

8.1 Introduction

One of the main objectives of TNMN is to produce reliable and consistent trend analysis of concentrations and loads of substances diluted in water or attached to sediments. Load assessment in the Danube River is necessary to estimate the influx of polluting substances to the Black Sea and to provide an information basis for both policy development and assessment.

Within the framework of EU PHARE Project "Transboundary Assessment of Pollution Loads and Trends", a Standard Operational Procedure (SOP) was developed for load assessment. The countries agreed to use this SOP as a common and cost-effective approach for load assessment in the Danube River and its tributaries.

8.2 Description of load assessment procedure

MLIM EG has agreed the following principles for the load assessment procedure:

m load is calculated for the following determinands: BOD₅, inorganic nitrogen, ortho-phosphate-phosphorus, dissolved phosphorus, total phosphorus, suspended solids and - on a discretionary basis - chlorides;

m minimum sampling frequency in sampling sites selected for load calculation is set at 24 per year;

m load calculation is processed according to the procedure recommended by the Project "Transboundary Assessment of Pollution Loads and Trends" (1998). Additionally, countries can calculate annual load by using their national calculation methods, results of which would be presented together with data prepared on the basis of the agreed method;

m countries should select for load assessment those TNMN monitoring sites where valid flow data is available (see Table 8.2.1).

Table 8.2.1: List of TNMN stations selected for load assessment program.

Contry	River	Wa	ter quality monitoring st	ation	Hydrologic	al station
		Contry Code	Location	Distance from the mouth (km)	Location	Distance from the mouth (km)
Germany Germany Austria Austria Czech Republic Czech Republic Slovakia Hungary Hungary	Danube Inn Inn/Salzach Danube Danube Morava Morava/Dyje Danube Danube Danube Danube	D02 D03 D04 A01 A04 CZ01 CZ02 SK01 H03 H05 H08 UD02	Jochenstein Kirchdorf Laufen Jochenstein Wolfsthal Lanzhot Pohansko Bratislava Szob Hercegszántó Tiszasziget	mouth (km) 2204 195 47 2204 1874 79 17 1869 1708 1435 163 1227	Achleiten Oberaudorf Laufen Aschach Hainburg (Danube) Angern (March) Lanzhot Breclav-Ladná Bratislava Nagymaros Mohács Szeged	mouth (km) 2223 211 47 2163 1884 32 79 32,3 1869 1695 1447 174 1247
Croatia Croatia Croatia Slovenia Slovenia Romania Romania Romania Ukraine	Sava Sava Drava Sava Drava Danube Danube Danube Danube	HR02 HR06 HR07 HR08 SI01 SI02 R0 02 R0 02 R0 04 R0 05 UA02	Jesenice Una Jesenovac Zupanja Ormoz Jesenice Pristol-Novo Selo Chiciu-Silistra Reni-Chilia arm Vilkova-Kilia arm	1337 729 525 254 300 729 834 375 132 18	Jesenice Una Jesenovac Zupanja Borl HE Formin Pesnica-Zamusani Catez Sotla -Rakovec Gruia Chiciu Isaccea	729 525 254 325 311 10.1 (to the Drava) 737 8.1 (to the Sotla) 858 379 101

8.3 Monitoring Data 2001

In the second year of the load assessment programme, the agreed requirements on the programme have still not been fully met. Although slight improvements have been observed in the frequency of measurements, several monitoring stations still have lower measurement frequency than the required minimum. Data on dissolved phosphorus are available only for seven monitoring stations, located in Germany, Austria, Slovakia and Slovenia. Thus load of dissolved phosphorus was calculated there and is included in the Tables with results, but is not presented in the charts showing load in the context of the whole river basin.

Table 8.3.1: Number of measurements in TNMN stations selected for assessment of pollution load in 2001.

Contry	River	Location	River				Numbe	r of			
Code			Km	Q	SS	N _{inorg}	P-PO ₄	P _{total}	BOD ₅	CI	P _{diss}
D02	Danube	Jochenstein	2204	365	26	26	26	26	26	26	27
D03	Inn	Kirchdorf	195	357	25	24	24	24	24	25	0
D04	Inn/Salzach	Laufen	47	360	26	26	26	26	26	26	26
A01	Danube	Jochenstein	2204	365	12	12	12	12	12	12	12
A04	Danube	Wolfsthal	1874	365	25	25	25	25	25	25	25
CZ01	Morava	Lanzhot	79	365	12	12	12	12	12	12	0
CZ02	Morava/Dyje	Pohansko	17	365	12	12	12	12	12	12	02
SK01	Danube	Bratislava	1869	365	25	25	25	25	24	25	12
H03	Danube	Szob	1708	365	26	26	26	26	26	26	0
H05	Danube	Hercegszanto	1435	365	23	36	36	36	36	23	0
H08	Tisza	Tiszasziget	163	365	13	26	26	26	26	13	0
HR02	Danube	Borovo	1337	0	26	26	26	26	26	0	0
HR06	Sava	Jesenice/D	729	365	26	26	26	26	26	12	0
HR07	Sava	us Una Jesenovac	525	365	26	26	26	26	26	12	0
HR08	Sava	ds Zupanja	254	365	26	26	26	26	26	12	0
SI01	Drava	Ormoz	300	365	24	24	24	0	24	24	24
SI02	Sava	Jesenice	729	365	24	24	24	0	24	24	24
R002	Danube	Pristol-Novo Selo	834	365	19	21	21	15	20	21	0
R004	Danube	Chiciu-Silistra	375	365	23	23	23	21	20	23	0
R005	Danube	Reni-Chilia arm	132	365	23	23	23	21	23	23	0
UA02	Danube	Vilkov-Kilia arm	18	0	0	0	0	0	0	0	0

The frequency of measurements is crucial for assessment of pollution loads, and Table 8.3.1 shows the number of available data of discharge and selected determinands in 2001. Data from stations Danube-Jochenstein and Sava-Jesenice are included in the list by two neighbouring countries. Those from Danube-Jochenstein were combined in the process of load calculation, but calculation of load in location Sava-Jesenice was done separately from the data measured by Slovenia and Croatia. The reason for this is significant differences in the case of some determinands due to the use of differing methods of measurement. The harmonisation of the methods at bilateral level is in process.

8.4 Calculation Procedure

The loads have been calculated in accordance with the following procedure:

m In the case of several sampling sites in the profile, average concentration at the station is calculated for each sampling day;

m In the case of values "below limit of detection", value of limit of detection is used in the further calculation;

m The average monthly concentrations are calculated according to the formula:

where

C_m average monthly concentrations

- C_i concentrations on the sampling days of each month
- Q_i discharges on the sampling days of each month;

m The monthly load is calculated by using the formula:

L m [tones] = C_m [mg.l⁻¹] . Qm [m³.s⁻¹] . days (m) . 0,0864

where

```
L_{m} monthly load Q_{m} average monthly discharge
```

- If discharges are available only for the sampling days, Qm is calculated from those discharges.

- In the case of months without measured values the average of the products Cm.Qm in the months with sampling days is used;

m The annual load is calculated as the sum of the monthly loads:

La [tones] =
$$\sum_{m=1}^{12} L_m$$
 [tones]

8.5 Results

The mean annual concentrations and annual loads of suspended solids, inorganic nitrogