW_SI_4; RS_TIS_GW_SI_2), and with Romania (a total of 6 GWBs: 3 shallow (RS_TIS_GW_SI_4; RS_TIS_GW_SI_2), and with Romania (a total of 6 GWBs: 3 shallow (RS_TIS_GW_SI_4; RS_TIS_GW_SI_2), an with Romania (a total of 6 GWBs: 3 shallow (RS_TIS_GW_SI_4; RS_TIS_GW_SI_2), an w				
total aggregated area of 10,506 km2 for the Vojvodina GWB. In Hungary , the aquifer system is divided into several water bodies account subsurface catchment areas and downward-upward flow systems. For the conciliation, only the southern part of the aquifer system is considered, which is water bodies. Five of them contain Quaternary strata from the surface to a dependent of the surface to a dependent of the system.			ording to major transboundary includes 10 cold		

GWB-7: Upper Pannonian – Lower Pleistoce	ne / Vojvodina / Duna-Tisza köze deli r.
---	--

	Beneath these are five porous GWBs. Besides Quaternary strata, these include part of the Upper- Pannonian deposits as well, to a depth of 400–500 m corresponding to the surface and separating cold and thermal water bodies. The Hungarian part can be characterised by both upward and downward flow systems that are the basis for the horizontal separation of the GWBs. The area covered by these water bodies is 7,098 km2. The aquifer can be considered unconfined in the shallow GWBs, despite a considerable area where the water level is in the semi-permeable covering layer, and confined in the deeper ones. The depth of the groundwater level below the surface ranges between 3 and 5 m in Hungary, with a maximum depth of 7–12 m in the main recharge zones (HU_AIQ529, HU_AIQ591 and HU_AIQ533). In Romania , the aquifer system covers around 11,408 km2 and is adjacent to the state border with Serbia. The GWB is generally confined, its covering strata being of Quaternary age. The depth of the groundwater level below surface ranges from 3–20 m. The protection degree of the GWB is very good. The main aquifer is the Quaternary alluvial deposit of the Danube lying on the Pannonian strata. Its thickness is a few tens of meters at the northern, western and southern boundary and increases up to 700 m in the middle of the basin (in the lower Tisza-valley). At the eastern boundary, the thick Quaternary deposit is a mixture of the alluvial deposits of the Danube and the Carpathian rivers. In respect to lithology, the aquifer consists of medium and coarse sands and gravely sands with inter-layers and lenses of silty sands and silty clays. Average hydraulic conductivity ranges between 5–30 m/d. The topographically elevated ridge between the Danube and the Tisza is formed of eolian sand with relatively good recharge conditions and phreatic groundwater. In the river valleys and east of the Tisza, mainly confined conditions appear. The depth of the fluvial-swamp silty clays and swamp clays overlying strata varies from 10.20
	10-20 m in the western and southern part, and up to 100–125 m in the north-eastern part of Backa and in Banat. Here, prior to intensive groundwater abstraction, an artesian type of groundwater occurred. The main recharge area is in Hungary, in the eolian sand ridge, and in Romania. In Hungary, the estimated value of the recharge is approx. 220 Mm3/year. In Serbia, only local recharge areas exist (areas of the Deliblat Sands and the Subotica/Horgos Sands), thus the lateral flow crossing the border from the neighbouring country - as a component of the overall recharge - is very important.
	The groundwater is mainly discharged by the rivers (and drainage canals) and by the surplus of evapotranspiration from vegetation in the areas characterised by groundwater levels close to the surface. Small lakes and marshes in locally deeper areas (i.e. in topographic depressions) must be considered as local discharge areas – they are important from the nature conservation point of view. Besides natural discharge, there is also significant groundwater tapping for various uses (drinking water, agriculture, industry, irrigation etc.). In Vojvodina, the entire public water supply relies exclusively on groundwater from aquifers formed at different depths, from 20 m to more than 200 m.
	The direction of the groundwater flow in the upper part of the aquifer-system follows the topography and recharge-discharge conditions. At the Hungarian-Serbian border, the flow direction is almost parallel to the border (flowing slightly from Hungary towards Serbia). In the deeper part, the general flow direction is NW to SE i.e. from the Danube to the Tisza in Hungary and in Backa, while in Banat the general direction of the groundwater flow is from E to W. GWB is mainly used for drinking water supply, agricultural and industrial supplies. The criterion for selection as "important" consists in its size that exceeds 4000 km ² .
Description of	Chemical status
status assessment methodology.	Romania: The methodology for the chemical status assessment followed the requirements of the Groundwater Directive (2006/118/EC) as well as the recommendations of the CIS Guidance Document no. 18 – Guidance on Groundwater status and trend assessment.
	The first step is to check any exceedances of the quality standards and TVs which were established taken into consideration the NBL values. If no exceedances of the quality standards and TVs are recorded, the groundwater body is considered as being in good chemical status. If exceedances of TVs or quality standards are recorded the following relevant tests are carried out:
	• General assessment of the chemical status: Data aggregation is performed and it is checked whether the total area of exceedance is greater than 20% of the total area of

	the GWB. In case there are no exceedances, the test indicate a good status for the water body.
	Saline or other intrusion: not relevant.
•	• Significant damage to GWDTEs due to transfer of pollutants from the GWB: No GWDTE was found to be damaged. The test show a good status for the water body if this criteria is achieved;
•	• Meets the requirements of WFD Article 7(3) – Drinking Water Protected Areas: there is no evidence of increased treatment due to changes in water quality.
To as	ssess the chemical status of the groundwater bodies, the following steps are considered:
•	For each monitoring point the annual average concentrations for each indicator was calculated; for the metals the concentration of the dissolved form was considered;
•	• For each monitoring point the annual average concentration of the each parameters was compared with the thresholds values (determined for each GWB) or standards value (nitrates and pesticides).
•	• The GWB is of good chemical status when no EQS or TV is exceeded in any monitoring point.
•	• The GWB is of poor chemical status when EQS or TV are exceeded at monitoring points representing more than 20% of the GWB surface
chem press thres Conte	gary: Assessment of the chemical status of groundwater was conducted: Analysing of the ical data of individual monitoring points within each of the GWBs; Identifying of the ures - sources of pollution; The background levels were calculated and used to determine hold value. Threshold values have been determined according to CIS Guidance No. 18. amination limits have been determined for all indicators listed in Annex II Part B of ctive 2006/118/EC and indicators of the report under Art. 5 of Directive 2006/118/EC.
The f	following parameters were investigated:
a) Natural Background Level was determined for the following components: nitrate, ammonium, specific conductivity, sulphate, chloride, arsenic, cadmium, lead, mercury, orthophoshate
b) For each monitoring point the median concentration of each parameters of the studied period was compared to the thresholds values (determined for each GWB) or standards values (in the case of nitrates, metals and pesticides).
C) Different tests were conducted to assess groundwater body status: Diffuse pollution test (nitrate, ammonium, orthophoshate), Drinking water supply tests for numerous elements or components in both drinking water wells and monitoring wells and trend analysis based on the data of the surveillance monitoring system. Studied components of these tests are: nitrate, ammonium, chloride, sulphate, specific conductivity, mercury, lead, cadmium, pesticides and organics, furthermore in the trend analysis pH and dissolved oxygen.
d) Based on these tests, groundwater body was evaluated.
press where demo conne	ia: The criteria for the chemical status assessment were: present groundwater quality, bures and their impacts, natural protection (overlying strata),. Pressures and impacts e assessed on the basis of the census data at settlement level for the 2011 regarding by graphics, sanitation and water supply practices (septic tanks, sewerage, water supply, ection rates) and agricultural census data from 2012 (livestock, Agricultural land use).
agric COR organ	Census data was projected to 2016 for the purpose of STATUS assessment. Non vultural land use pressures were evaluated on the basis of CORINE 2016 data set and INE CLASS specific pollution coefficients for BOD, TN. Pressures were evaluated for nic pollution and nutrients (Indicators used were BOD, TN). Pressure analysis were ucted for 160 analytical units (settlements covering the total area of ground water bodies).

Monitoring data for 16 groundwater monitoring stations for the 12 GWB in Serbia covering a period from 2004 to 2018 was evaluated and stations with at least 5 years of data on monitoring were selected for status and impact assessment. Parameters considered for the analysis included NO3 and pesticides. For each of the monitoring stations trend analysis were conducted on all available data (minimum for 5 years, maximum for 15 years). Trend significance was classified in terms of annual rate of increase/decrease in a manner that would lead to the exceedance of the threshold value for NO3 (50 mg/L as NO3) within 10 years in relation to the observed average NO3 concentration at any given station. Regression coefficient values were used as a measure of a level of confidence of the trend assessment so that if r2 value was above 0,7 trend assessment was to be considered as high confidence assessment, values of r2 between 0,4 and 0,7 lead to medium confidence.

- The GWB is of good chemical status when no TV is exceeded in any monitoring point and when no significant increasing trend is detected, and GW is not under significant pressure (Pressure is considered to be significant if total load on the GWB exceeds 10 kg TN-N/ha/yr)
- The GWB is of poor chemical status when TV are exceeded at monitoring points representing more than 20% of the GW samples analysed at the particular monitoring point in the period from 2004 to 2018.
- The GWB is declared under risk if observed trend would lead to the exceedance of the TV for NO3 within 10 if the observed trend continued at any of the monitoring stations for a given water body. The assessment of Risk is accompanied with level of confidence of the assessment.

Quantitative Status

Romania: The criterion for risk assessment of the quantity status is based on trend assessment evolution of the groundwater levels. The quantitative status has been assessed taking into account CIS Guidance No.18. The following criteria have been used:

- water balance
- the connection with surface waters
- the influence on the terrestrial ecosystems which depend directly on the GWB
- the effects of saline or other intrusions

The quantitative status analysis has been done for the GWB level by comparing the average of the hydrostatic level from 2017 (reference year) with the multiannual average levels during the observation period.

Hungary: To determine the overall quantitative status for a GWB, a series of tests should be applied that considers the impacts of anthropogenically induced long-term alterations in groundwater level and/or flow. Each test will assess whether the GWB is meeting the relevant environmental objectives. The quantitative status has been assessed taking into account CIS Guidance No.18. The following criteria have been used:

- <u>GW alteration (Drawdown) test</u>
- Water Balance test
- Surface Water Flow test
- Groundwater Dependent Terrestrial Ecosystems (GWDTE)
- Saline or other Intrusion test

Serbia: Considering the risk of not achieving good quantitative status, groundwater bodies within which there is a registered trend of groundwater level decrease as a consequence of abstraction are considered to be at risk. For this purpose, data time series of registered groundwater levels were used only for shallow GWBs, since no organized monitoring of deep aquifers exists.

For groundwater bodies where no quantitative monitoring exists, the estimate of groundwater balance is calculated, using available data on precipitation, abstraction etc. Assessment of risk from non-achievement of the good quantitative status until 2015 was carried out based on the criteria that average GW abstraction over several years < 50% of groundwater recharge, no substance intrusion into the body caused by the change of GW streaming direction and associated surface ecosystems are not endangered by GW abstraction.

Groundwater	Receptors considered:
threshold	Romania: Drinking Water standards
value relationships	Hungary: Drinking water
-	Serbia:
	<u>Consideration of NBL and EQS (environmental quality standards, drinking water standards) in</u> <u>the TV establishment:</u>
	<i>Romania:</i> The methodology for TV establishment in Romania has been developed according to CIS Guidance No. 18. NBL are the key elements in the process of TV setting.
	As described previously, during the TV establishment, the NBL have been compared with the drinking water standards. The maximum allowable concentrations (MAC) provided by the Law no.458/2002 as amended, were chosen as TV where natural background levels (NBL) are smaller than MAC. Where background levels are higher than MAC, a small addition of 0.2 NBL was used, in order to avoid misclassification of the respective GWB (TV = NBL + 0.2 NBL = 1.2 NBL).
	The updated list of TVs established for each GWB was published in the new Order of the Minster no. 621/2014 approving TV for groundwater bodies from Romania.
	Hungary: EQS for herbicides and total pesticides, tri-, tetrachloroethylenes based on 201/2001. (X.25.) Gov. decree and the 6/2009. (IV.14.) KvVM-EüM-FVM common ministerial decree in correspondence to I. Annex of the 2006/118/EC directive.
	In Hungary, more than 95% of drinking water ensured from subsurface waters, so for all other components the DWS is applicable.
	For those GWBs where the NBL was higher than the DWS due to natural hydro-geological reasons, the TVs for ammonium, SO4 and EC were defined by taking into account these higher values, as described in Guidance Document No. 18. Serbia:
Verbal description of the trend	Romania: In order to assess the trend in pollutant concentrations, the results of the chemical analysis from the monitoring points have been used. Minimum period of analysis was at least 17 years (2000-2017).
assessment methodology	The methodology for identifying significant upper trends consists in adjustment and aggregation of the data from each monitoring points on groundwater bodies. The trend analysis was done using the Gwstat program. The steps used for trend assessment were:
	• Identifying the monitoring points and the associated results of chemical analysis, assessment of data series, for each year of reference period (2000–2017)
	• Establishment of baseline concentration for each parameter as the average concentration registered during the year 2000
	• Calculation of annual average for the available data in each monitoring point
	• Significant upward trends were identified by Gwstat software, based on Anova Test
	Hungary : To assess the trend of pollutant concentrations, chemical data of the surveillance monitoring systems were used for the period of 2000 to 2012. The trend analysis was done using Matlab program package of Man-Kendall method with fitted Sen slope. The steps used for trend assessment were:
	• During the assessment trend of all components for all monitoring objects were created using yearly average data and excluding time series with less than 4 data points.
	• The trend of groundwater body level aggregates of yearly annual data were assessed as well.
	Significant upward or downward trends were identified on 95 and 90% significance level using Man-Kendall method with Sen's slope.
	Serbia: No methodology for trend assessment has been developed.
Verbal description of the trend reversal assessment methodology	Romania: Trend reversal assessment methodology consists also in the use of Gwstat software. This method assumes that the time series can be characterized by two linear trends with a slope change within the time interval (analysis period). Thus, by applying the 95% quantile of the distribution, a reversal of the trend is identified, if in the first section the slope of the trend is positive, and in the second section the slope of the trend is negative. The stages of the method of reversing the pollutant concentration tendency:

	• optimizing the choice of time sections regarding the shape of the resulting model;				odel;
	• examining the significance of the rift for the simple linear regression model based on the square of the residue sum;				
		ting a statistical test t simple regression mod	o verify that the 2-sections i del.	model is significantly	v more
	Hungary: To as were compared		l of pollutant concentration	s two consecutive tin	ne periods
	Serbia: No meth	nodology for trend rev	ersal assessment has been d	leveloped	
Throch	old values per GWB			•	
Thresho		I	1	T	1
	Pollutant / Indicator	TV (or range) [unit]	NBL (or range) [unit]	Level of TV establishment (national, RBD, GWB)	Related to risk in this GWB [yes/-]
HU	Nitrates	50 mg/l	0.5-9.6 mg/l	GWB	Yes
HU	Ammonium	2-5 mg/l	1.3-4.54 mg/l	GWB	-
HU	Conductivity	2500-4000 µS/cm	565-2004 μS/cm	GWB	-
HU	Sulfate	250-500 mg/l	5.6-373 mg/l	GWB	-
HU	Chloride	250 mg/l	8-183 mg/l	GWB	-
HU	Orthophosphate	1-5 mg/l	0.16-1.71 mg/l	GWB	
HU	Cadmium	5 μg/l	0.01-0.52µg/l	national	-
HU	Lead	10 µg/l	1-6 μg/l	national	-
HU	Mercury	1 μg/l	0.06-0.52 μg/l	national	-
HU	Trichlorethylene	10 µg/l		national	-
HU	Tetrachloro ethylene	10 µg/l		national	-
HU	Absorbed organic halogens AOX	20 µg/l		national	-
HU	Pesticides by components	0,1 µg/l		national	-
HU	Pesticides all	0.5 μg/l		national	-
RO	Nitrates	50 mg/l		National	-
RO	Benzen	10 µg/l		National	-
RO	Tricloretilena	10 µg/l		National	-
RO	Tetracloretilena	10 µg/l		National	-
RO	Ammonium	6.4 mg/l	5.33 mg/l	GWB	-
RO	Chlorides	250 mg/l	51.66 mg/l	GWB	-
RO	Sulphates	250 mg/l	69.47 mg/l	GWB	-
RO	Nitrites	0.5 mg/l	0.137 mg/l	GWB	-
RO	Phosphates	1 mg/l	0.774 mg/l	GWB	-
RO	Chromium	0.05 mg/l	0.00505 mg/l	GWB	-
RO	Nickel	0.02 mg/l	0.009573 mg/l	GWB	-
RO	Copper	0,1 mg/l	0.017913 mg/l	GWB	-
RO	Zinc	5 mg/l	0.350642 mg/l	GWB	-
RO	Cadmium	0.005 mg/l	0.000333 mg/l	GWB	-
RO	Mercury	0.001 mg/l	0.0004 mg/l	GWB	-
RO	Lead	0.01-mg/l	0.00744 mg/l	GWB	-
RO	Phenols	0.004 mg/l	0.003 mg/l	GWB	-

GWB-8	GWB-8				HU-8 SK-8	Status 2021 for each national GWB?	
				Chemical (substance)	Quantity		
List of individua	al GW-bodies forming	HU	HU_AIQ654	Good	Good		
	al share (national code	HU	HU_AIQ572	Good	Good		
incl. country coo		HU	HU_AIQ653	Good	Good		
		HU	HU_AIQ573	Good	Good		
		SK	SK1000300P	Good	Good		
		SK	SK1000200P	Good	Good		
Description/C	Slovakia: The delineat	ion consists of the f	following steps:				
haracterisation of the ICPDR GW-body	quaternary st considered as	rata containing cold thermal by classifi		ifers (temperature	$e > 25^{\circ}C$ or it is		
			irther divided horizo sured rocks, karstic ro				
		ation is due to the anagement units.	borders of the surfac	e catchment area	s considered as		
	Hungary: The delinear	tion of groundwater	r bodies in Hungary h	as been carried o	out by:		
			cal features: porous mountainous regions				
	In the case of	porous aquifers it is	uted according to the s done vertically, whil the mountainous regu	e in karstic aquife	ers horizontally.		
	(in the case of	ion is related to the subsurface catchment areas and vertical flow system f porous aquifers) and to the structural and hydrological units (in the case uffers and mountainous regions).					
	because of the numero	ater bodies the more detailed further characterisation is carried out (n.b. bus transboundary water bodies and the expected further 20–30 % due to good status, Hungary decided to apply the methodology of further ll water bodies).					
	Reasons for selecting as important transboundary GWB						
The large alluvial dep Slovakia (Podunajská including the Szigetköz Hungary as an importa available groundwatet purposes as well (iii) majority of the area is sensitive areas, natura System.		lowland and its part) and in Austria. The int transboundary of resource and the the groundwater d protected (protect	rt: Žitný ostrov), Hun he aquifer system has hquifer because of (i) important actual us hependent terrestrial of tion zones of drinking	gary (Northern p been considered l its size, (ii) the ur se for drinking w ecosystem of the g water abstraction	art of Kisalföld by Slovakia and lique amount of vater and other floodplain, (iv) on sites, nitrate		
	General description						
	aquifer is made up of sands, gravels, interc conductivity is in the ra in the centre of the bas 3,500 m.	een playing the decisive role in the formation of the aquifer system. The main of 15–500 m thick Quaternary alluvia: hydraulically connected mixture of intercalated with numerous clay and silt lenses. The average hydraulic he range of 100–500 m/day providing extremely high transmissivity, especially basin. Here, the bottom of the underlying Pannonian deposits is at a depth of					
The aquifer is divided in in the delineation metho from transboundary po beside the Quaternary depth of 400–500 m co km2) and two Quaterna km2 in total (see the su		od of the two count pint of view: two w strata include some orresponding to th ary water bodies in	ater bodies containin e part of the Upper-P e surface separating n Slovakia (2,186 km	o select the releva og cold water in H annonian deposit cold and therma	nt water bodies Hungary, which s as well, to the l waters (1,152		

GWB-8: Podunajska Basin, Zitny Ostrov / Szigetköz, Hanság-Rábca

	The aquifer can be considered as unconfined, despite the considerable area where the water level is in the semi-permeable covering layer.
	Due to the high transmissivity of the aquifer, the groundwater regime and groundwater quality mainly depend on the surface water. The flow system and the type of covering layer provide surplus recharge condition in the majority of the area, but the main source of groundwater recharge is the Danube. Before the construction of the hydropower system (1992), the riverbed had been the infiltration surface, and the Danube's line had been the hydraulic boundary between the countries as well (in upper parts of Danube stream between Devín and Hrušov, approximately since 1970's, river bed started to drain groundwater). In the actual situation, the artificial recharge system is the main source for the vicinity of the Danube, but a remaining part of the aquifers in the Hungarian territory is recharged by the Čunovo reservoir. Where the reservoir is in the neighbourhood of the main channel (between Rajka and Dunakiliti) considerable transboundary groundwater flow appears under the Danube. The Danube's river bed downstream the reservoir – due to the derived flow and the consequently decreased average water level - drains the neighbouring groundwater, causing considerable drop of groundwater level in the imminent vicinity of the river bed. Both the quantity and the quality of the recharge from the reservoir highly depend on the continuously increasing deposit in the reservoir and the developing physico-chemical processes. Deposits in the reservoir are extracted. Signs of long-term changes of quantity and quality of recharge caused by continuously increasing deposit in the reservoir were not observed in the Slovak part of the aquifer yet.
	prior to the derivation of the Danube the groundwater has fluctuated in the covering layer and the existing artificial recharge system does not compensate sufficiently the former influence of the Danube. On the Slovak territory, annual artificial flooding of the river system in the high water periods seems to efficiently supply groundwater as well as the soil moisture resources.
Description of	Chemical Status
status assessment methodology.	Slovakia: The methodology for assessing chemical status followed the requirements of the Groundwater Directive (2006/118/EC) as well as the recommendations of the CIS Guidance Document no. 18 - Guidance on groundwater status and trend assessment. The assessment of the chemical status of GWB in the conditions of the Slovakia consisted of the following tests:
	1. General quality assessment (GQA) test - years 2016-2017.
	2. Drinking water protected areas (DWPA) test - period 2008-2017.
	3. Test of significant diminution of associated surface water chemistry and ecology due to transfer of pollutant from the GWB - named as Surface water test - period 2013-2018.
	In the GQA test and the Surface water test, the procedure was based on a comparison of the arithmetic means of the concentration of the individual component with quality standards (QS) or thresholds values (TV) for each monitoring point. If no exceedances of the QS/TV were recorded in all monitoring points, the whole GWB was evaluated in good chemical status. If exceedances of QS/TVs were recorded than the methodologies were as follows:
	In the GQA test, the data aggregation to whole GWB was performed. If the calculated total area of exceedance of the QS/TV was less than 20% of the total area of the GWB, the GWB was evaluated in good status. If the exceedance more than 20% of the total area of the GWB was recorded and based on expert judgment, the GWB was evaluated in poor chemical status.
	In the Surface water test, each GWB (with the relevant groundwater monitoring point) associated with the surface water body was assessed individually, taking into account the hydrological criterion, the hydrogeological criterion, the groundwater and surface water concentration profile, dilution (if data available) and that the estimated load of pollutant from groundwater transferred to associated surface water could be more than 50%, the GWB was evaluated in poor chemical status.
	In the DWPA test, the procedure was based on trend analysis (Mann-Kendal, linear regression, 10 years) of biological, chemical and radiological parameters of groundwater intended for human consumption before any level of treatment. If there was not a statistically significant and sustained upward trend in any drinking water abstraction points, the GWB was evaluated in good chemical status. If there was any significant and sustained upward trend in any parameter in any of drinking water abstraction point in the GWB, the methodology was as follows: the data aggregation to whole GWB was performed (kriging from 2 years mean). If the calculated

ICPDR / International Commission for the Protection of the Danube River / www.icpdr.org

data aggregation to whole GWB was performed (kriging from 2 years mean). If the calculated

	total area of exceedance of the QS/TV was less than 20% of the total area of the GWB, the GWB was evaluated in good status. If the exceedance more than 20% of the total area of the GWB was recorded and based on expert judgment, the GWB was evaluated in poor chemical		
	status. Hungary: Assessment of the chemical status of groundwater was conducted: Analysing of the		
	chemical data of individual monitoring points within each of the GWBs; Identifying of the pressures - sources of pollution; The background levels were calculated and used to determine threshold value. Threshold values have been determined according to CIS Guidance No. 18. Contamination limits have been determined for all indicators listed in Annex II Part B of Directive 2006/118/EC and indicators of the report under Art. 5 of Directive 2006/118/EC.		
	The following parameters were investigated:		
	a) Natural Background Level was determined for the following components: nitrate, ammonium, specific conductivity, sulphate, chloride, arsenic, cadmium, lead, mercury, orthophosphate		
	b) For each monitoring point the median concentration of each parameters of the studied period was compared to the thresholds values (determined for each GWB) or standards values (in the case of nitrates, metals and pesticides).		
	c) Different tests were conducted to assess groundwater body status: Diffuse pollution test (nitrate, ammonium, orthophosphate), Drinking water supply tests for numerous elements or components in both drinking water wells and monitoring wells and trend analysis based on the data of the surveillance monitoring system. Studied components of these tests are: nitrate, ammonium, chloride, sulphate, specific conductivity, mercury, lead, cadmium, pesticides and organics, furthermore in the trend analysis pH and dissolved oxygen.		
	d) Based on these tests, groundwater body was evaluated.		
	Quantitative Status		
	Hungary: To determine the overall quantitative status for a GWB, a series of tests should be applied that considers the impacts of anthropogenically induced long-term alterations in groundwater level and/or flow. Each test will assess whether the GWB is meeting the relevant environmental objectives. The quantitative status has been assessed taking into account CIS Guidance No.18. The following criteria have been used:		
	• <u>GW alteration (Drawdown) test</u>		
	Water Balance test		
	• Surface Water Flow test		
	Groundwater Dependent Terrestrial Ecosystems (GWDTE)		
	 Saline or other Intrusion test 		
	<i>Slovakia:</i> Assessment of groundwater quantitative status consists of 4 tests:		
	 balance assessment of groundwater bodies for the period 2013-2017 and evaluation of the long-term trend of development of balance levels of groundwater bodies for the period 2004-2018 		
	 evaluation of the existence of significant declining trends in the groundwater level and spring yield in groundwater bodies for the period 2007-2016 processed by aggregation of point results of groundwater quantity monitoring in the facilities of the state hydrological network of the SHMI 		
	<i>3.</i> assessment of the impact of groundwater quantity on the status of terrestrial ecosystems dependent on groundwater		
	<i>4.</i> assessment of the impact of groundwater quantity on surface water.		
Groundwater	Receptors considered		
threshold	Slovakia: Drinking water, Surface water		
value relationships	Hungary: Drinking water		
	Consideration of NBL and EQS (environmental quality standards, drinking water standards, surface water standards) in the TV establishment:		

Verbal description of the trend assessment methodology	 Slovakia: The natural background level (NBL) was determined and used to derive the threshold value (TV). The TV were determined for all indicators listed in Part B of Annex II to Directive 2006/118/CU. The TV for organic compounds were derived according to the formula: TV = (NBL + DWS)/2. The TV for organic compounds were derived using the formula: TV = 0.75 * DWS: These TV were used for GQA and DWPA tests. An updated list of the TV established for each GBB was published in the amended Regulation of the Government of the Slovakia no. 282/2010 Coll. For the Surface water test, the TV were derived as follows: TV = CV = AF * EQS (surface water standard)/DF, where AF (Attenuation factor) and DF (Dilution factor) are equal to 1 (the worst case). For that GWB where the NBL was higher than the TV due to natural hydro-geological reasons, the TV was set up as TV = NBL. Hungary: EQS for herbicides and total pesticides, tri, tetrachloroethylenes based on 2010/2001. (X.25.) Gov. decree and the 6/2009. (IV.14.) KVVM-EtM-FVM common ministerial decree in correspondence to 1. Annex of the 2006/118/EC directive. In Hungary, more than 95% of drinking water ensured from subsurface waters, so for all other components the DWS is applicable. For those GWBs where the NBL was higher than the DWS due to natural hydro-geological reasons, the TV is a monitum. SO4 and EC were defined by taking into account these higher yalues. as described in Guidance Document No. 18. Slovakia: Trend is assessed separately for groundwater quality and quantity at which for trends in quantity the procedure applies for all GW quantity monitoring sites. The assessment follows a stepwise procedure. Consisting of the evaluation of the data sets and the monitoring frequency depends on the GWB sympt. In the analysis. GWB with decreasing trends bu with no evidence of abstraction are excluded from assessment in the 3rd RBMP. For assessing trends in Comparing th
	 The trend of groundwater body level aggregates of yearly annual data were assessed as well. Significant upward or downward trends were identified on 95% significance level using Man- Kendall method with Sen's slope.
Verbal description of the trend	Slovakia: Trend reversal assessment methodology consists in the use of GWstat software. Time series were included in the assessment, on the basis of which significant sustained upward trends at the level of monitoring sites in the previous RBMP were classified. The time series

reversal assessment methodology	entering the evaluation were supplemented by data monitored in previous years so that the evaluation period was 14 years. The evaluation was performed by dynamically dividing the time series into two sections with different lengths and then evaluating the statistical significance of the trends separately for each allocated section. A reversal of the trend was indicated if the following conditions were met at the same time: the statistical significance of the trends evaluated within individual sections is higher than the statistical significance of the trend evaluated on the basis of all data forming the evaluated time series, the section representing the results of monitoring in the older period shows a statistically significant wound trend which is followed by a statistically significant
	upward trend, which is followed by a statistically significant decreasing trend evaluated on the basis of the results of monitoring in the newer period
	Hungary: To assess the trend reversal of pollutant concentrations two consecutive time period was compared and evaluated

Threshold values per GWB

Threshold val	lues per GWB				
	Pollutant / Indicator	TV (or range) [unit]	NBL (or range) [unit]	Level of TV establishment (national, RBD, GWB)	Related to risk in this GWB [yes/-]
HU	Nitrates	50 mg/l	2.9-12 mg/l	GWB	-
HU	Ammonium	1-2 mg/l	0.4-0.86 mg/l	GWB	-
HU	Conductivity	2500 µS/cm	657-1030 μS/cm	GWB	-
HU	Sulfate	250 mg/l	88.8-220 mg/l	GWB	-
HU	Chloride	250 mg/l	30-49.7 mg/l	GWB	-
HU	Orthophosphate	1 mg/l	0.24-0.44 mg/l	GWB	
HU	Cadmium	5 μg/l	0.17-1.1 μg/l	national	-
HU	Lead	10 µg/l	1.9-3.1 µg/l	national	-
HU	Mercury	$1 \mu g/l$	0.07-0.2 µg/l	national	-
HU	Trichlorethylene	10 µg/l		national	-
HU	Tetrachloro ethylene	10 µg/l		national	-
HU	AOX	20 µg/l		national	-
HU	Pesticides by components	0,1 µg/l		national	-
HU	Pesticides all	0,5 μg/l		national	-
SK1000300P	Ammonium	0.26 mg/l	0.02 mg/l	GWB	Yes
	Arsenic	6 µg/l	$2 \mu g/l$	GWB	-
	Benzene	0.8 μg/l	-	national	-
	Cadmium	3.0 µg/l	1 μg/l	GWB	-
	Chloride	137.3 mg/l	24.6 mg/l	GWB	-
	Chromium	26 µg/l	2 µg/l	GWB	-
	Copper	1002 μg/l	$4 \mu g/l$	GWB	-
	Iron total	0.135 mg/l	0.07 mg/l	GWB	-
	Lead	7.0 μg/l	4 μg/l	GWB	-
	Manganese	0.030 mg/l	0.01 mg/l	GWB	-
	Mercury	0.8 µg/l	0.5 μg/l	GWB	-
	Nitrates	50 mg/l	6.6 mg/l	GWB	-
	Nitrites	0.26 mg/l	0.01 mg/l	GWB	-
	Phosphates	0.22 mg/l	0.04 mg/l	GWB	-
	Sodium	104.5 mg/l	8.9 mg/l	GWB	-
	Sulphates	157.6 mg/l	65.2 mg/l	GWB	-
	Tetrachloroethylen	7.5* μg/l	-	national	-
	Trichlorethylene	7.5* µg/l	-	national	-
SK1000200P	Ammonium	0.26 mg/l	0.01 mg/l	GWB	-
	Arsenic	6 µg/l	2 µg/l	GWB	-
	Benzene	0.8 μg/l	-	national	-
	Cadmium	3.0 µg/l	1 μg/l	GWB	-
	Chloride	135.8 mg/l	21.5 mg/l	GWB	-
	Chromium	26 µg/l	1 μg/l	GWB	-
	Copper	1001 µg/l	$2 \mu g/l$	GWB	-

Iron total	0.125 mg/l	0.05 mg/l	GWB	-
Lead	6.5 μg/l	3 μg/l	GWB	-
Manganese	0.030 mg/l	0.01 mg/l	GWB	-
Mercury	0.7 μg/l	0.4 μg/l	GWB	-
Nitrates	50 mg/l	14.2 mg/l	GWB	-
Nitrites	0.26 mg/l	0.01 mg/l	GWB	-
Phosphates	0.22 mg/l	0.04 mg/l	GWB	-
Sodium	105.8 mg/l	11.5 mg/l	GWB	-
Sulphates	148.9 mg/l	47.8 mg/l	GWB	-
Tetrachloroethylen	7.5* μg/l	-	national	-
Trichlorethylene	7.5* μg/l	-	national	-

* 7.5 for Tetrachloroethylene + Trichlorethylene

GWB-9: Bodrog

GWB-9		National share HU-9 SK-9		Status 2021 for each national GWB?	
				Chemical (substance)	Quantity
List of individual GW-bodies forming		HU	HU_AIQ495	Good	Good
the whole nation	hal share (national code	HU	HU_AIQ496	Good	Poor
incl. country coo	le)	SK	SK1001500P	Poor (NH ₄ , PO ₄)	Good
Description/C	Delineation: see GWB	-8			
haracterisation of the ICPDR GW-body	At the common east, corresponding to the H Záhony and Tokaj (corr its significance in mee groundwater in the via water aquifer system is General description The aquifer is the allux lowland area in Hunga silty-clayey layers cove thick in the Slovakian at (50-200 m). The fluvia intercalated silt and cla In the Slovakian part or complex while in Hung app. 500 m, correspond The main recharge are mountains and penetra area surface waters al. mainly unconfined or discharge position and level lies close to (bet surface, the groundwate which are adapted to th groundwater. The surf collect the upward grou discharged groundwate known (that is why bot aquifer). The general d River and SE-NW in th The regional hydro-gen recharging groundwate low TDS, Ca-Mg-HCO the middle and wester Bodrogköz region. At the migration from the dee The major water qualiti is the high iron and ma arsenic-content occurs The estimated amount Slovakian part, out of Hungarian part. It is the available for abstraction Major pressures and in	Bodrog River catch fluence with the Ba eting the water den- cinity of state bord in Ukraine. vial deposit of the E try into Bodrogköz er the surface with side and its thickne l sediments (from s ay lenses) can be ch aly the Quaternary a vary the Upper part ding to water temper er ais in the Slovakia the main aquifers ween 2 and 4 m ba er can considerably hat condition, and a plus of evapotrans bundwater flow. Fra- er as well, but the b th discharge areas lirection of the grout e Rétköz and uncer ochemical picture f er, the water qualith 13 type waters occurs n part of Rétköz, a the centre of the Bo per zones. y problem of natura nganese content (rec- t of available gro that 10–15 Mm3/ya o be mentioned, that e southern recharge on in the Bodrogköz	ment area in Slovak bodrog River) has been mand of the region, fer between Slovakia Bodrog River and its in (northern part) and H peaty areas. The Quiss gradually increases sandy gravels in the Quiss gradually increases sandy gravels in the for aracterized by 5 – 30 aquifer system is part of the Pannonian for erature less than 30°C in territory. The rain deep aquifers. In the erecharge. In the Sloverthy confined. In Hu can be considered as elow) the surface. Why contribute to the trans consequently they are piration and the art for South, the sandy for consequently they are piration and the art for South, the sandy for coundary of the water in Hungary have bee ndwater flow is N-S (tain below the Tisza. follows the flow system y is almost the same r in the recharge area and mixture of these for all origin in the Bodrog educing conditions). I undwater resources at the southern part of areas as well, but no	ia and the Tisza- is selected as impo- (ii) contamination and Hungary. So tributaries. The Ti- Rétköz (Southern p maternary aquifer es in Hungary tow North to sands is 0 m/d hydraulic co of the transbounde mation is also atta C). waters infiltrate a upstream part of vakian side the wa ngary both water confined. Here th here it is around nspiration need of very sensitive to t ificial drainage s hills of Nyírség co s of different origi m attached to the NE-SW) to the No n. Close to the riv as in surface strea as, Na-HCO3 wata two types in the w -content indicates gköz Quaternary a in the Rétköz eleval is almost 50 Mi ined as lateral fla- of the Hungarian	valley between vrtant due to (i) in threat of the me part of the isza divides the part). Holocene is around 60 m vards the South the South with onductivity. ary water body- ached (depth is at the marginal the catchment ater bodies are bodies are in the groundwater 2 m below the the vegetation, he status of the ystem (canals) ontribute to the n is not exactly transboundary with of the Tisza er bed sections ams. Generally ers dominate in vestern part of strong upward equifer complex ted (10–30 µ/l) n3/year in the odischarge area

	The groundwater is mainly used for drinking water supply, but partially for industrial and
	agricultural purposes (inc. irrigation) as well. The use ratio is quite low in Slovakia: only 10 %. The development is limited by occurrence of technologically inappropriate substances in water (Mn, Fe) and sometimes also by groundwater pollution from surface waters, industry, agriculture and transport infrastructure (Strážske, Hencovce, Michalovce, Čierna nad Tisou).
	In Hungary the available groundwater resources of the two water bodies are quite different. In the northern part, which is in close relation to the Slovakian part, the water demand of the groundwater dependent aquatic and terrestrial ecosystems can be estimated at 5–8 Mm3/d, thus the available groundwater resources is in the range of 5–7 Mm3/year. The abstracted amount of groundwater is 3 Mm3/year, so the ratio is around 50 %, but the majority is concentrated to Ronyva/Roňava river valley. In the southern part, the lateral flow from the recharge zone of Nyírség (app. 30 Mm3/year) provides sufficient water for the minimum water demand of ecosystems (8-12 Mm3/year) and for 8 Mm3/year of abstraction.
	In Hungary 10 significant point sources of pollution have been registered. The shallow groundwater has usually high nitrate under the settlements, because of the inappropriate handling of manure and the totally or partially missing sewer systems. The agriculture contributes to the pollution as well, through use of chemicals. The estimated amunt of surplus Nitrogen is 15 kgN/ha/year originated from the use of 88 kgN/ha/year fertilizer and 13 kgN/year manure.
	The groundwater quality in Slovakia is monitored in 17 sampling sites, groundwater samples are taken from the first aquifer 2 times per year). The Hungarian water quality monitoring is concentrating in the surrounding of waterworks. The quality of the Ronyva/Roňava aquifer close to the waterworks of Sátoraljaújhely shows increasing tendency of Nitrate pollution: the average concentration is around 30 mg/l, and in one production well the Nitrate-concentration exceeds the limit value of 50 mg/l. Information on pollution in arable lands is practically missing in this region.
	The high vulnerability of groundwater and the expected future development in water demand requires high level of protection in the Slovakian part of the region mainly oriented to measures focused on industrial pollution sources. In Hungary the protection zones of the waterworks (5%) need special attention.
Description of	Chemical Status
status assessment methodology.	Slovakia: The methodology for assessing chemical status followed the requirements of the Groundwater Directive (2006/118/EC) as well as the recommendations of the CIS Guidance Document no. 18 - Guidance on groundwater status and trend assessment. The assessment of the chemical status of GWB in the conditions of the Slovakia consisted of the following tests:
	1. General quality assessment (GQA) test - years 2016-2017.
	2. Drinking water protected areas (DWPA) test - period 2008-2017.
	3. Test of significant diminution of associated surface water chemistry and ecology due to transfer of pollutant from the GWB - named as Surface water test - period 2013-2018.
	In the GQA test and the Surface water test, the procedure was based on a comparison of the arithmetic means of the concentration of the individual component with quality standards (QS) or thresholds values (TV) for each monitoring point. If no exceedances of the QS/TV were recorded in all monitoring points, the whole GWB was evaluated in good chemical status. If exceedances of QS/TVs were recorded than the methodologies were as follows:
	In the GQA test, data aggregation to whole GWB was performed. If the calculated total area of exceedance of the QS/TV was less than 20% of the total area of the GWB, the GWB was evaluated in good status. If the exceedance more than 20% of the total area of the GWB was recorded and based on expert judgment, the GWB was evaluated in poor chemical status.
	In the Surface water test, each GWB (with the relevant groundwater monitoring point) associated with the surface water body was assessed individually, taking into account the hydrological criterion, the hydrogeological criterion, the groundwater and surface water concentration profile, dilution (if data available) and that the estimated load of pollutant from groundwater transferred to associated surface water could be more than 50%, the GWB was evaluated in poor chemical status.
	In the DWPA test, the procedure was based on trend analysis (Mann-Kendal, linear regression,

sustained upward trend in any drinking water abstraction points, the GWB was evaluated in good chemical status. If there was any significant and sustained upward trend in any parameter in any of drinking water abstraction point in the GWB, the methodology was as follows: the data aggregation to whole GWB was performed (kriging from 2 years mean). If the calculated total area of exceedance of the QS/TV was less than 20% of the total area of the GWB, the GWB was evaluated in good status. If the exceedance more than 20% of the total area of the GWB was recorded and based on expert judgment, the GWB was evaluated in poor chemical status

Hungary: Assessment of the chemical status of groundwater was conducted: Analysing of the chemical data of individual monitoring points within each of the GWBs; Identifying of the pressures - sources of pollution; The background levels were calculated and used to determine threshold value. Threshold values have been determined according to CIS Guidance No. 18. Contamination limits have been determined for all indicators listed in Annex II Part B of Directive 2006/118/EC and indicators of the report under Art. 5 of Directive 2006/118/EC.

The following parameters were investigated:

- a) Natural Background Level was determined for the following components: nitrate, ammonium, specific conductivity, sulphate, chloride, arsenic, cadmium, lead, mercury, orthophosphate
- b) For each monitoring point the median concentration of each parameters of the studied period was compared to the thresholds values (determined for each GWB) or standards values (in the case of nitrates, metals and pesticides).
- c) Different tests were conducted to assess groundwater body status: Diffuse pollution test (nitrate, ammonium, orthophosphate), Drinking water supply tests for numerous elements or components in both drinking water wells and monitoring wells and trend analysis based on the data of the surveillance monitoring system. Studied components of these tests are: nitrate, ammonium, chloride, sulphate, specific conductivity, mercury, lead, cadmium, pesticides and organics, furthermore in the trend analysis pH and dissolved oxygen.
- *d)* Based on these tests, groundwater body was evaluated.

Quantitative Status

Hungary: To determine the overall quantitative status for a GWB, a series of tests should be applied that considers the impacts of anthropogenically induced long-term alterations in groundwater level and/or flow. Each test will assess whether the GWB is meeting the relevant environmental objectives. The quantitative status has been assessed taking into account CIS Guidance No.18. The following criteria have been used:

- <u>GW alteration (Drawdown) test</u>
- Water Balance test
- Surface Water Flow test
- Groundwater Dependent Terrestrial Ecosystems (GWDTE)
- Saline or other Intrusion test

Slovakia: Assessment of groundwater quantitative status consists of 4 tests:

	 balance assessment of groundwater bodies for the period 2013-2017 and evaluation of the long-term trend of development of balance levels of groundwater bodies for the period 2004-2018
	2. evaluation of the existence of significant declining trends in the groundwater level and spring yield in groundwater bodies for the period 2007-2016 processed by aggregation of point results of groundwater quantity monitoring in the facilities of the state hydrological network of the SHMI
	 assessment of the impact of groundwater quantity on the status of terrestrial ecosystems dependent on groundwater
	4. assessment of the impact of groundwater quantity on surface water
Groundwater	Receptors considered
threshold	Slovakia: Drinking water, Surface water
value relationships	Hungary: Drinking water

	Consideration of NBL and EQS (environmental quality standards, drinking water standards, surface water standards) in the TV establishment:
	Slovakia: The natural background level (NBL) was determined and used to derive the threshold value (TV). The TV were determined for all indicators listed in Part B of Annex II to Directive 2006/118/EC and in Directive 2014/80/EU. The TV for the inorganic substances were derived according to the formula: $TV = (NBL + DWS)/2$. The TV for organic compounds were derived using the formula: $TV = 0.75 * DWS$. These TV were used for GQA and DWPA tests.
	An updated list of the TV established for each GWB was published in the amended Regulation of the Government of the Slovakia no. 282/2010 Coll.
	For the Surface water test, the TV were derived as follows: $TV = CV = AF * EQS$ (surface water standard)/DF, where AF (Attenuation factor) and DF (Dilution factor) are equal to 1 (the worst case).
	For that GWB where the NBL was higher than the TV due to natural hydro-geological reasons, the TV was set up as $TV = NBL$.
	<i>Hungary:</i> EQS for herbicides and total pesticides, tri-, tetrachloroethylenes based on 201/2001. (X.25.) Gov. decree and the 6/2009. (IV.14.) KvVM-EüM-FVM common ministerial decree in correspondence to I. Annex of the 2006/118/EC directive.
	In Hungary, more than 95% of drinking water ensured from subsurface waters, so for all other components the DWS is applicable.
	For those GWBs where the NBL was higher than the DWS due to natural hydro-geological reasons, the TVs for ammonium, SO4 and EC were defined by taking into account these higher values, as described in Guidance Document No. 18.
Verbal description of the trend assessment methodology	 Slovakia: Trend is assessed separately for groundwater quality and quantity at which for trends in quantity the procedure applies for all GW quantity monitoring sites. The assessment follows a stepwise procedure. Consisting of the evaluation of the data sets and the monitoring points (no gaps in time series are allowed and data from 2007–2016 were used), consisting of the performance of the non-parametric Mann-Kendall trend test (95% confidence level) and comprising the regression analysis. GWBs with decreasing trends but with no evidence of abstraction are excluded from assessment in the 3rd RBMP. For assessing trends in concentrations of pollutants in groundwater the evaluation period was 2007–2016. The results of surveillance and operational monitoring were applied for the assessment. Monitoring frequency depends on the GWB type. In the analysis the values <loq (anova)="" (regression="" *="" 0.75="" 2="" 2.="" 2026="" 5%="" 50%.="" <loq="" a="" all="" also="" and="" applied="" are="" assessment="" at="" by="" calculated="" concentrations="" distribution,="" evaluated="" evaluation.="" for="" gwb="" higher="" identified="" if="" is="" last="" least="" less="" level="" level.="" level.<="" li="" linear="" loqmax="" mann-kendall="" measured="" median="" method="" model="" monitoring="" non-parametric="" nonparametric="" normal="" number="" of="" only="" or="" over="" parametric="" performed="" points="" pollutant="" predicted="" procedure)="" qs="" replaced="" sen's="" series="" showing="" significance="" significant="" squares="" statistical="" statistically="" sustained="" test="" tested="" than="" the="" time="" times="" to="" trend="" trends="" trends,="" tv="" tv.="" up="" upward="" upwards="" value="" values="" was="" were="" with="" years=""> The starting point for trend reversal was placed where the concentration of the pollutant reaches 75% of the QS/TV of the relevant pollutant. Hungary: To assess the trend of pollutant concentrations, chemical</loq>
	monitoring systems were used for the period of 2000 to 2012. The trend analysis was done using Matlab program package of Mann-Kendall method with fitted Sen slope. The steps used for trend assessment were:
	• During the assessment trend of all components for all monitoring objects were created using yearly average data and excluding time series with less than 4 data points.
	• The trend of groundwater body level aggregates of yearly annual data were assessed as well.
	Significant upward or downward trends were identified on 95% significance level using Mann- Kendall method with Sen's slope.

Verbal description of the trend reversal assessment methodology	Slovakia: Trend reversal assessment methodology consists in the use of GWstat software. Time series were included in the assessment, on the basis of which significant sustained upward trends at the level of monitoring sites in the previous RBMP were classified. The time series entering the evaluation were supplemented by data monitored in previous years so that the evaluation period was 14 years. The evaluation was performed by dynamically dividing the time series into two sections with different lengths and then evaluating the statistical significance of the trends separately for each allocated section. A reversal of the trend was indicated if the following conditions were met at the same time: the statistical significance of the trends evaluated within individual sections is higher than the statistical significance of the trend evaluated on the basis of all data forming the evaluated time series, the section representing the results of monitoring in the older period shows a statistically significant upward trend, which is followed by a statistically significant decreasing trend evaluated on the basis of the newer period				
	Hungary:				
Threshold val	ues per GWB				
	Pollutant / Indicator	TV (or range) [unit]	NBL (or range) [unit]	Level of TV establishment (national, RBD, GWB)	Related to risk in this GWB [yes/-]
HU	Nitrates	50 mg/l	1.2-12.8 mg/l	GWB	-
HU	Ammonium	2-5 mg/l	1.79-3.6 mg/l	GWB	Yes
HU	Conductivity	2500 µS/cm	1370-1483 µS/ст	GWB	-
HU	Sulfate	250 mg/l	42.2-191 mg/l	GWB	-
HU	Chloride	250 mg/l	135-214 mg/l	GWB	-
HU	Orthophosphate	1-2 mg/l	0.3-1.45 mg/l	GWB	
HU	Cadmium	$\frac{12 \text{ mg/l}}{5 \text{ µg/l}}$	0.03-1 μg/l	national	-
HU	Lead	10 µg/l	3.5-4.36µg/l	national	-
HU	Mercury	$1 \mu g/l$	0.1-0.19 μg/l	national	-
HU	Trichlorethylene	10 µg/l		national	-
HU	Tetrachloro ethylene	10 µg/l		national	-
HU	Absorbed organic halogens AOX	20 µg/l		national	-
HU	Pesticides by components	0.1 µg/l		national	-
HU	Pesticides all	0.5 μg/l		national	-
SK	Ammonium	0.30 mg/l	0.09 mg/l	GWB	Yes
SK	Arsenic	6 µg/l	2 µg/l	GWB	-
SK	Benzene	0.8 µg/l	-	national	-
SK	Cadmium	3.0 µg/l	1 μg/l	GWB	-
SK	Chloride	147.4 mg/l	44.7 mg/l	GWB	-
SK	Chromium	$27 \mu g/l$	4 μg/l	GWB	-
SK SK	Copper	1004 μg/l	$8 \mu g/l$	GWB GWB	-
SK SK	Iron total Lead	0.150 mg/l 9.0 μg/l	0.1 mg/l 8 μg/l	GWB	-
SK	Manganese	0.030 mg/l	0.01 mg/l	GWB	-
SK	Mercury	0.050 mg/l 0.7 µg/l	$0.4 \mu g/l$	GWB	-
SK	Nitrates	50 mg/l	9.7 mg/l	GWB	-
SK	Nitrites	0.26 mg/l	0.01 mg/l	GWB	-
SK	Phosphates	0.22 mg/l	0.02 mg/l	GWB	Yes
SK	Sodium	111.0 mg/l	22 mg/l	GWB	-
SK	Sulphates	167.4 mg/l	84.7 mg/l	GWB	-
SK	Tetrachloroethylen	7.5* μg/l	-	national	-
SK 7.5. for Terrori	Trichlorethylene	7.5* µg/l	-	national	-

* 7.5 for Tetrachloroethylene + Trichlorethylene

GWB-10: Slovensky kras / Aggtelek-hgs.

assessment methodology.	Slovakia: The methodology for assessing chemical status followed the requirements of the Groundwater Directive (2006/118/EC) as well as the recommendations of the CIS Guidance Document no. 18 - Guidance on groundwater status and trend assessment. The assessment of the chemical status of GWB in the conditions of the Slovakia consisted of the following tests:
	1. General quality assessment (GQA) test - years 2016-2017.
	2. Drinking water protected areas (DWPA) test - period 2008-2017.
	3. Test of significant diminution of associated surface water chemistry and ecology due to transfer of pollutant from the GWB - named as Surface water test - period 2013-2018.
	In the GQA test and the Surface water test, the procedure was based on a comparison of the arithmetic means of the concentration of the individual component with quality standards (QS) or thresholds values (TV) for each monitoring point. If no exceedances of the QS/TV were recorded in all monitoring points, the whole GWB was evaluated in good chemical status. If exceedances of QS/TVs were recorded than the methodologies were as follows:
	In the GQA test, data aggregation to whole GWB was performed. If the calculated total area of exceedance of the QS/TV was less than 20% of the total area of the GWB, the GWB was evaluated in good status. If the exceedance more than 20% of the total area of the GWB was recorded and based on expert judgment, the GWB was evaluated in poor chemical status.
	In the Surface water test, each GWB (with the relevant groundwater monitoring point) associated with the surface water body was assessed individually, taking into account the hydrological criterion, the hydrogeological criterion, the groundwater and surface water concentration profile, dilution (if data available) and that the estimated load of pollutant from groundwater transferred to associated surface water could be more than 50%, the GWB was evaluated in poor chemical status.
	In the DWPA test, the procedure was based on trend analysis (Mann-Kendal, linear regression, 10 years) of biological, chemical and radiological parameters of groundwater intended for human consumption before any level of treatment. If there was not a statistically significant and sustained upward trend in any drinking water abstraction points, the GWB was evaluated in good chemical status. If there was any significant and sustained upward trend in any parameter in any of drinking water abstraction point in the GWB, the methodology was as follows: the data aggregation to whole GWB was performed (kriging from 2 years mean). If the calculated total area of exceedance of the QS/TV was less than 20% of the total area of the GWB, the GWB was recorded and based on expert judgment, the GWB was evaluated in poor chemical status.
	Hungary: Assessment of the chemical status of groundwater was conducted: Analysing of the chemical data of individual monitoring points within each of the GWBs; Identifying of the pressures - sources of pollution; The background levels were calculated and used to determine threshold value. Threshold values have been determined according to CIS Guidance No. 18. Contamination limits have been determined for all indicators listed in Annex II Part B of Directive 2006/118/EC and indicators of the report under Art. 5 of Directive 2006/118/EC.
	The following parameters were investigated:
	a) Natural Background Level was determined for the following components: nitrate, ammonium, specific conductivity, sulphate, chloride, arsenic, cadmium, lead, mercury, orthophosphate
	b) For each monitoring point the median concentration of each parameters of the studied period was compared to the thresholds values (determined for each GWB) or standards values (in the case of nitrates, metals and pesticides).
	c) Different tests were conducted to assess groundwater body status: Diffuse pollution test (nitrate, ammonium, orthophosphate), Drinking water supply tests for numerous elements or components in both drinking water wells and monitoring wells and trend analysis based on the data of the surveillance monitoring system. Studied components of these tests are: nitrate, ammonium, chloride, sulphate, specific conductivity, mercury, lead, cadmium, pesticides and organics, furthermore in the trend analysis pH and dissolved oxygen.
	d) Based on these tests, groundwater body was evaluated.
	Quantitative Status:

	 Hungary: To determine the overall quantitative status for a GWB, a series of tests should be applied that considers the impacts of anthropogenically induced long-term alterations in groundwater level and/or flow. Each test will assess whether the GWB is meeting the relevant environmental objectives. The quantitative status has been assessed taking into account CIS Guidance No.18. The following criteria have been used: <u>GW alteration (Drawdown) test</u> Water Balance test Surface Water Flow test Groundwater Dependent Terrestrial Ecosystems (GWDTE) Saline or other Intrusion test Slovakia: Assessment of groundwater quantitative status consists of 4 tests: balance assessment of groundwater bodies for the period 2013-2017 and evaluation of the long-term trend of development of balance levels of groundwater level and spring yield in groundwater bodies for the period 2007-2016 processed by aggregation of point results of groundwater quantity monitoring in the facilities of the state hydrological network of the SHMI assessment of the impact of groundwater quantity on the status of terrestrial ecosystems dependent on groundwater 				
Groundwater	Receptors considered				
threshold value	Slovakia: Drinking water, Surface water				
relationships	Hungary: Drinking water				
-	<u>Consideration of NBL and EQS (environmental quality standards, drinking water standards, surface water standards) in the TV establishment:</u>				
	Slovakia: The natural background level (NBL) was determined and used to derive the threshold value (TV). The TV were determined for all indicators listed in Part B of Annex II to Directive 2006/118/EC and in Directive 2014/80/EU. The TV for the inorganic substances were derived according to the formula: $TV = (NBL + DWS)/2$. The TV for organic compounds were derived using the formula: $TV = 0.75 * DWS$. These TV were used for GQA and DWPA tests.				
	An updated list of the TV established for each GWB was published in the amended Regulation of the Government of the Slovakia no. 282/2010 Coll.				
	For the Surface water test, the TV were derived as follows: $TV = CV = AF * EQS$ (surface water standard)/DF, where AF (Attenuation factor) and DF (Dilution factor) are equal to 1 (the worst case).				
	For that GWB where the NBL was higher than the TV due to natural hydro-geological reasons, the TV was set up as $TV = NBL$.				
	Hungary: EQS for herbicides and total pesticides, tri-, tetrachloroethylenes based on 201/2001. (X.25.) Gov. decree and the 6/2009. (IV.14.) KvVM-EüM-FVM common ministerial decree in correspondence to I. Annex of the 2006/118/EC directive.				
	In Hungary, more than 95% of drinking water ensured from subsurface waters, so the DWS is applicable. Exempt those cases, when the karstic and shallow GWBs are in direct relation to aquatic ecosystems (GWAAE), so here the EQS nitrate is applicable (25 mg/l) instead of 50 mg/l of DWS.				
	For other components the DWS is applicable.				
	For those GWBs where the NBL was higher than the DWS due to natural hydro-geological reasons, the TVs for ammonium, SO4 and EC were defined by taking into account these higher values, as described in Guidance Document No. 18.				
Verbal description of the trend	Slovakia: Trend is assessed separately for groundwater quality and quantity at which for trends in quantity the procedure applies for all GW quantity monitoring sites. The assessment follows a stepwise procedure. Consisting of the evaluation of the data sets and the monitoring points (no gaps in time series are allowed and data from 2007–2016 were used), consisting of				

methodologycomprising the regis abstraction are exc concentrations of p of surveillance and frequency depends LOQmax/2. Trend d 50%. Non-paramet evaluation. For time trend was also testa all times series with trend was evaluated was higher than 0.3 (regression model of was higher than QS) were identified at the The starting point for eraches 75% of the Hungary: To assess		The non-parametric Mann-Kendall trend test (95% confidence level) and ression analysis. GWBs with decreasing trends but with no evidence of cluded from assessment in the 3 rd RBMP. For assessing trends in pollutants in groundwater the evaluation period was 2007–2016. The results all operational monitoring were applied for the assessment. Monitoring on the GWB type. In the analysis the values <loq are="" by<br="" replaced="">assessment is only performed if the number of values <loq is="" less="" than<br="">tric Mann-Kendall test with 5% significance level was applied for trend the series showing a normal distribution, the statistical significance of the ed by the parametric method (ANOVA) with 5% significance level. Than for h statistically significant upwards trends, the statistically significant upward d and identified if the median of the values measured over the last 2 years 75 * QS/TV or the calculated predicted value of the linear trend up to 2026 calculated by the least squares method or Sen's nonparametric procedure) S/TV. The significant sustained upward trends of pollutant concentrations he level of monitoring points and at the GWB level. for trend reversal was placed where the concentration of the pollutant e QS/TV of the relevant pollutant.</loq></loq>					
monitoring systems were used for the period of 2000 to 2012. The trend analyst using Matlab program package of Man-Kendall method with fitted Sen slope. T for trend assessment were:					The steps used		
			assessment trend of all components for all monitoring objects were created by average data and excluding time series with less than 4 datapoints.				
		• The trend of as well.	of groundwater body level aggregates of yearly annual data were assessed				
		Significant upward Man-Kendall metho	or downward trends were identified on 95 and 90% significance level using od with Sen's slope.				
description of the trendseries were include trends at the level of entering the evaluat evaluation period w time series into two significance of the indicated if the foll the trends evaluated on representing the red		d in the assessment, f monitoring sites in tion were supplement vas 14 years. The ev sections with differ rends separately fo owing conditions we d within individual s the basis of all data sults of monitoring to h is followed by a su	on the basis of whi in the previous RBM need by data monito valuation was perfor ent lengths and the r each allocated sec ere met at the same sections is higher the forming the evalua in the older period s tatistically significa	s in the use of GWst ich significant susta P were classified. I ored in previous yea rmed by dynamicall n evaluating the sta ction. A reversal of a time: the statistical stated time series, the shows a statistically ont decreasing trend	ined upward The time series rs so that the y dividing the tistical the trend was significance of gnificance of the section significant		
Threshol	d valu	es per GWB					
		utant / Indicator	TV (or range) [unit]	NBL (or range) [unit]	Level of TV establishment (national, RBD, GWB)	Related to risk in this GWB [yes/-]	
HU	Nitr		25 mg/l	8.6 mg/l	GWB	-	
HU HU		nonium ductivity	0.5 mg/l 2500 μS/cm	0.26 mg/l 732 μS/cm	GWB GWB	-	
HU HU	Sulf	•	2500 µ5/cm 250 mg/l	123 mg/l	GWB	-	
HU		pride	250 mg/l	88 mg/l	GWB	-	
HU		ophophate	0.25 mg/l	0.1 mg/l	GWB		
HU	_	mium	5 μg/l	0.02 μg/l	national	-	
HU HU	Lead	d curv	10 μg/l 1 μg/l	0.7 μg/l 0.49 μg/l	national national	-	

0.49 µg/l

national

national

-

1 μg/l

10 µg/l

HU

HU

Mercury

Trichlorethylene

HU	Tetrachloro ethylene	10 µg/l		national	-
HU	Absorbed organic halogens AOX	20 µg/l		national	-
HU	Pesticides by components	0.1 µg/l		national	-
HU	Pesticides all	0.5 μg/l		national	-
SK	Ammonium	0.27 mg/l	0.03 mg/l	GWB	-
SK	Arsenic	5.5 μg/l	1 μg/l	GWB	-
SK	Benzene	0.8 µg/l	-	national	-
SK	Cadmium	2.7 μg/l	0.4 µg/l	GWB	-
SK	Chloride	131.8 mg/l	13.5 mg/l	GWB	-
SK	Chromium	25 μg/l	0.4 µg/l	GWB	-
SK	Copper	1001 μg/l	1 μg/l	GWB	-
SK	Iron total	0.105 mg/l	0.01 mg/l	GWB	-
SK	Lead	5.5 μg/l	1 μg/l	GWB	-
SK	Manganese	0.027 mg/l	0.003 mg/l	GWB	-
SK	Mercury	0.6 µg/l	0.1 μg/l	GWB	-
SK	Nitrates	50 mg/l	16.7 mg/l	GWB	-
SK	Nitrites	0.26 mg/l	0.01 mg/l	GWB	-
SK	Phosphates	0.24 mg/l	0.07 mg/l	GWB	-
SK	Sodium	52.3 mg/l	4.6 mg/l	GWB	-
SK	Sulphates	167.6 mg/l	85.1 mg/l	GWB	-
SK	Tetrachloroethylen	7.5* μg/l	-	national	-
SK	Trichlorethylene	7.5* μg/l	-	national	-

* 7.5 for Tetrachloroethylene + Trichlorethylene

GWB-11: Komarnanska Kryha / Dunántúli-khgs. északi r.

GWB-11		National share HU-11 SK-11		Status 2021 for each national GWB?	
				Chemical (substance)	Quantity
List of individual GW-bodies forming the whole national share		HU	HU_AIQ558	Good	Good
		HU	HU_AIQ552	Good	Good
0	cl. country code)	HU	HU_AIQ564	Good	Good
	•	HU	HU_AIQ660	Good	Good
		SK	SK300010FK	Good	Good
		SK	SK300020FK	Good	Good
Description/C haracterisation of the ICPDR GW-body	the Transdanubian of the largest karstic for the population of supplying springs a resources in both co General description The karstic formatio of Upper-Triassic a due to the dense fis the faults. The eleved of the covering lay thickness (in some	ng as important tran per-Triassic karstic Mountain (Hungary c aquifer systems in of the region in Hun of the deeper part ountries. n on of the northern pa lolomite and limesto sure-system, while i the open karstic zon er is several hundra places it reaches ev	asboundary GWB dolomite and limestone) and the Komarnansk Central Europe. It pro- ngary; it contributes t of the aquifer system art of the Transdanubic me. The considerable in the limestone large mes are separated by s ed meters. Above the sen 2,500 m) consistin stic formation with bro-	A Kryha (Slovakia wides good quality o the characterist is very importan an Mountains is co matrix porosity of fractures are char unken basins, whe thermal part it ex g of different type	a) belong to one of drinking water ic landscape by t thermal water omposed mainly the dolomite is cacteristic along ore the thickness ceeds 500 m of

The Slovakian part (the Komarno block) extends between Komarno and Sturovo. It is fringed by the Danube River in the South and by the E-W Hurbanovo fault in the North. The southern limit along the Danube is tectonic as well and therefore the Komarno block is a sunken tract of the northern slope of the Gerecse and Pilis Mountains. The Komarno block consists largely of Triassic dolomites and limestones up to 1,000 m in thickness. The surface of the pre-Tertiary substratum plunges towards the north from a depth of approximately 100 m near the River Danube to as much as 3,000 m near the Hurbanovo fault.

The karstic aquifer is divided into six water bodies. In Hungary, where the recharge area appears, two water bodies bearing cold waters have been delineated according to the flow system. The thermal water bodies (in Hungary waters with temperature more than 30 °C is considered as thermal, while in Slovakia the limit is 25°C: HU_kt.1.2, HU_kt.1.4, SK_300010FK and SK_300020FK are in close hydraulic connection with the cold ones. To be noted, that the missing continuation of the cold water bodies in the Slovakian part is mainly due to the different consideration of the limit of temperature. Taking into account hydro-geothermal aspects, the deep Slovakian karstic aquifer is divided into the Komarno high block (SK 300010FK) and the Komarno marginal block (SK300020FK).

The Danube River is the regional erosion base of the water bodies. The water level fluctuation is in strong relation with the water level changes in the river. The water bodies are hydraulically connected. It is valid at the border of the countries as well, i.e. under the Danube and the Ipoly/Ipel Rivers, making the abstractions of water in both countries highly interrelated.

The recharge area is in the Hungarian side and the total recharge is estimated at 60 Mm^3/y . Without abstraction this amount of water is discharged by the springs and by the upward flow towards the covering layer, and some part is infiltrating to the deeper, thermal part.

The temperature of the water abstracted (captured) from the Hungarian thermal water bodies does not exceed 60 °C. Heat-flow densities suggest that the Komarno high block can be characterised by a fairly low (thermal spring at Sturovo and Patince are 39 and 26 °C warm) and the marginal block by a medium geothermal activity (40–68 °C). Heat flow given in mW/m^2 is 50-60 in Komárno high block and 60–70 mW/m^2 in Komárno marginal block, both considered as low values.

Coefficient of transmissivity in the high block varies from 13 to $100 \text{ m}^2/d$, while in the marginal block between 4 to $20 \text{ m}^2/d$. Prognostic recoverable amount of thermal water in the high block is estimated at 12,000 m³/d water of 20 to 40°C warm. In the marginal block the abstracted thermal water should be re-injected after use.

Major pressures and impacts

In Hungary the actual abstractions are apr. 30 M m^3 /y from the cold part and 2 M m^3 /y from the thermal part. In Slovakia the thermal water abstraction is 0.6 M m^3 /y mainly in area Komárno-Patince-Štúrovo. The cold karstic water is used for drinking water, the thermal water for balneology (in Hungary and in Slovakia) and for energy production (in Slovakia). Disposal of used geothermal water is solved in Slovakia by discharge into surface water (River Danube and Váh) after dilution with groundwater on acceptable qualitative parameters.

Due to the mining activities in the 20^{th} century, the actual water levels - especially in the cold water bodies in the Hungarian side - are significantly lower than the long-term natural averages and as a consequence all cold and lukewarm karstic springs dried out. In the Slovak side the regime of geothermal water (decreasing discharges of wells) was also affected by the extensive pumping of karstic water from coal mines in Tatabánya and Dorog (Hungary). After the mining was stopped (in 1993), the water levels have been showing increasing trend and the gradual reappearance of the springs is forecasted in the coming 5–15 years.

The abandoned cuts and fields of mine submerged by the rising karstic water represent a potential pollution source. Water quality monitoring has been installed, but data are not sufficient for estimating future impacts.

In extremely vulnerable open karstic area a few settlements should be considered as potential source of pollution. Relatively a high number of significant pollution exists in the area (40). The majority is lying above the not vulnerable covered part. The average amount of Nitrogen fertilizer is 86 kgN/ha/year, the use of manure is insignificant (3 kgN/ha/year). The surplus Nitrogen from agriculture is 17 kgN/ha/year, but in the majority of the area the thick covering layers provide natural protection. (Localities in real danger should be assessed at smaller scale, focusing on open karstic zones).

Description of status assessment methodology.	<u>Chemical Status</u> <i>Hungary:</i> Assessment of the chemical status of groundwater was conducted: Analysing of the chemical data of individual monitoring points within each of the GWBs; Identifying of the pressures - sources of pollution; The background levels were calculated and used to determine threshold value. Threshold values have been determined according to CIS Guidance No. 18. Contamination limits have been determined for all indicators listed in Annex II Part B of Directive 2006/118/EC and indicators of the report under Art. 5 of Directive 2006/118/EC.
	The following parameters were investigated:
	a) Natural Background Level was determined for the following components: nitrate, ammonium, specific conductivity, sulphate, chloride, arsenic, cadmium, lead, mercury, orthophosphate
	b) For each monitoring point the median concentration of each parameters of the studied period was compared to the thresholds values (determined for each GWB) or standards values (in the case of nitrates, metals and pesticides).
	c) Different tests were conducted to assess groundwater body status: Diffuse pollution test (nitrate, ammonium, orthophosphate), Drinking water supply tests for numerous elements or components in both drinking water wells and monitoring wells and trend analysis based on the data of the surveillance monitoring system. Studied components of these tests are: nitrate, ammonium, chloride, sulphate, specific conductivity, mercury, lead, cadmium, pesticides and organics, furthermore in the trend analysis pH and dissolved oxygen.
	d) Based on these tests, groundwater body was evaluated.
	Slovakia: An important factor in assessing the chemical status of geothermal waters, especially in terms of their use, is the stability of their chemical composition. The stability of the chemical composition for individual sources will be evaluated in those indicators that characterize the chemical type of water (Mineralization, Ca, Mg, Na, Cl, HCO ₃ , SO ₄). Another method is the evaluation of the development trend of the mentioned indicators in individual sources of the geothermal unit. The interquartile range (IQR) method was chosen to evaluate the chemical stability of geothermal water.
	Good chemical status is if :
	 the main indicators of the chemical type of water are between the lower and upper dispersion limits,
	 the trend of development of components of the chemical type of water reaches the same course and individual deviations can be described from the source regime.
	Quantitative Status
	Hungary: To determine the overall quantitative status for a GWB, a series of tests should be applied that considers the impacts of anthropogenically induced long-term alterations in groundwater level and/or flow. Each test will assess whether the GWB is meeting the relevant environmental objectives. The quantitative status has been assessed taking into account CIS Guidance No.18. The following criteria have been used:
	• <u>GW alteration (Drawdown) test</u>
	Water Balance test
	• Surface Water Flow test
	Groundwater Dependent Terrestrial Ecosystems (GWDTE)
	• Saline or other Intrusion test
	Solution of other minister test Slovakia: The assessment of the quantitative status of geothermal groundwater bodies consists of the balance assessment of individual bodies and the identification of sources for which a critical or emergency balance state occurred during the use of groundwater during the monitored period (2015-2017). For comparison, the state of balance in the period between the geothermal bodies, each will use the value of balance taking into account the state transformed usable amounts expressed in % (BST).
	Good quantitative status is, if:
	• the balance value of the BsT geothermal unit for the observed period may not exceed the value of 80%,

		• the trend of the	of development of B with signs,	sT values <70% is r	not marked, for BsT	> 70% we mark		
		• in case of definition	occurrence of sourc of causes.	es with critical or e	mergency balance	state $Bs \leq 1,18$ -		
Groundwa	ater	Receptors consider	ed					
threshold		Hungary: Drinking	g water standards					
value relationshi	ips	Slovakia:						
		Consideration of N the TV establishme	IBL and EQS (envir nt:	onmental quality st	andards, drinking w	vater standards) in		
		<u>Hungary:</u> EQS for 201/2001. (X.25.) C decree in correspon	Gov. decree and the	6/2009. (IV.14.) Kv	VM-EüM-FVM con			
		In Hungary, more t applicable. Exempt aquatic ecosystems mg/l of DWS.	those cases, when t	the karstic and shall	low GWBs are in di	irect relation to		
		For other compone	nts the DWS is appl	icable.				
For those GWBs reasons, the TVs			here the NBL was h r ammonium, SO4 a d in Guidance Docu	ind EC were defined	•	0 0		
			rion for evaluating osition as was descr		of geothermal GW	B is the stability of		
description of <i>monitoring system</i>		ess the trend of pollutant concentrations, chemical data of the surveillance ns were used for the period of 2000 to 2012. The trend analysis was done gram package of Mann-Kendall method with fitted Sen slope. The steps used ent were:						
• 7			• During the assessment trend of all components for all monitoring objects were created using yearly average data and excluding time series with less than 4 data points.					
		• The trend of groundwater body level aggregates of yearly annual data were assessed as well.						
			rd or downward trends were identified on 95% significance level using Mann- vith Sen's slope.					
Verbal		Hungary:						
description	n of	Slovakia:						
the trend reversal								
assessment								
methodolo	ogy							
Threshold	d valu	es per GWB						
			TV (or range) [unit]	NBL (or range)	Level of TV establishment (national, RBD, CWP)	Related to risk in this GWB		
	Poll	utant / Indicator		[unit]	GWB)	[yes/-]		
		utant / Indicator		<108 mg/	CWP			
HU HU	Nitre	ates	50-no TV mg/l	<1-9.8 mg/l 0 26-16 7 mg/l	GWB GWB	-		
HU HU HU	Nitro Amn			<1-9.8 mg/l 0.26-16.7 mg/l 996-5097 μS/cm	GWB GWB GWB			
HU HU HU	Nitro Amn Con Sulfo	ates nonium ductivity nte	50-no TV mg/l 0.5-no TV mg/l 2500-no TV μS/cm 250-no TV mg/l	0.26-16.7 mg/l 996-5097 µS/ст 124-266 mg/l	GWB GWB GWB			
HU HU HU HU	Nitro Amn Con Sulfe Chle	ates nonium ductivity ate pride	50-no TV mg/l 0.5-no TV mg/l 2500-no TV μS/cm 250-no TV mg/l 250-no TV mg/l	0.26-16.7 mg/l 996-5097 µS/cm 124-266 mg/l 35-627 mg/l	GWB GWB GWB GWB	-		
HU HU HU HU HU	Nitro Amn Con Sulfa Chla Orth	ates nonium ductivity ate pride nophosphate	50-no TV mg/l 0.5-no TV mg/l 2500-no TV μS/cm 250-no TV mg/l 250-no TV mg/l 0.25-no TV mg/l	0.26-16.7 mg/l 996-5097 μS/cm 124-266 mg/l 35-627 mg/l 0.1 mg/l	GWB GWB GWB GWB	- - -		
HU HU HU HU	Nitro Amn Con Sulfa Chla Orth	ates nonium ductivity ate pride nophosphate mium	50-no TV mg/l 0.5-no TV mg/l 2500-no TV μS/cm 250-no TV mg/l 250-no TV mg/l	0.26-16.7 mg/l 996-5097 µS/cm 124-266 mg/l 35-627 mg/l	GWB GWB GWB GWB	-		

HU	Trichlorethylene	10-no TV µg/l	national	-
HU	Tetrachloro ethylene	10-no TV µg/l	national	-
HU	Absorbed organic halogens AOX	20-no TV µg/l	national	-
HU	Pesticides by components	0.1-no TV µg/l	national	-
HU	Pesticides all	0.5-no TV µg/l	national	-

*: no TV for karst thermal GWB

GWB-12: Ipel /Ipoly

List of individual GW-bodies forming the whole national share (national code incl. country code) HU HUAIQ583 Good Good Description/C haracterisation of the ICPDR GW-body Delineation: SK SK1000800P Poor (NO3, SO4, PO4) Good Description/C haracterisation of the ICPDR GW-body Delineation: The Ipoly-valley is situated in the border of Slovakia and Hungary, east of Danube River. area is 145,8 km ² , the elevation varies between 290 m asl to 128 m asl. The middle Ipoly- has an east to west direction, while the lower Ipoly-valley is a north to south one. Left sidd the river belongs to Hungary. The middle-Ipoly valley formed by several young refilling trenches, on the south is separated by a defined morphological barrier showing terrace-li river valley. Several river terraces forms the lower-Ipoly-valley between the Börzsöny and Helemba hills. Morphologically, it is a diverse pediment surface from the level of the river to 200 m asl. Reasons for selecting as important transboundary GWB: The surrounding area of this aquifer suffers from lack of water, while these groundwater to are important local drinking water resources in Slovakia and Hungary. Therefore, collaboration between SK and HU to delineate the HU and SK GWBs as common transboundary GWB is a key to maintain safe water supply in sufficient quantities. The all deposits of the Ipel/ Ipoly River extend on both sides of the Hungarian-Slovakia border. aquifer supplies drinking water to a population of approx. 170,000 inhabitants in Slovakia 50,000 inhabitants in Hungary. On the Hungarian side, due to the lowland character and upward flow system, the terrestrial ecosystems (NATURA 2000 site) require surplus transpirati	tional
Institution of the stational share (national code incl. country code) SK SK 1000800P Poor (NO ₃ , Goo SO ₄ , PO ₄) Goo Description/C haracterisation of the ICPDR GW-body Delineation: The Ipoly-valley is situated in the border of Slovakia and Hungary, east of Danube River. area is 145,8 km ² , the elevation varies between 290 m asl to 128 m asl. The middle Ipoly- has an east to west direction, while the lower Ipoly-valley is a north to south one. Left side the river belongs to Hungary. The middle-Ipoly valley formed by several young refilling trenches, on the south is separated by a defined morphological barrier showing terrace-li river valley. Several river terraces forms the lower-Ipoly-valley between the Börzsöny and Helemba hills. Morphologically, it is a diverse pediment surface from the level of the river to 200 m asl. Reasons for selecting as important transboundary GWB: The surrounding area of this aquifer suffers from lack of water, while these groundwater a re important local drinking water resources in Slovakia and Hungary. Therefore, collaboration between SK and HU to delineate the HU and SK GWBs as common transboundary GWB is a key to maintain safe water supply in sufficient quantities. The all deposits of the Ipel/ Ipoly River extend on both sides of the Hungarian-Slovakian border. aquifer supplies drinking water to a population of approx. 170,000 inhabitants in Slovakia 50,000 inhabitants in Hungary. On the Hungarian side, due to the lowland character and upward flow system, the terrestrial ecosystems (NATURA 2000 site) require surplus transpiration from groundwater; 7% of the area of the water body is under nature conservation. The recharge zone is in Slovakia and Hungary thus the available groundwater	ıtity
forming the whole national share (national code incl. country code)SKSK 1000800PPoor (NO3, SO4, PO4)GoodDescription/C haracterisation of the ICPDR GW-bodyDelineation: The Ipoly-valley is situated in the border of Slovakia and Hungary, east of Danube River. area is 145,8 km², the elevation varies between 290 m asl to 128 m asl. The middle Ipoly- has an east to west direction, while the lower Ipoly-valley is a north to south one. Left side the river belongs to Hungary. The middle-Ipoly valley formed by several young refilling trenches, on the south is separated by a defined morphological barrier showing terrace-li river valley. Several river terraces forms the lower-Ipoly-valley between the Börzsöny and Helemba hills. Morphologically, it is a diverse pediment surface from the level of the river to 200 m asl.Reasons for selecting as important transboundary GWB: The surrounding area of this aquifer suffers from lack of water, while these groundwater a are important local drinking water resources in Slovakia and Hungary. Therefore, collaboration between SK and HU to delineate the HU and SK GWBs as common transboundary GWB is a key to maintain safe water supply in sufficient quantities. The all deposits of the Ipel/ Ipoly River extend on both sides of the Hungarian-Slovakian border. aquifer supplies drinking water to a population of approx. 170,000 inhabitants in Slovakia 50,000 inhabitants in Hungary. On the Hungarian side, due to the lowland character and upward flow system, the terrestrial ecosystems (NATURA 2000 site) require surplus transpiration from groundwater; 7% of the area of the water body is under nature conservation. The recharge zone is in Slovakia and Hungary thus the available groundwate	bd
 haracterisation of the ICPDR GW-body The Ipoly-valley is situated in the border of Slovakia and Hungary, east of Danube River. area is 145,8 km², the elevation varies between 290 m asl to 128 m asl. The middle Ipoly-has an east to west direction, while the lower Ipoly-valley is a north to south one. Left side the river belongs to Hungary. The middle-Ipoly valley formed by several young refilling trenches, on the south is separated by a defined morphological barrier showing terrace-lit river valley. Several river terraces forms the lower-Ipoly-valley between the Börzsöny and Helemba hills. Morphologically, it is a diverse pediment surface from the level of the river to 200 m asl. Reasons for selecting as important transboundary GWB: The surrounding area of this aquifer suffers from lack of water, while these groundwater to are important local drinking water resources in Slovakia and Hungary. Therefore, collaboration between SK and HU to delineate the HU and SK GWBs as common transboundary GWB is a key to maintain safe water supply in sufficient quantities. The all deposits of the Ipel/ Ipoly River extend on both sides of the Hungarian-Slovakian border. aquifer supplies drinking water to a population of approx. 170,000 inhabitants in Slovakia 50,000 inhabitants in Hungary. On the Hungarian side, due to the lowland character and upward flow system, the terrestrial ecosystems (NATURA 2000 site) require surplus transpiration from groundwater; 7% of the area of the water body is under nature conservation. The recharge zone is in Slovakia and Hungary thus the available groundwate 	od
 haracterisation of the ICPDR GW-body The Ipoly-valley is situated in the border of Slovakia and Hungary, east of Danube River. area is 145,8 km², the elevation varies between 290 m asl to 128 m asl. The middle Ipoly-has an east to west direction, while the lower Ipoly-valley is a north to south one. Left side the river belongs to Hungary. The middle-Ipoly valley formed by several young refilling trenches, on the south is separated by a defined morphological barrier showing terrace-lit river valley. Several river terraces forms the lower-Ipoly-valley between the Börzsöny and Helemba hills. Morphologically, it is a diverse pediment surface from the level of the river to 200 m asl. Reasons for selecting as important transboundary GWB: The surrounding area of this aquifer suffers from lack of water, while these groundwater to are important local drinking water resources in Slovakia and Hungary. Therefore, collaboration between SK and HU to delineate the HU and SK GWBs as common transboundary GWB is a key to maintain safe water supply in sufficient quantities. The all deposits of the Ipel/ Ipoly River extend on both sides of the Hungarian-Slovakian border. aquifer supplies drinking water to a population of approx. 170,000 inhabitants in Slovakia 50,000 inhabitants in Hungary. On the Hungarian side, due to the lowland character and upward flow system, the terrestrial ecosystems (NATURA 2000 site) require surplus transpiration from groundwater; 7% of the area of the water body is under nature conservation. The recharge zone is in Slovakia and Hungary thus the available groundwate 	
resource and the status of the terrestrial ecosystems depend on the lateral flow from the neighbouring countries. Both sides of the GWBs have issues with groundwater quality pro The Ipel'/Ipoly River had formed a 0-10 meters thick alluvial deposit, along the stretch of approximately 80km of the river, which forms a natural boundary between Slovakia and Hungary. More importantly, hydraulic connection between the SK1000800P – HUAIQ58 groundwater bodies is anticipated (<u>http://www.all-in.sk/enwat/ipel.html</u>).General description: The middle and the lower part of the Ipoly-valley significantly differ in geology. In the area upper-Ipoly-valley, the maximum 10 meters thick soil covers the alluvial sand, sandy grav sediments. Below the maximum few tenth meters thick Holocene-Pleistocene sequence, se hundred meters thick Oligocene schlier, sandstone, clay sequence (Szécsényi schlier, Pétervásárai sandstone, Kiscelli clay and Hárshegy sandstone) covers the schist and gnei basement. In the area of lower-Ipoly-valley below the few meters thick alluvial sand and g sediment few hundred meters thick Miocene marl, limestone sequence (Lajta limestone, Sz clayly marl) covers the magmatic tuffs (Nagyvölgyi Dacite tuffs) sediments. The lower boundary of the groundwater body is formed by the thick low permeability schl and sandstone formations, respectively thick clayly marl aquitard (Szilágyi clayly marl). I	valley le of ike d r up bodies luvial The a and t a and t uter oblems f 33 ea of vel vveral iss gravel zilágy lier

	river terraces the Pleistocene fluvio- eolian sand and loess is a good water bearing strata,
	however the main aquifer is the few meters thick (4 m in average) Holocene fluvial sand and
	gravel along the river. The recharge of the upper part of the river is in Slovakia, while the
	middle and lower part of it is recharged both side of the river.
	The area of interest is delimited by the extent of the youngest alluvium of the river Ipoly/Ipel' and partially also of some of its tributaries. The alluvium lies on the impermeable clayey sediments of the Neogene filling of the Juhoslovenská and Podunajská panva basins in the Slovakian side. In the groundwater body there are mainly alluvial and terrestrial gravel, sandy gravel, sand, stratigraphic classification of Pleistocene - Holocene as collector rocks. In hydrogeological collectors of the formation, the inter-grain permeability prevails. The average range of the thickness of the guardrails is <10 m, the value of the filtration coefficient here is in the range of 1.10-4 to 1.10-3 m.s-1. The general direction of groundwater flow in the alluvial floodplain of the quaternary formation SK1000800P is more or less parallel to the course of the main flow. Intergranular groundwater body of Quaternary sediments of the Ipel' river is in the Hron watershed area. The evaluated area (agricultural land including arable land, grassland, pastures and permanent crops plantations) shares 86.69 % of total groundwater body area, rest of groundwater body area land cover is represented by forests, semi-natural land, surface water tables and artificial surfaces. Within the groundwater body area, evaluated area creates large and compact patterns which regularly cover whole area. In general, groundwater body shows lowered potential of soil regarding possible negative influence of surface contamination to groundwater. The main aquifer is the alluvial sediments of the river Ipoly/Ipel' and the connecting terraces. Their thickness is about 4-10 m, or more. The gravels and sands are covered with 1.5-4 m of clayey flood sediments. The changing thickness sometimes causes the occurrence of the
	confined groundwater. The gravels and sands have high transmissivity. The width of the river flood plain is about 1-2 km, but at some places it is of only tens of meters. Groundwater recharge occurs by infiltration of precipitations and infiltration of surface water at high water levels. The changing (decreasing) surface water level of the river has negative impact of the water supply possibilities Strong variability of groundwater chemical composition and quality is characteristic for the Ipel' region. Ca-Mg-HCO3 dominates in groundwater as the result of dissolution of carbonates and hydrolytical decomposition of silicate minerals. Groundwater qualitative properties in the region reflect either the natural character of the area or the addition of compounds due to anthropogenic activities.
	Major pressures and impacts
	Anthropogenic contamination of groundwater is mostly originated by agricultural activities and production of waste waters. It is mainly contamination of the uppermost groundwater horizons that occurs in the area. Deteriorated groundwater quality is mainly characterized by high contents of nitrates, chlorides, ammonia ions, phosphates or specific organic parameters (PAH, COD) and occasionally pesticides. Locally high pesticide concentrations (> 0.5 mg/l) are found in both surface water and in groundwater along the Ipoly/Ipel' valley. Pesticides in unsaturated soils can be released by erosion, which can be increased by climate change. Nitrates have also a substantial impact on the shallow parts (0-20 m) of the groundwater systems. In general, detected pesticide concentrations suggest that water quality can be considered to be at risk until further investigations will be made and the additional measures as defined by WFD, will be taken. Furthermore, besides the anthropogenic pressures the locally important drinking water resource has high natural sulphate content and electric conductivity. The whole GWB is highly sensitive to climatic changes
Description of	Chemical Status:
status assessment methodology.	Hungary: Assessment of the chemical status of groundwater was conducted: Analysing of the chemical data of individual monitoring points within each of the GWBs; Identifying of the pressures - sources of pollution; The background levels were calculated and used to determine threshold value. Threshold values have been determined according to CIS Guidance No. 18. Contamination limits have been determined for all indicators listed in Annex II Part B of Directive 2006/118/EC and indicators of the report under Art. 5 of Directive 2006/118/EC. The following parameters were investigated:
	a) Natural Background Level was determined for the following components: nitrate, ammonium, specific conductivity, sulphate, chloride, arsenic, cadmium, lead, mercury, orthophosphate

b) For each monitoring point the median concentration of each parameters of the studied period was compared to the thresholds values (determined for each GWB) or standards values (in the case of nitrates, metals and pesticides).
c) Different tests were conducted to assess groundwater body status: Diffuse pollution test (nitrate, ammonium, orthophosphate), Drinking water supply tests for numerous elements or components in both drinking water wells and monitoring wells and trend analysis based on the data of the surveillance monitoring system. Studied components of these tests are: nitrate, ammonium, chloride, sulphate, specific conductivity, mercury, lead, cadmium, pesticides and organics, furthermore in the trend analysis pH and dissolved oxygen.
d) Based on these tests, groundwater body was evaluated.
Slovakia: The methodology for assessing chemical status followed the requirements of the Groundwater Directive (2006/118/EC) as well as the recommendations of the CIS Guidance Document no. 18 - Guidance on groundwater status and trend assessment. The assessment of the chemical status of GWB in the conditions of the Slovakia consisted of the following tests:
1. General quality assessment (GQA) test - years 2016-2017.
2. Drinking water protected areas (DWPA) test - period 2008-2017.
3. Test of significant diminution of associated surface water chemistry and ecology due to transfer of pollutant from the GWB - named as Surface water test - period 2013-2018.
In the GQA test and the Surface water test, the procedure was based on a comparison of the arithmetic means of the concentration of the individual component with quality standards (QS) or thresholds values (TV) for each monitoring point. If no exceedances of the QS/TV were recorded in all monitoring points, the whole GWB was evaluated in good chemical status. If exceedances of QS/TVs were recorded than the methodologies were as follows:
In the GQA test, data aggregation to whole GWB was performed. If the calculated total area of exceedance of the QS/TV was less than 20% of the total area of the GWB, the GWB was evaluated in good status. If the exceedance more than 20% of the total area of the GWB was recorded and based on expert judgment, the GWB was evaluated in poor chemical status.
In the Surface water test, each GWB (with the relevant groundwater monitoring point) associated with the surface water body was assessed individually, taking into account the hydrological criterion, the hydrogeological criterion, the groundwater and surface water concentration profile, dilution (if data available) and that the estimated load of pollutant from groundwater transferred to associated surface water could be more than 50%, the GWB was evaluated in poor chemical status.
In the DWPA test, the procedure was based on trend analysis (Mann-Kendal, linear regression, 10 years) of biological, chemical and radiological parameters of groundwater intended for human consumption before any level of treatment. If there was not a statistically significant and sustained upward trend in any drinking water abstraction points, the GWB was evaluated in good chemical status. If there was any significant and sustained upward trend in any parameter in any of drinking water abstraction point in the GWB, the methodology was as follows: the data aggregation to whole GWB was performed (kriging from 2 years mean). If the calculated total area of exceedance of the QS/TV was less than 20% of the total area of the GWB, the GWB was recorded and based on expert judgment, the GWB was evaluated in poor chemical
status
Quantitative Status:
Hungary: To determine the overall quantitative status for a GWB, a series of tests should be applied that considers the impacts of anthropogenically induced long-term alterations in groundwater level and/or flow. Each test will assess whether the GWB is meeting the relevant environmental objectives. The quantitative status has been assessed taking into account CIS Guidance No.18. The following criteria have been used:
<u>GW alteration (Drawdown) test</u>
Water Balance test
Surface Water Flow test

- Groundwater Dependent Terrestrial Ecosystems (GWDTE)
- Saline or other Intrusion test

Slovakia: Assessment of groundwater quantitative status consists of 4 fests
Slovakia: Assessment of groundwater quantitative status consists of 4 tests: 1. balance assessment of groundwater bodies for the period 2013-2017 and evaluation of
the long-term trend of development of balance levels of groundwater bodies for the period 2004-2018
2. evaluation of the existence of significant declining trends in the groundwater level and spring yield in groundwater bodies for the period 2007-2016 processed by aggregation of point results of groundwater quantity monitoring in the facilities of the state hydrological network of the SHMI
 assessment of the impact of groundwater quantity on the status of terrestrial ecosystems dependent on groundwater
4. assessment of the impact of groundwater quantity on surface water
Receptors considered
Slovakia: Drinking water, Surface water
Hungary: Drinking water
<u>Consideration of NBL and EQS (environmental quality standards, drinking water standards,</u> <u>surface water standards) in the TV establishment:</u>
Slovakia: The natural background level (NBL) was determined and used to derive the threshold value (TV). The TV were determined for all indicators listed in Part B of Annex II to Directive 2006/118/EC and in Directive 2014/80/EU. The TV for the inorganic substances were derived according to the formula: $TV = (NBL + DWS)/2$. The TV for organic compounds were derived using the formula: $TV = 0.75 * DWS$. These TV were used for GQA and DWPA tests.
An updated list of the TV established for each GWB was published in the amended Regulation of the Government of the Slovakia no. 282/2010 Coll.
For the Surface water test, the TV were derived as follows: $TV = CV = AF * EQS$ (surface water standard)/DF, where AF (Attenuation factor) and DF (Dilution factor) are equal to 1 (the worst case).
For that GWB where the NBL was higher than the TV due to natural hydro-geological reasons, the TV was set up as $TV = NBL$.
Hungary: EQS for herbicides and total pesticides, tri-, tetrachloroethylenes based on 201/2001. (X.25.) Gov. decree and the 6/2009. (IV.14.) KvVM-EüM-FVM common ministerial decree in correspondence to I. Annex of the 2006/118/EC directive.
In Hungary, more than 95% of drinking water ensured from subsurface waters, so for all other components the DWS is applicable.
For those GWBs where the NBL was higher than the DWS due to natural hydro-geological reasons, the TVs for ammonium, SO4 and EC were defined by taking into account these higher values, as described in Guidance Document No. 18.
Slovakia: Trend is assessed separately for groundwater quality and quantity at which for trends in quantity the procedure applies for all GW quantity monitoring sites. The assessment follows a stepwise procedure. Consisting of the evaluation of the data sets and the monitoring points (no gaps in time series are allowed and data from 2007–2016 were used), consisting of the performance of the non-parametric Mann-Kendall trend test (95% confidence level) and comprising the regression analysis. GWBs with decreasing trends but with no evidence of abstraction are excluded from assessment in the 3 rd RBMP. For assessing trends in concentrations of pollutants in groundwater the evaluation period was 2007–2016. The results of surveillance and operational monitoring were applied for the assessment. Monitoring frequency depends on the GWB type. In the analysis the values <loq (anova)="" *="" 0.75="" 2="" 2.="" 2026<="" 5%="" 50%.="" <loq="" a="" all="" also="" and="" applied="" are="" assessment="" by="" calculated="" distribution,="" evaluated="" evaluation.="" for="" higher="" identified="" if="" is="" last="" less="" level="" level.="" linear="" loqmax="" mann-kendall="" measured="" median="" method="" non-parametric="" normal="" number="" of="" only="" or="" over="" parametric="" performed="" predicted="" qs="" replaced="" series="" showing="" significance="" significant="" statistical="" statistically="" td="" test="" tested="" than="" the="" time="" times="" to="" trend="" trends,="" tv="" up="" upward="" upwards="" value="" values="" was="" with="" years=""></loq>

		was higher than QS were identified at th				concentrations	
		The starting point f	or trend reversal was placed where the concentration of the pollutant				
		reaches 75% of the	of the QS/TV of the relevant pollutant.				
		Hungary: To asses monitoring systems using Matlab progr for trend assessmet	were used for the p cam package of Mar	period of 2000 to 20	12. The trend analy	vsis was done	
				of all components fo d excluding time ser			
		• The trend as well.	of groundwater bod	ly level aggregates	of yearly annual da	ta were assessed	
		Significant upward		ls were identified or	n 95% significance	level using Mann-	
		Kendall method wit	th Sen's slope.				
Verbal descriptio the trend assessmer methodolo Threshole	nt Ogy	Slovakia: Trend re series were include trends at the level of entering the evalua evaluation period w time series into two significance of the t indicated if the follo the trends evaluated trend evaluated on representing the re- upward trend, whice basis of the results Hungary: To asses was compared and es per GWB	d in the assessment of monitoring sites i tion were suppleme vas 14 years. The ev o sections with differ trends separately for owing conditions we d within individual the basis of all data sults of monitoring of monitoring in the s the trend reversal	, on the basis of whi n the previous RBM nted by data monito valuation was perfo rent lengths and the r each allocated sec ere met at the same sections is higher the forming the evalua- in the older period tatistically significa- e newer period.	ich significant susta IP were classified. If ored in previous yea rmed by dynamical n evaluating the sta ction. A reversal of time: the statistical oan the statistical si uted time series, the shows a statistically unt decreasing trend	tined upward The time series trs so that the by dividing the ttistical the trend was significance of gnificance of the section significant d evaluated on the	
			TV (or range)	NBL (or range)	(national, RBD,	in this GWB	
	Poll	utant / Indicator	[unit]	[unit]	GWB)	[yes/-]	
HU	Nitre	ates	50-no TV mg/l	9.5 mg/l	GWB	-	
HU	Amn	ıonium	2.0-no TV mg/l	1.1 mg/l	GWB	-	
HU	Con	ductivity	2,500-no TV µS/cm	1,570 µS/cm	GWB	-	
HU	Sulp	hate	500-no TV mg/l	284 mg/l	GWB	-	
HU		oride	250-no TV mg/l	119 mg/l	GWB	-	
HU	Orth	ophosphate	2.0 mg/l	0,91 mg/l	GWB		
HU		mium	5-no TV μg/l	0.07 μg/l	national	-	
HU	Lead		10-no TV µg/l	0.293 μg/l	national	-	
HU	Mer		1-no TV µg/l	0.005 µg/l	national	-	
HU		hlorethylene	10-no TV µg/l		national	-	
HU		achloro ethylene	10-no TV µg/l		national	-	
HU	Abso	orbed organic gens AOX	20-no TV µg/l		national	-	
HU	Pest	icides by ponents	0.1-no TV µg/l		national	-	
HU		icides all	0.5-no TV µg/l		national	-	
SK		ionium	0.9 mg/l	0.9 mg/l	GWB	-	
SK	Arse		6 μg/l	$\frac{2 \mu g/l}{2 \mu g/l}$	GWB	-	
SK			$0.8 \mu g/l$		national	_	
	Benzene Cadmium		$2.0 \mu g/l$	0.7 µg/l	GWR		

Cadmium

Chloride

SK

SK

2.9 µg/l

135.7 mg/l

GWB

GWB

-

-

 $0.7 \,\mu g/l$

21.3 mg/l

Danube River Basin Management Plan Update 2021

SK	Chromium	26 µg/l	2 µg/l	GWB	-
SK	Copper	1003 μg/l	6 µg/l	GWB	-
SK	Iron total	0.150 mg/l	0.1 mg/l	GWB	-
SK	Lead	7.0 μg/l	5 μg/l	GWB	-
SK	Manganese	0.100 mg/l	0.1 mg/l	GWB	-
SK	Mercury	0.6 µg/l	0.1 µg/l	GWB	-
SK	Nitrates	50 mg/l	1.5 mg/l	GWB	Yes
SK	Nitrites	0.26 mg/l	0.02 mg/l	GWB	-
SK	Phosphates	0.24 mg/l	0.08 mg/l	GWB	Yes
SK	Sodium	119.8 mg/l	39.6 mg/l	GWB	-
SK	Sulphates	140.8 mg/l	31.6 mg/l	GWB	Yes
SK	Tetrachloroethylen	7.5* μg/l	-	national	-
SK	Trichlorethylene	7.5* μg/l	-	national	-

* 7.5 for Tetrachloroethylene + Trichlorethylene

Significant pressures on the ICPDR GW-bodies

Code of ICPDR GW-body					GWB	-1		
National share of ICPDR GW-body (nationally aggregated part)					AT-1,	DE-1		
	Status			types	Risk pressure ty			oes
Significant Pressures for Groundwater	20 Chemical Yes/-		21 Quantity Yes/-		2019-2 Chemical Yes/-		>2027 Quantity Yes/-	
	AT C	DE	AT	DE	AT	DE	AT	DE
Point sources	-					-		
Leakages from contaminated sites								
Leakages from waste disposal sites (landfill and agricultural waste disposal)								
Leakages associated with oil industry infrastructure								
Mine water discharges								
Discharges to ground such as disposal of contaminated water to soak ways								
Other relevant point sources (specify below)								
Diffuse Sources	-					•		
due to agricultural activities								
due to non-sewered population								
Urban land use								
Other significant diffuse pressures (specify below)								
Water abstractions				-				•
Abstractions for agriculture								
Abstractions for public water supply								
Abstractions by industry								
IPPC activities								
Non-IPPC activities								
Abstractions by quarries/open cast coal sites								
Other major abstractions (specify below)								
Artificial recharge				-			•	•
Discharges to groundwater for artificial recharge purposes								
Returns of groundwater to GWB from which it was abstracted (e.g. for sand and gravel washing)								

Mine water rebound				
Other major recharges (specify below)				
Other significant pressures	-	-	-	-
Saltwater intrusion				
Other intrusion (specify below)				
Description of other significant pressures than those selected above.				

Code of ICPDR GW-body					GWB-	-2				
National share of ICPDR GW-body (nationally aggregated part))				BG-2, RO-2					
	Sta		essure ty 021	pes	Risk pressure types 2019 → 2027					
Significant Pressures for Groundwater		Chemical Yes/-Quantity Yes/-BGROBG				mical es/-	Qua	ntity s/-		
	BG				BG	RO	BG	RC		
Point sources		-				-				
Leakages from contaminated sites										
Leakages from waste disposal sites (landfill and agricultural waste disposal)										
Leakages associated with oil industry infrastructure										
Mine water discharges										
Discharges to ground such as disposal of contaminated water										
to soak ways										
Other relevant point sources (specify below)										
Diffuse Sources		-				-				
due to agricultural activities										
due to non-sewered population										
Urban land use										
Other significant diffuse pressures (specify below)										
Water abstractions				-				-		
Abstractions for agriculture										
Abstractions for public water supply										
Abstractions by industry										
IPPC activities										
Non-IPPC activities										
Abstractions by quarries/open cast coal sites										
Other major abstractions (specify below)			_							
Artificial recharge				-				-		
Discharges to groundwater for artificial recharge purposes										
Returns of groundwater to GWB from which it was abstracted										
(e.g. for sand and gravel washing)										
Mine water rebound										
Other major recharges (specify below)										
Other significant pressures		-		-		-		-		
Saltwater intrusion										
Other intrusion (specify below)										
-										
Description of other										
significant pressures than those selected above.										

Code of ICPDR GW-body						GWB-	3				
National share of ICPDR GW-body (nationally aggregated part)						MD-3, RO-3					
	Status pressure types 2021				/pes	Ris	sure ty > 2027				
Significant Pressures for Groundwater	Chemical Quantity Yes/- Yes/-					emical Quanti es/- Yes/-					
	MD				RO	MD	RO	MD	RO		
Point sources		-					-				
Leakages from contaminated sites											
Leakages from waste disposal sites (landfill and agricultural waste disposal)											
Leakages associated with oil industry infrastructure								-			
Mine water discharges								-			
Discharges to ground such as disposal of contaminated water to soak ways											
Other relevant point sources (specify below)											
Diffuse Sources		-					-				
due to agricultural activities											
due to non-sewered population											
Urban land use								-			
Other significant diffuse pressures (specify below)											
Water abstractions							-		-		
Abstractions for agriculture											
Abstractions for public water supply Abstractions by industry											
IPPC activities											
Non-IPPC activities											
Abstractions by quarries/open cast coal sites Other major abstractions (specify below)											
Artificial recharge									-		
Discharges to groundwater for artificial recharge purposes											
Returns of groundwater to GWB from which it was abstracted (e.g. for sand and gravel washing)											
Mine water rebound											
Other major recharges (specify below)											
Other significant pressures		-			•		-		-		
Saltwater intrusion											
Other intrusion (specify below)											
Description of other significant pressures than those selected above.											

Code of ICPDR GW-body					GWB	-4		
National share of ICPDR GW-body (nationally aggregated part)			BG-4, RO-4					
	Stat		essure t 2021	ypes	Ri	sure types > 2027	3	
Significant Pressures for Groundwater		Chemical Yes/-Quantity Yes/-				mical es/-	Quantity Yes/-	
	BG RO BG RO				BG	RO risk	BG R	20
Point sources		-		<u> </u>		-		
Leakages from contaminated sites								
Leakages from waste disposal sites (landfill and agricultural waste disposal)								
Leakages associated with oil industry infrastructure								
Mine water discharges								
Discharges to ground such as disposal of contaminated water to soak ways								
Other relevant point sources (specify below)								
Diffuse Sources	- Yes				-	Yes		
due to agricultural activities		Х				X		
due to non-sewered population	X			X				
Urban land use								
Other significant diffuse pressures (specify below)								
Water abstractions				-			-	
Abstractions for agriculture								
Abstractions for public water supply								
Abstractions by industry								
IPPC activities								
Non-IPPC activities								
Abstractions by quarries/open cast coal sites								
Other major abstractions (specify below)						_		
Artificial recharge				-			-	
Discharges to groundwater for artificial recharge purposes								
Returns of groundwater to GWB from which it was abstracted (e.g. for sand and gravel washing)								
Mine water rebound								
Other major recharges (specify below)								
Other significant pressures							-	
Saltwater intrusion								
Other intrusion (specify below)								
Description of other significant pressures than those selected above.								

Code of ICPDR GW-body					GWB-	-5				
National share of ICPDR GW-body (nationally aggregated part))				HU-5,	RO-5				
	Stat		ssure t <u>y</u>)21	ypes	Ris		sure types →2027			
Significant Pressures for Groundwater		mical es/-		ntity es/-		Chemical Yes/-				n tity es/-
	HU	RO	HU	RO	HU risk	RO risk	HU risk	RO		
Point sources	poor	poor	poor		IISK	-	HSK			
Leakages from contaminated sites										
Leakages from waste disposal sites (landfill and agricultural waste disposal)										
Leakages associated with oil industry infrastructure										
Mine water discharges										
Discharges to ground such as disposal of contaminated water to soak ways										
Other relevant point sources (specify below)										
Diffuse Sources	Yes	Yes			Yes	Yes				
due to agricultural activities	X	Х			X	X				
due to non-sewered population	X	Х			X	X				
Urban land use	X				X					
Other significant diffuse pressures (specify below)										
Water abstractions			Yes	-			Yes	-		
Abstractions for agriculture										
Abstractions for public water supply										
Abstractions by industry										
IPPC activities										
Non-IPPC activities										
Abstractions by quarries/open cast coal sites										
Other major abstractions (specify below)										
Artificial recharge				-				-		
Discharges to groundwater for artificial recharge purposes										
Returns of groundwater to GWB from which it was abstracted (e.g. for sand and gravel washing)										
Mine water rebound										
Other major recharges (specify below)										
Other significant pressures		-		-	ļļ	-		-		
Saltwater intrusion					ļļ					
Other intrusion (specify below)										
Description of other HU: indirect water abstraction significant pressures than those selected above.	n: inland	d exces	s water	drainaç	ge					

Code of ICPDR GW-body					GWB-	-6		
National share of ICPDR GW-body (nationally aggregated part)					HU-6,	RO-6		
	Sta		ssure ty)21	/pes	Ris	pes		
Significant Pressures for Groundwater	Chemical Quantity Yes/- Yes/-					mical es/-		antity es/-
	HU	RO	HU	RO	HU	RO	HU	RO
Point sources		-				-		
Leakages from contaminated sites								
Leakages from waste disposal sites (landfill and agricultural waste disposal)								
Leakages associated with oil industry infrastructure								
Mine water discharges								
Discharges to ground such as disposal of contaminated water								
to soak ways								
Other relevant point sources (specify below)								
Diffuse Sources		-						
due to agricultural activities								
due to non-sewered population								
Urban land use								
Other significant diffuse pressures (specify below)								
Water abstractions				-				
Abstractions for agriculture								
Abstractions for public water supply								
Abstractions by industry								
IPPC activities								
Non-IPPC activities								
Abstractions by quarries/open cast coal sites								
Other major abstractions (specify below)								
Artificial recharge				-				-
Discharges to groundwater for artificial recharge purposes								
Returns of groundwater to GWB from which it was abstracted								
(e.g. for sand and gravel washing)								
Mine water rebound								
Other major recharges (specify below)								
Other significant pressures		-		-		-		-
Saltwater intrusion								
Other intrusion (specify below)								
Description of other significant pressures than								
those selected above.								

Code of ICPDR GW-body							GWE	8-7						
National share of ICPDR GW-body (nationally aggregated p	art)						HU-7	7, RC)-7, F	rs-7				
	S	itatus	pres 202		ype	S	Risk pressure types 2019→2027							
Significant Pressures for Groundwater		h emic Yes/-	al	Yes/-						emi Yes/			uant Yes/	
	HU	RO	RS	HU	RO	RS poor	HU risk	RO	RS	HU risk	RO	RS risk		
Point sources	poor	-	-	poor		μουι	115K	-	-	TISK		TISK		
Leakages from contaminated sites														
Leakages from waste disposal sites (landfill and agricultural waste disposal)														
Leakages associated with oil industry infrastructure														
Mine water discharges														
Discharges to ground such as disposal of contaminated water to soak ways														
Other relevant point sources (specify below)														
Diffuse Sources	Yes	-	-				Yes	-	•					
due to agricultural activities	Х						х							
due to non-sewered population	Х						х							
Urban land use	х						х							
Other significant diffuse pressures (specify below)														
Water abstractions				Yes	-	Yes				Yes	-	Yes		
Abstractions for agriculture				х		X				Х		X		
Abstractions for public water supply				X		X				X		X		
Abstractions by industry						X						X		
IPPC activities														
Non-IPPC activities														
Abstractions by quarries/open cast coal sites														
Other major abstractions (specify below)														
Artificial recharge					-						-			
Discharges to groundwater for artificial recharge purposes														
Returns of groundwater to GWB from which it was abstracted (e.g. for sand and gravel washing)														
Mine water rebound														
Other major recharges (specify below)														
Other significant pressures		-						-			-			
Saltwater intrusion														
Other intrusion (specify below)				<u> </u>										
	1			1			I			1				
Description of other significant pressures than those selected above.														

Code of ICPDR GW-body						GWB	-8			
National share of ICPDR GW-body (nationally aggregated part)						HU-8,	SK-8			
		Status pressure types 2021						sure types ➔2027		
Significant Pressures for Groundwater		Chemical Qua Yes/- Ye				Chemical Yes/-		Quantit Yes/-		
		SK	(HU	SK	HU	SK risk	HU	Sk	
Point sources		-			1	•	Yes			
Leakages from contaminated sites							Х			
Leakages from waste disposal sites (landfill and agricultural waste disposal)										
Leakages associated with oil industry infrastructure										
Mine water discharges										
Discharges to ground such as disposal of contaminated water to soak ways										
Other relevant point sources (specify below)							Х			
Diffuse Sources		-					Yes			
due to agricultural activities							Х			
due to non-sewered population				X						
Urban land use										
Other significant diffuse pressures (specify below)										
Water abstractions					-				_	
Abstractions for agriculture									-	
Abstractions for public water supply										
Abstractions by industry										
IPPC activities										
Non-IPPC activities										
Abstractions by quarries/open cast coal sites										
Other major abstractions (specify below)										
Artificial recharge					-				-	
Discharges to groundwater for artificial recharge purposes										
Returns of groundwater to GWB from which it was abstracted										
(e.g. for sand and gravel washing) Mine water rebound										
Other major recharges (specify below)										
Other significant pressures		_			_		_			
Saltwater intrusion		-			-		-		-	
Other intrusion (specify below)										
						1				
Description of other SK: discharges from wastewa significant pressures than those selected above.	ter trea	itment	t pla	ant (ind	direct p	ressure)			

	GWB	8-9				
	HU-9,	HU-9, SK-9				
e types	Risk pressure type 2019→2027					
Quantity Yes/-Chemical Yes/-				n tity s/-		
J SK or	HU risk	SK risk	HU risk	SK		
		-				
	Yes	Yes				
	х	X				
	х					
s -			Yes	-		
-				-		
			-			
-						
			1			
	• •	(indirect pressure er drainage	(indirect pressure) er drainage	,		

Code of ICPDR GW-body					GWB-	10		
National share of ICPDR GW-body (nationally aggregated part)					HU-10), SK-1(0	
	ļ	2	essure t			2019-	sure types →2027	
Significant Pressures for Groundwater		mical es/-		ntity es/-		nical s/-	:	ntity es/-
	HU	SK	HU	SK	HU risk	SK	HU	SK risk
Point sources		-		·	Yes	-		
Leakages from contaminated sites								
Leakages from waste disposal sites (landfill and agricultural waste disposal)								
Leakages associated with oil industry infrastructure						•		
Mine water discharges								
Discharges to ground such as disposal of contaminated water to soak ways						•		
Other relevant point sources (specify below)					X	•		
Diffuse Sources	-				•	•		
due to agricultural activities								
due to non-sewered population								
Urban land use								
Other significant diffuse pressures (specify below)								
Water abstractions				-				Yes
Abstractions for agriculture								X
Abstractions for public water supply								Х
Abstractions by industry								Х
IPPC activities								
Non-IPPC activities								
Abstractions by quarries/open cast coal sites								
Other major abstractions (specify below)								
Artificial recharge								
Discharges to groundwater for artificial recharge purposes								
Returns of groundwater to GWB from which it was abstracted								
(e.g. for sand and gravel washing)								
Mine water rebound								
Other major recharges (specify below)								
Other significant pressures		•		-		•		-
Saltwater intrusion								
Other intrusion (specify below)								
Description of other HU: unknown pollution source	, monit	oring r	equired					
significant pressures than		v						
those selected above.								

Code of ICPDR GW-body						GWB-	-11			
National share of ICPDR GW-body (nationally aggregated part)						HU-11	1, SK-1 ⁻	1		
	Status pressure types 2021					Risk pressure types 2019→2027				
Significant Pressures for Groundwater	ChemicalQuantityYes/-Yes/-					m ical es/-		n tity es/-		
	HU	S	SK	HU	SK	HU	SK	HU	SK	
Point sources		-					-			
Leakages from contaminated sites										
Leakages from waste disposal sites (landfill and agricultural										
waste disposal)										
Leakages associated with oil industry infrastructure										
Mine water discharges										
Discharges to ground such as disposal of contaminated water										
to soak ways										
Other relevant point sources (specify below)										
Diffuse Sources		-					-			
due to agricultural activities										
due to non-sewered population										
Urban land use										
Other significant diffuse pressures (specify below)										
Water abstractions					-				-	
Abstractions for agriculture										
Abstractions for public water supply										
Abstractions by industry										
IPPC activities										
Non-IPPC activities										
Abstractions by quarries/open cast coal sites										
Other major abstractions (specify below)										
Artificial recharge					-				-	
Discharges to groundwater for artificial recharge purposes										
Returns of groundwater to GWB from which it was abstracted (e.g. for sand and gravel washing)										
Mine water rebound										
Other major recharges (specify below)										
Other significant pressures		-			-		-		-	
Saltwater intrusion										
Other intrusion (specify below)										
Description of other significant pressures than										
those selected above.										

Code of ICPDR GW-body					GWB	-12		
National share of ICPDR GW-body (nationally aggregated part)					HU-12	2, SK-12	2	
	Sta		ssure t 021	ypes	Ris	sure tyµ ∋ 2027	oes	
Significant Pressures for Groundwater				antity es/-		mical es/-	Quantit Yes/-	
	HU	SK poor	HU	SK	HU	SK risk	HU	SK
Point sources		-		1		-		
Leakages from contaminated sites								
Leakages from waste disposal sites (landfill and agricultural waste disposal)								
Leakages associated with oil industry infrastructure								
Mine water discharges								
Discharges to ground such as disposal of contaminated water to soak ways								
Other relevant point sources (specify below)								
Diffuse Sources		Yes				Yes		
due to agricultural activities		Х				Х		
due to non-sewered population		X						
Urban land use								
Other significant diffuse pressures (specify below)		Х						
Water abstractions								-
Abstractions for agriculture				•				
Abstractions for public water supply								
Abstractions by industry								
IPPC activities								
Non-IPPC activities								
Abstractions by quarries/open cast coal sites								
Other major abstractions (specify below)								
Artificial recharge								
Discharges to groundwater for artificial recharge purposes								
Returns of groundwater to GWB from which it was abstracted								
(e.g. for sand and gravel washing)								
Mine water rebound								
Other major recharges (specify below)								
Other significant pressures		-		-		-		•
Saltwater intrusion								
Other intrusion (specify below)			1					
Description of otherSK: other anthropogenic presssignificant pressures thanthose selected above.	sure - u	inknow	n					

Groundwater measures

The overview table indicates the status of implementation of all key measures in the following way:

MC	Measure implementation Completed by end of 2020
	Implementation of measure is estimated to be completed by the end of 2020
МО	Measure implementation On-going after the end of 2020
	(Involving administrative acts, diffuse pollution, advisory services, research etc.)
РО	Construction Planning On-going after the end of 2020
	Planning of construction measure is on-going.
	(Involving construction or building works)
СО	Construction On-going after the end of 2020
	Construction of measure is on-going.
	(Involving construction or building works)
MP	Measure implementation Not Started by the end of 2020
	Implementation of measure is planned
MN	Measure implementation Not Started by the end of 2020

The detailed tables provide more details on particular measures in each relevant GWB:

- description of the measure,
- responsible authority,
- quantitative information by appropriate indicators (number of measures/projects and costs).

GWBs at poor status in 2021 or at risk in 2027 and the implemented measures

DRBD-GWI	В	GWB-4		GWB-5			GWB-7		GWB-8	GW	/B-9	GW	/B-10	GWB- 12
National pa	art	RO-4	RO-5	HU	J-5	H	J-7	RS-7	SK-8	HU-9	SK-9	HU-10	SK-10	SK-12
Poor status	s (Chem or Quant)	Chem	Chem	Chem	Quant	Chem	Quant	Quant	-	Quant	Chem		-	Chem
Risk (Chem	n or Quant)	Chem	Chem	Chem	Quant	Chem	Quant	Quant	Chem	Chem Quant	Chem	Chem	Quant	Chem
Basic Meas	sures (BM) – Article 11(3)(a)													
BM-01	BathingWater													
BM-02	Birds													
BM-03	DrinkingWater	MO	MO						MO					
BM-04	Seveso													
BM-05	EnvironmentalImpact													
BM-06	SewageSludge													
BM-07	UrbanWasteWater	CO	CO	MO		MO			CO	MO	CO			
BM-08	PlantProtectionProducts			MO		MO			MO		MN			MO
BM-09	Nitrates	MO	MO	MO		MO			MO	MO	MN			MO
BM-10	Habitats													
BM-11	IPPC													
Other Basi	c Measures (OBM) – Article 11(3)(b-l)													
OBM-20	CostRecoveryWaterServices													
OBM-21	EfficientWaterUse													
OBM-22	ProtectionWaterAbstractions			MP		MP						MN		
OBM-23	ControlsWaterAbstraction				MP		MP			MP			MN	
OBM-24	RechargeAugmentationGroundwater													
OBM-25	PointSourceDischarge													
OBM-26	PollutantsDiffuse			MP		MP								
OBM-27	AdverseImpact													
OBM-28	PollutantDirectGroundwater													
OBM-29	SurfacePrioritySubstances													
OBM-30	AccidentalPollution													
Suppleme 11(4)&(5)	ntary Measures (SM) – Article	МО	МО	MP	MP	MP	MP		МО	MP	MN	MN		МО

MC...Measure implementation completed by end of 2020, MO...Measure implementation on-going after the end of 2020, PO...Construction planning on-going after the end of 2020, MN...Measure implementation not started by end 2020, MP...Measure implementation not started by end 2020, implementation not started by end 2020, MP...Measure implementation not started by end 2020, implementation not started by end 2020, MP...Measure implementation not started by end 2020, implementation not started by end 2020, MP...Measure implementation not started by end 2020, implementation not started by end 2020, MP...Measure implementation not started by end 2020, implementation not started by end 2020,

Detailed description of measures

[**BM** = basic measures, **OBM** = other basic measures, **SM** = supplementary measures].

GWB-4: Sarmatian

	G .	Press	ures	Status	s/Risk	Mea		
GWB Code	Size [km²]	Chemical	Quantit y	Chemical	Quantity	Chemical	Quantity	Exemptions
GWB-4 BG-RO	5,412	DS	-	Poor, Risk (RO)	Good	BM, SM	-	2027
MC - Measu	re imple	ementation c	completed	by the end o	of 2020			
MO - Measu RO – Chemi		ementation of	on-going a	fter the end	of 2020			
BM-03 Ensu		e protection	areas for	the drinking	g groundwa	ter abstracti	on (MO)	
according Order 127 water cont	to the wa 8/2011); aminatio	ater legislatic banning me n risk/	on in force asures for	(Water Law some activit	107/1996 m ies and restr	odified and o	completed, GI	e protected are O 930/2005 an r to prevent th
 responsible 		-						
drinking g	roundwa		ons are esta					30/2005, for a order to prever
BM-09 Appl (MO)	ying the	Action Prog	grams (wł	nole territor	y approach)	in accordai	nce to the Nit	rates Directiv
	2.06.201	3 of the Inte	r-ministeri	ial Commissi	ion for the ir	nplementatio	on of the Actio	g with Decisio on Programs fo
		measure – pof the agricult			applied for	the agricultu	re diffuse sou	rces in order t
• responsib	le autho	rity: county	agriculture	e authorities,	local author	ities and farr	ners	
		mation by a nistration term		e indicators	: This meas	ure is applie	d in whole D	obrogea-Litora
SM - Resear transfer/deg				type and qua	antity of pol	lutants in so	il and ground	lwater and th
	migratio	n – the supp						l and tempora undwater statu
		rity : Ministr Institute for H				ests, Nationa	l Administrat	ion "Romania
• quantitati	ve infori	mation by aj	ppropriate	e indicators:	research stu	dy		
PO - Constru	uction m	ieasure plan	ning on-g	oing after th	e end of 202	20		
CO - Constr		f measure o	n-going af	ter the end	of 2020			
<u>RO – Chemi</u>		0						
BM – 07 Cor						_		
• description	n of the	measure – e	xecution o	t the new sev	wage networ	KS		

• responsible authority: local authority

- **quantitative information** construction of collecting systems and improvement of the waste water treatment plant performance
- MN Measure implementation not started by the end of 2020

GWB-5: Mures/Maros

	Size	Press	ures	Statu	s/Risk	Меа	sures	Evenentions
GWB Code	[km²]	Chemical	Quantity	Chemical	Quantity	Chemical	Quantity	Exemptions
GWB-5 HU-RO	7,216	DS	WA	Poor, Risk (RO, HU)	Poor, Risk (HU)	BM, OBM, SM	OBM, SM	2027+ (HU) 2027 (RO)
MC - Measure	impleme	entation comp	pleted by th	e end of 202	0			I
MO - Measure	1 A A A A A A A A A A A A A A A A A A A	entation on-g	oing after tl	he end of 202	20			
<u>RO – Chemica</u> BM-03 Ensur		rotection are	as for the d	rinkina arow	ndwater abst	raction (MO)		
• description to the water	r legislatio	easure: estat	olishment of /ater Law 1	safeguard zo 07/1996 modi	nes and buffe ified and com	r zones ensuri pleted, GD 93		d area accordin rder 1278/2011) ation risk/
 responsible 	e authorit	ty: water auth	orities, local	authorities;				
	r abstracti							, for all drinking water resource
of waters agair	nst pollution of the m	of the Inter-mi on caused by easure – prog	nisterial Con nitrates from	mmission for t agricultural s	the implement sources.	ation of the Ad	tion Programs	for the protectio
 of waters again description effects of the 	nst pollution of the m e agricultu	of the Inter-mi on caused by easure – prog	nisterial Con nitrates from gramme of r	mmission for t agricultural s neasures app	the implement sources. lied for the ag	ation of the Ac	tion Programs	for the protectio
of waters again • description effects of the • responsible	nst pollution of the m e agricultu le authori e informa	of the Inter-mi on caused by easure – prog ure activities ity: county ago ition by appre-	nisterial Con nitrates from gramme of r riculture autl	mmission for t a agricultural s neasures app norities, local a	the implement sources. lied for the ag authorities an	ation of the Ad riculture diffus d farmers	tion Programs	for the protectio der to reduce th
of waters agair • description effects of the • responsibl • quantitative Administrati	nst pollution of the m e agricultu le authori e informa on territor ch study	of the Inter-mi on caused by i easure – prog ure activities ity: county aga ition by appro y. for evaluati	nisterial Con nitrates from gramme of r riculture auth opriate indi on of the	mmission for t agricultural s neasures app norities, local a cators: This	the implement sources. lied for the ag authorities an measure is ap	ation of the Ac riculture diffus d farmers oplied in whole	ction Programs e sources in or e Dobrogea-Litt	g with Decisio for the protectio der to reduce th oral Water Basi dwater and th
of waters agair • description effects of th • responsibl • quantitative Administrati SM - Researd transfer/degra • description	nst pollution of the m e agricultu le authori e informa on territor ch study adation m o of the i	of the Inter-mi on caused by i leasure – prog ure activities ity: county ago ition by approve y. for evaluati lechanisms (i measure: dev	inisterial Con nitrates from gramme of r riculture auth opriate indi on of the MO) velopment c	mmission for t a agricultural s neasures app norities, local a cators: This type and qu of modelling t	the implement sources. lied for the ag authorities an measure is ap antity of po ools for the o	ation of the Ac riculture diffus d farmers oplied in whole Ilutants in so evaluation of	ction Programs te sources in or e Dobrogea-Litt bil and groun spatial and ter	for the protectio der to reduce th oral Water Basi
of waters agair • description effects of th • responsibl • quantitative Administrati SM - Researd transfer/degra • description migration - 1 • responsible	nst pollution of the m e agricultu le authori e information on territor ch study adation m of the in the suppo e authori	of the Inter-mi on caused by i easure – prog ure activities ity: county ag ition by appro- y. for evaluati techanisms (measure: dev rt tool for final	inisterial Con nitrates from gramme of r riculture auth opriate indi opriate indi opriate endi MO) velopment of ising the eva of Environm	mmission for t a agricultural s neasures app norities, local a cators: This type and qu of modelling t iluation metho ent, Waters a	the implement sources. lied for the ag authorities an measure is an nantity of po ools for the o odology of the	ation of the Ac riculture diffus d farmers oplied in whole llutants in so evaluation of groundwater s	ction Programs te sources in ord e Dobrogea-Litt bil and groun d spatial and ter tatus and of the	for the protectio der to reduce th oral Water Basi dwater and th nporal pollutant
of waters agair • description effects of th • responsibl • quantitative Administrati SM - Researd transfer/degra • description migration - 1 • responsible	nst pollution of the m e agricultu le authori e information territor ch study adation m of the p the suppo e authori titute for h	of the Inter-mi on caused by i easure – prog ure activities ity: county agi ition by appro- y. for evaluati nechanisms (measure: dev rt tool for final ty: Ministry of Hydrology and	nisterial Con nitrates from gramme of r riculture auth opriate indi opriate indi opriate endi MO) velopment of ising the eva of Environm Water Man	mmission for t a agricultural s neasures app norities, local a cators: This type and qu of modelling t iluation metho ent, Waters a agement.	the implement sources. lied for the ag authorities an measure is ap cantity of po ools for the o odology of the and Forests,	ation of the Ac riculture diffus d farmers oplied in whole llutants in so evaluation of groundwater s	ction Programs te sources in ord e Dobrogea-Litt bil and groun d spatial and ter tatus and of the	for the protectio der to reduce th oral Water Basi dwater and th pporal pollutant
of waters agair • description effects of th • responsibl • quantitative Administrati SM - Researd transfer/degra • description migration – f • responsible National Ins • quantitative <u>HU – Chemica</u>	nst pollution of the m e agricultu le authoria e informa on territor ch study adation m n of the n the suppo e authori titute for h e informa	of the Inter-mi on caused by i easure – prog ure activities ity: county agi ition by appro- y. for evaluati nechanisms (measure: dev rt tool for final ty: Ministry of Hydrology and	nisterial Con nitrates from gramme of r riculture auth opriate indi opriate indi opriate endi MO) velopment of ising the eva of Environm Water Man	mmission for t a agricultural s neasures app norities, local a cators: This type and qu of modelling t iluation metho ent, Waters a agement.	the implement sources. lied for the ag authorities an measure is ap cantity of po ools for the o odology of the and Forests,	ation of the Ac riculture diffus d farmers oplied in whole llutants in so evaluation of groundwater s	ction Programs te sources in ord e Dobrogea-Litt bil and groun d spatial and ter tatus and of the	for the protectio der to reduce th oral Water Basi dwater and th pporal pollutant
of waters agair • description effects of th • responsibl • quantitative Administrati SM - Researd transfer/degra • description migration – i • responsible National Ins • quantitative <u>HU – Chemica</u> BM-07	nst pollution of the m e agricultu le authori e informa on territor ch study adation m the suppo e authori titute for H e informa al:	of the Inter-mi on caused by the easure – prog ure activities ity: county aguition by appro- y. for evaluati measure: dev rt tool for final ity: Ministry of Hydrology and tion by appro-	inisterial Con nitrates from gramme of r riculture auth opriate indi MO) velopment of ising the eva of Environm Water Man opriate india	mmission for t a agricultural s neasures app norities, local a cators: This type and qu of modelling t iluation metho ent, Waters a agement.	the implement sources. lied for the ag authorities an measure is ap cantity of po ools for the o odology of the and Forests,	ation of the Ac riculture diffus d farmers oplied in whole llutants in so evaluation of groundwater s	ction Programs te sources in ord e Dobrogea-Litt bil and groun d spatial and ter status and of the	for the protectic der to reduce th oral Water Bas dwater and th pporal pollutant
of waters agair • description effects of the • responsibl • quantitative Administrati SM - Researd transfer/degra • description migration – 1 • responsible National Ins	nst pollution of the m e agricultu le authori e informa on territor ch study adation m n of the n the suppo e authori titute for H e informa al: n of the m	of the Inter-mi on caused by i leasure – prog ure activities ity: county agi ition by appro- y. for evaluati nechanisms (i measure: dev rt tool for final ity: Ministry of Hydrology and tion by appro- easure: BM0	nisterial Con nitrates from gramme of r riculture auth opriate indi on of the MO) velopment c ising the eva of Environm Water Man opriate india	mmission for t a agricultural s neasures app norities, local a cators: This type and qu of modelling t iluation metho ent, Waters a agement.	the implement sources. lied for the ag authorities an measure is ap cantity of po ools for the o odology of the and Forests,	ation of the Ac riculture diffus d farmers oplied in whole llutants in so evaluation of groundwater s	ction Programs te sources in ord e Dobrogea-Litt bil and groun d spatial and ter status and of the	for the protection der to reduce the oral Water Basi dwater and the apporal pollutant

HU transposed the Urban Waste Water Directive by Gov. decree 25/2002. (II. 27.) on the National Wastewater Collection and Treatment program. The implementation of UWWD is ongoing. In the South Great Plain Region the rate of the settlements connected to the sewage system was 71,9 % in 2019.

BM-08

- description of the measure: BM08
- responsible authority: plant protection authority
- quantitative information by appropriate indicators (number of measures/projects and costs):

Implementation of EU the plant protection action program required by Sustainable Use of Pesticides Directive in the territory of the whole country with special regard to sensitive areas like drinking water protection zones, buffer strips of surface waters, etc. with additional voluntary measures planned under CAP 2021-27.

BM-09

- description of the measure: BM09
- responsible authority: authorities for soil protection and for water protection
- quantitative information by appropriate indicators (number of measures/projects and costs):

HU transposed the ND by the Gov. Decree No. 27/2006. (II.7.) on the protection of waters against pollution caused by nitrates of agricultural sources. Designation of nitrate vulnerable zones was revised in 2013 (NVZ; ~69% of Hungary). The Code of Good Agricultural Practice (GAP) is obligatory on NVZ's. Outside the NVZ's, the agri environmental measures assist the implementation of GAP on a voluntary basis.

RO – Quantity:

OBM-23

- description of the measure In Romania, the measures (basic and other basic measures) are taken for all groundwater bodies (even if they are in good status), to prevent deterioration of groundwater bodies status but also taking into consideration the precautionary principle.
- responsible authority: water authorities, local authorities
- quantitative information by appropriate indicators: according with the Water Law 107/1996, Annex 3 (C) as amended, the groundwater abstraction shall be authorized and controlled, and the water abstraction register is regularly update.

HU - Quantity:

SM: measure for the inland excess water retention

OBM-23: development of water information system concerning the electronic-authorisation; New regulation on water management elaborated to take action against the installation and use of illegal agricultural water wells.

PO - Construction measure planning on-going after the end of 2020

CO - Construction of measure on-going after the end of 2020

RO – Chemical:

BM-07 Construction of collecting system (CO)

- description of the measure execution of the new sewage networks
- responsible authority: local authority
- quantitative information construction of collecting systems and improvement of the waste water treatment plant performance
- •

MN - Measure implementation not started by the end of 2020

HU – Chemical:

OBM-22

- description of the measure: OBM22 protection of water abstractions
- responsible authority: authorities for water protection and water management

• quantitative information by appropriate indicators (number of measures/projects and costs):

The protection of drinking water abstraction sites is regulated by 123/1997. (VII. 18.) Gov. Decree, acc. to which protection zones of sensitive abstraction sites have to be revised every 10 years. Revision includes i. a. the review of potential pollution sources and activities in the protection zones and their impacts on water quality and taking restrictive measures or additional monitoring if necessary. In addition to the implementation of the risk-based approach in the protection zones of drinking water abstraction acc. to the new Drinking Water Directive, other basic measures to support water protective agricultural practices, e. g. forestation, special practices for areas prone to erosion, excess water or droughts, will be introduced and subsidised by CAP 2021-27.

OBM-26

- description of the measure: OBM26 poll. diffuse
- responsible authority: authorities for soil protection and for water protection
- quantitative information by appropriate indicators (number of measures/projects and costs):

New compulsory and voluntary measures to reduce erosion and prevent nutrient (esp. phosphorus) inputs into waters in CAP 2021-27 are under elaboration.

SM - Supplementary Measures

- description of the measure: SM education
- responsible authority: Ministry of Agriculture, farmers' advisors
- quantitative information by appropriate indicators (number of measures/projects and costs):

Expand farmers' advisory system and introduce consultation for farmers on water protecting agricultural practices in the fields of sustainable nutrient and pesticide management, water saving cultivation practices, irrigation, natural water retention, erosion to assist to a successful application and use of CAP subsidies, both compulsory and voluntary.

- description of the measure: SM research, development kiegészítő intézkedés
- responsible authority: Ministry of Interior, Ministry of Agriculture
- quantitative information by appropriate indicators (number of measures/projects and costs):

The request "Strengthening water monitoring in Hungary" (21HU07) for support under the first round of the Technical Support Instrument (TSI 2021) has been preliminarily accepted for funding by DG Reform. The project aims at ensuring high-quality monitoring and processing of water related information, integration of monitoring activity of the aquatic environment (soil, ecosystem, water, air) between sectors and organizations and closing the gap between research to practical application. (Planned budget: 650 000€, expected end: 2022)

GWB Code Size		Pressures		Status	s/Risk	Меа	Exampliana				
GWB Code	[km²]	Chemical	Quantity	Chemical	Quantity	Chemical	Quantity	Exemptions			
GWB-7 HU-RO-RS	28,959	DS	WA	Poor, Risk (HU)	Poor, Risk (HU, RS*)	BM, OBM, SM	OBM, SM	2027+ (HU) YYYY (RS*)			
HU - Quantity SM: measures		CAP in order t	to protect the	e groundwate	r resources (C	CAP planning i	s ongoing)				
OBM-23: deve management e	•				•		ation; New regi water wells.	ulation on wate			

GWB-7: Upper Pannonian – Lower Pleistocene / Vojvodina / Duna-Tisza köze deli r.

HU – Chemistry

BM-07

- description of the measure: BM07
- responsible authority: local governments
- quantitative information by appropriate indicators (number of measures/projects and costs):

HU transposed the Urban Waste Water Directive by Gov. decree 25/2002. (II. 27.) on the National Wastewater Collection and Treatment program. The implementation of UWWD is ongoing. In the South Great Plain Region the rate of the settlements connected to the sewage system was 71,9 % in 2019.

BM-08

- description of the measure: BM08
- responsible authority: plant protection authority
- quantitative information by appropriate indicators (number of measures/projects and costs):

Implementation of EU the plant protection action program required by Sustainable Use of Pesticides Directive in the territory of the whole country with special regard to sensitive areas like drinking water protection zones, buffer strips of surface waters, etc. with additional voluntary measures planned under CAP 2021-27.

BM-09

- description of the measure: BM09
- · responsible authority: authorities for soil protection and for water protection
- quantitative information by appropriate indicators (number of measures/projects and costs):

HU transposed the ND by the Gov. Decree No. 27/2006. (II.7.) on the protection of waters against pollution caused by nitrates of agricultural sources. Designation of nitrate vulnerable zones was revised in 2013 (NVZ; ~69% of Hungary). The Code of Good Agricultural Practice (GAP) is obligatory on NVZ's. Outside the NVZ's, the agri environmental measures assist the implementation of GAP on a voluntary basis.

PO - Construction measure planning on-going after the end of 2020

CO - Construction of measure on-going after the end of 2020

MN - Measure implementation not started by the end of 2020

HU – Chemistry

OBM-22

- description of the measure: OBM22 protection of water abstractions
- · responsible authority: authorities for water protection and water management
- quantitative information by appropriate indicators (number of measures/projects and costs):

The protection of drinking water abstraction sites is regulated by 123/1997. (VII. 18.) Gov. Decree, acc. to which protection zones of sensitive abstraction sites have to be revised every 10 years. Revision includes i. a. the review of potential pollution sources and activities in the protection zones and their impacts on water quality and taking restrictive measures or additional monitoring if necessary. In addition to the implementation of the risk-based approach in the protection zones of drinking water abstraction acc. to the new Drinking Water Directive, other basic measures to support water protective agricultural practices, e. g. forestation, special practices for areas prone to erosion, excess water or droughts, will be introduced and subsidised by CAP 2021-27.

OBM-26

- description of the measure: OBM26 poll. diffuse
- responsible authority: authorities for soil protection and for water protection
- quantitative information by appropriate indicators (number of measures/projects and costs):

New compulsory and voluntary measures to reduce erosion and prevent nutrient (esp. phosphorus) inputs into waters in CAP 2021-27 are under elaboration.

SM - Supplementary Measures

- description of the measure: SM education
- responsible authority: Ministry of Agriculture, farmers' advisors
- quantitative information by appropriate indicators (number of measures/projects and costs):

Expand farmers' advisory system and introduce consultation for farmers on water protecting agricultural practices in the fields of sustainable nutrient and pesticide management, water saving cultivation practices, irrigation, natural water retention, erosion to assist to a successful application and use of CAP subsidies, both compulsory and voluntary.

- description of the measure: SM research, development
- responsible authority: Ministry of Interior, Ministry of Agriculture
- quantitative information by appropriate indicators (number of measures/projects and costs):

The request "Strengthening water monitoring in Hungary" (21HU07) for support under the first round of the Technical Support Instrument (TSI 2021) has been preliminarily accepted for funding by DG Reform. The project aims at ensuring high-quality monitoring and processing of water related information, integration of monitoring activity of the aquatic environment (soil, ecosystem, water, air) between sectors and organizations and closing the gap between research to practical application. (Planned budget: 650 000€, expected end: 2022)

Note

* The National Plan for the Republic of Serbia is still in progress (available as draft), therefore, the year for exemptions as well as information on measures for the national part of GWB 7 which is in quantitative risk cannot be provided before the deadline of data collection of this overview. The information will be provided, when the Plan is officially adopted.

SWB-8: Podu	najska B	asin, Zitny (Ostrov / Sz	igetköz, Ha	nság-Rábca			
	Size	Press	ures	Status	s/Risk	Меа	sures	Fromations
GWB Code	[km²]	Chemical	Quantity	Chemical	Quantity	Chemical	Quantity	Exemptions
GWB-8 HU-SK	3,338	PS, DS		Risk (SK)	Good	BM, SM		
MC - Measure	impleme	ntation comp	pleted by th	e end of 2020)			
MO - Measure	impleme	ntation on-g	oing after tl	ne end of 202	0			
<u>SK – Chemica</u>	<u>ıl</u>							
BM-03 Drinkir	ng water p	protected are	as (DWPA)					
		easure: Reco water source:		afeguard zone	and restrictio	ns in the DWF	PA, if they are su	fficient to protect
responsible Republic	e authorit	t y: Slovak En	vironmental	Inspection, M	linistry of Agri	culture and R	ural Developme	ent of the Slovak
• quantitative	e informa	tion by appro	opriate indi	cators: DWPA	A Žitný ostrov	(area 1200 kn	n²)	
BM-08 Plant p	rotection	products						
and Council of this Direc apply meas	Directive tive into n ure conce	2009/128/EC national Law a	concerning and National ing of plant (the reduction action progra	of pesticides	pollution from	agriculture and e use of pestici	pean Parliament implementation des. Continue to n No. 1107/2009
 responsible of the Slova 			ntrol and Te	sting Institute i	n Agriculture,	Ministry of Ag	riculture and Ru	ral Development

quantitative information by appropriate indicators:

BM-09 Nitrates Directive

- description of the measure: Continuing in application of requirements of the Council Directive 91/676/EEC concerning the protection of waters against pollution caused by nitrates from agricultural sources (Nitrates Directive). The Nitrates Directive requires the fulfilment of the task of the Action Programme, which is established in the SR by Act no. 136/2000 Coll. on fertilizers.
- **responsible authority:** Ministry of Agriculture and Rural Development of the Slovak Republic, Central Control and Testing Institute in Agriculture
- quantitative information by appropriate indicators: This measure is applied in groundwater body's vulnerable areas (1694 km²) according to Government Regulation no. 174/2017 Coll. (will be revised in 2021/2022).

SM - Supplementary Measures

- Remediation of contaminated sites continuing in remediation and monitoring of environmental burdens at priority sites listed in the Informational System of Environmental Burdens according to the State Remediation Programme of Environmental Burdens (2022–2027).
- Continuing in application of measures according to Rural Development Programme for SR (2014–2020) extended to 2022, when the new Common Agricultural Policy (CAP) enters into force. The measures include the advisory services for agriculture, support for organic farming, managed agricultural and forestry activities in NATURA 2000 areas, etc.
- Research, improvement of knowledge base reducing uncertainty support of research project, support of purpose monitoring to increase information about groundwater contamination and sources of contamination.
- Strengthening control activities (personnel ad financial) including increasing the number of controls.
- Education and training in the field of water protection for the professional and public (including school).

PO - Construction measure planning on-going after the end of 2020

CO - Construction of measure on-going after the end of 2020

SK – Chemical

BM-07 Measures to reduce pollution from urban areas

- description of the measure: Construction or upgrades of sewerage systems and wastewater treatment plants according
 to Plan of Public Sewerage System Development for years 2021 2027. Measures for sewerage systems (collecting
 systems for urban waste water) to comply article 3 of Council Directive 91/271/EEC and measures for urban waste water
 treatment to comply with article 4 and article 5 of Council Directive 91/271/EEC in ground water bodies.
- responsible authority: Ministry of Environment of the Slovak Republic
- quantitative information by appropriate indicators: measures for agglomerations >2000 PE: sewerage systems in 5 agglomerations and 3 WWTP need to be (re)constructed or upgraded; measures in DWPA Žitný ostrov for agglomerations <2000 PE: 41 agglomerations sewerage systems and 5 agglomerations sewerage systems and WWTP.

GWB-9: Bodrog

	Size	Press	ures	Statu	s/Risk	Меа	sures	Exemptions	
GWB Code	[km²]	Chemical	Quantity	Chemical	Quantity	Chemical	Quantity	Exemptions	
GWB-9 HU-SK	2,220	DS		Poor (SK), Risk (HU, SK)	Poor, Risk (HU)	BM, SM	SM, OBM	2027+	
MC - Measure	impleme	ntation comp	oleted by th	e end of 202	0				
and Treatment BM-09 • description • responsible • quantitative HU transposed nitrates of agric Code of Good assist the imple <u>HU – Quantity</u> SM: measure f	d of the m e authorit e informa the Urba program. of the m e authorit e informa the ND b cultural so Agricultur ementatio	easure: BM0 y: local gover tion by appro- an Waste Wat The impleme easure: BM0 y: authorities tion by appro- by the Gov. De- surces. Design al Practice (G n of GAP on a and excess wa of water inform	7 nments opriate india er Directive ntation of U opriate india priate india cree No. 27 nation of nitra AP) is obliga voluntary b ter retention	cators (numb by Gov. decr WWD is ongo ection and for cators (numb 7/2006. (II.7.) of ate vulnerable atory on NVZ': basis.	ee of measur ee 25/2002. (ing. water protecti eer of measur on the protecti e zones was re s. Outside the the electronic	II. 27.) on the ion res/projects a ion of waters a evised in 2013 NVZ's, the ac	National Waste and costs): against pollution 6 (NVZ; ~69% of gri environmenta	f Hungary) . The al measures	
PO - Construc	ction mea	sure plannin	g on-going	after the end	l of 2020				
CO - Construct SK – Chemica BM-07 Measure	<u>ll</u>	-			20				
to Plan of F systems for	Public Sev urban wa comply w	werage Syste ste water) to c vith article 4 ar	m Developr comply articl nd article 5 o	ment for years e 3 of Council of Council Dire	s 2021–2027. Directive 91/2 ective 91/271/	. Measures fo 271/EEC and	or sewerage sys	plants according stems (collecting ban waste water	
• quantitative	e informa		priate indi		•	in 2 agglomer	rations (>2000 F	PE) and 1 WWTP	
	l <u>l</u> rotection of the m	products easure: Conti	nue to meet	the requireme	ents arising fro			opean Parliament d implementation	

of this Directive into national Law and National action programme to achieve sustainable use of pesticides. Continue to apply measure concerning the placing of plant protection products on the market according to Regulation No. 1107/2009 of the EU Parliament and of the Council.

- **responsible authority:** Central Control and Testing Institute in Agriculture, Ministry of Agriculture and Rural Development of the Slovak Republic
- quantitative information by appropriate indicators:

BM-09 Nitrates Directive

- description of the measure: Continuing in application of requirements of the Council Directive 91/676/EEC concerning
 the protection of waters against pollution caused by nitrates from agricultural sources (Nitrates Directive). The Nitrates
 Directive requires the fulfilment of the task of the Action Programme, which is established in the SR by Act no. 136/2000
 Coll. on fertilizers.
- **responsible authority:** Ministry of Agriculture and Rural Development of the Slovak Republic, Central Control and Testing Institute in Agriculture
- quantitative information by appropriate indicators: This measure is applied in groundwater body's vulnerable areas (1293 km²) according to Government Regulation no. 174/2017Coll. (will be revised in 2021/2022).

SM - Supplementary Measures

- Remediation of contaminated sites continuing in remediation and monitoring of environmental burdens at priority sites listed in the Informational System of Environmental Burdens according to the State Remediation Programme of Environmental Burdens (2022 - 2027).
- Continuing in application of measures according to Rural Development Programme for SR (2014 -2020) extended to 2022, when the new Common Agricultural Policy (CAP) enters into force. The measures include the advisory services for agriculture, support for organic farming, managed agricultural and forestry activities in NATURA 2000 areas, etc.
- Research, improvement of knowledge base reducing uncertainty support of research project, support of purpose monitoring to increase information about groundwater contamination and sources of contamination.
- Strengthening control activities (personnel ad financial) including increasing the number of controls.
- Education and training in the field of water protection for the professional and public (including school).

GWB-10: Slovensky kras /Aggtelek-hsg

	Size	Pressures		Status	s/Risk	Меа	Fromations	
GWB Code	[km ²]	Chemical	Quantity	Chemical	Quantity	Chemical	Quantity	Exemptions
GWB-10 HU-SK	1,091	PS	WA	Risk (HU)	Risk (SK)	OBM, SM	OBM	-
MC - Measure	impleme	entation comp	oleted by th	e end of 2020)			
MO - Measure	impleme	entation on-g	oing after tl	he end of 202	0			
PO - Construe	ction mea	sure plannin	g on-going	after the end	of 2020			
CO - Constru	ction of n	neasure on-g	oing after tl	he end of 202	20			
		-	_					
MN – Measure		entation not s	started by t	he end of 202	20			
HU - Chemica	<u>1</u>							
OBM-22 descriptior 	of the m		122 protoct	tion of water a	hetractions			
 description responsible 			•			ment		
 quantitative 		-			•		nd costs).	
sources and a monitoring if ne abstraction acc	ctivities in ecessary. c. to the no n, special	the protection In addition to t ew Drinking W	zones and t the implement ater Directiv	their impacts of ntation of the r ve, other basic	on water quali isk-based app measures to	ty and taking r proach in the p support water	estrictive measi rotection zones protective agrid	potential pollutio ures or addition of drinking wat cultural practice and subsidised b
SM								
 description 	n of the m	easure: SM -	- research, c	levelopment				
 responsible 	e authori	t y: Ministry of	Interior, Min	istry of Agricu	lture			
quantitative			•	•			•	
Instrument (TS monitoring and	SI 2021) h d process ater, air) b	as been prelin ing of water re between secto	ninarily acce elated inform ors and orga	pted for fundi nation, integra	ng by DG Ref ation of monite	form. The proje oring activity o	ect aims at ens	echnical Suppo uring high-quali nvironment (so
<u>SK – Quantity</u>	Jei. 000 00	JUE, EXPECIEU	,					
ODM 2 0	<u>L</u>		,					
 description 	<u>/</u> ols of Wa n of the r	terAbstractio neasure: Cor	o ns htrols and po	eriodically rev	iewed abstra	ctions of grou	ndwater in acc	ordance with th
 description national Act responsible 	/ ols of Wa n of the r no. 364/2 e authori	terAbstractio neasure: Cor 2004 Coll. on v	o ns htrols and pe waters. er managem			Ū.	ndwater in acc of the Slovak	ordance with t

quantitative information by appropriate indicators: water law permits

GWB-12: Ipel / Ipoly

	Size	Pressures		Status	s/Risk	Меа	Fromations	
GWB Code	[km²]	Chemical	Quantity	Chemical	Quantity	Chemical	Quantity	Exemptions
GWB-12 HU-SK	344	DS	WA	Poor, Risk (SK)	Good	BM, SM		2027+
MC - Measure	impleme	entation comp	pleted by th	e end of 2020)			
MO - Measure	impleme	entation on-g	oing after t	he end of 202	0			
SK – Chemica		jinanon on g	onig alter a		•			
BM-08 Plant p	protection	n products						
and Counci of this Direct apply meas	I Directive ctive into r ure conce	2009/128/EC national Law a	concerning and National ing of plant	the reduction action progra	of pesticides mme to achie	pollution from	agriculture and e use of pestic	opean Parliamen d implementatio ides. Continue to on No. 1107/2009
				stina Institute i	n Aariculture	Ministry of Ag	riculture and Ru	ural Developmer
of the Slova					in , ignocatoro,	initial y of Ag		
 quantitativ 	e informa	tion by appro	opriate indi	cators:				
BM-09 Nitrate	-							
Directive re Coll. on fert	quires the ilizers. e authorit	fulfilment of t	he task of th	e Action Prog	ramme, whic	h is establishe	d in the SR by	ve). The Nitrate Act no. 136/200
(173 km²) a	e informa ccording t	ition by appr o o Governmen			neasure is ap		ndwater body's	
(173 km²) a SM - Supplen	e informa ccording t nentary M	i tion by appr o o Governmen easures	Regulation	no. 174/2017	neasure is ar Coll. (will be	oplied in grour revised in 202	ndwater body's 1/2022).	vulnerable area
(173 km²) a SM - Supplen • Continuing when the n	e informa ccording t nentary M in applicat iew Comn	tion by appro o Governmen easures ion of measure non Agricultur	t Regulation es according al Policy (C	no. 174/2017 to Rural Deve CAP) enters ir	neasure is an Coll. (will be elopment Prog to force. The	oplied in grour revised in 202 gramme for SF e measures in	ndwater body's 1/2022). 8 (2014–2020) e	vulnerable area extended to 2022 sory services fo
 (173 km²) a SM - Supplen Continuing when the n agriculture, Research, 	e informa ccording t nentary M in applicat ew Comn support fo improvem	tion by appro o Governmen leasures ion of measure non Agricultur or organic farm ent of knowle	t Regulation es according al Policy (C ning, manag adge base r	no. 174/2017 g to Rural Deve CAP) enters in ed agricultural reducing unce	neasure is an Coll. (will be elopment Prog to force. The and forestry rtainty - sup	oplied in grour revised in 202 gramme for SF e measures in activities in N	ndwater body's 1/2022). 2 (2014–2020) e clude the advi ATURA 2000 ar ch project, su	vulnerable area extended to 2022 sory services for reas, etc.
 (173 km²) a SM - Supplen Continuing when the n agriculture, Research, monitoring the second secon	e informa ccording t nentary M in applicat new Comn support fo improvem to increase	tion by appro o Governmen easures ion of measure non Agricultur or organic farm ent of knowle e information a	t Regulation es according ral Policy (C ning, manag adge base r about ground	no. 174/2017 to Rural Deve CAP) enters in ed agricultural reducing unce dwater contan	elopment Prog to force. The and forestry rtainty - sup	pplied in grour revised in 202 gramme for SF e measures in activities in N/ port of resear	ndwater body's 1/2022). R (2014–2020) e Iclude the advi ATURA 2000 ar Ch project, sup tamination.	vulnerable area extended to 2022 sory services for reas, etc.
 (173 km²) a SM - Supplen Continuing when the n agriculture, Research, monitoring the strengthenia 	e informa ccording t nentary M in applicat iew Comn support fo improvem to increase ng control	tion by appro o Governmen leasures ion of measure non Agricultur or organic farm ent of knowle e information a l activities (per	t Regulation es according ral Policy (C ning, manag edge base r about ground rsonnel ad fi	no. 174/2017 to Rural Deve CAP) enters ir ed agricultural reducing unce dwater contan nancial) includ	neasure is an Coll. (will be elopment Prog to force. The and forestry rtainty - sup nination and s ling increasin	pplied in grour revised in 202 gramme for SF e measures in activities in N port of reseau cources of con	dwater body's 1/2022). (2014–2020) e clude the advi ATURA 2000 ar ch project, sup tamination. of controls.	vulnerable area extended to 2022 sory services for reas, etc.
 (173 km²) a SM - Supplen Continuing when the n agriculture, Research, monitoring to Strengtheni Education a 	e informa ccording t nentary M in applicat ew Comn support fo improvem to increase ng control and training	tion by appro o Governmen leasures ion of measure non Agricultur or organic farm ent of knowle e information a l activities (per	t Regulation es according ral Policy (C ning, manag edge base r about ground rsonnel ad fi f water prote	no. 174/2017 to Rural Deve CAP) enters in ed agricultural reducing unce dwater contan nancial) incluce ection for the p	neasure is ap Coll. (will be elopment Prog to force. The and forestry rtainty - sup nination and s ling increasin professional a	pplied in grour revised in 202 gramme for SF e measures in activities in N/ port of resear cources of con g the number	dwater body's 1/2022). (2014–2020) e clude the advi ATURA 2000 ar ch project, sup tamination. of controls.	vulnerable area extended to 2022 sory services for reas, etc.
 (173 km²) a SM - Supplen Continuing when the n agriculture, Research, monitoring to Strengtheni Education a PO - Constru 	e informa ccording t nentary M in applicat ew Comn support fo improvem to increase ng control and training ction mea	tion by appro o Governmen easures ion of measure non Agricultur or organic farm ent of knowle e information a l activities (per g in the field o	t Regulation ral Policy (C ning, manag edge base r about ground rsonnel ad fi f water prote g on-going	no. 174/2017 to Rural Deve CAP) enters in ed agricultural reducing unce dwater contan nancial) incluc ection for the p after the end	elopment Prog to force. The and forestry intainty - sup nination and s ling increasin professional a	pplied in grour revised in 202 gramme for SF e measures in activities in N/ port of resear cources of con g the number	dwater body's 1/2022). (2014–2020) e clude the advi ATURA 2000 ar ch project, sup tamination. of controls.	ontrol and Testin vulnerable area extended to 2022 sory services fo reas, etc. pport of purpos
 (173 km²) a SM - Supplen Continuing when the n agriculture, Research, monitoring f Strengtheni Education a PO - Constru CO - Constru 	e informa ccording t nentary M in applicat ew Comn support fo improvem to increase ng control and training ction mea	tion by approved a constraint of the second	t Regulation es according ral Policy (C ning, manag edge base r about ground rsonnel ad fi f water prote g on-going oing after th	no. 174/2017 to Rural Deve CAP) enters in ed agricultural reducing unce dwater contan nancial) incluc ection for the p after the end he end of 202	elopment Prog to force. The and forestry intainty - sup nination and s ling increasin professional a	pplied in grour revised in 202 gramme for SF e measures in activities in N/ port of resear cources of con g the number	dwater body's 1/2022). (2014–2020) e clude the advi ATURA 2000 ar ch project, sup tamination. of controls.	vulnerable area extended to 2022 sory services fo reas, etc.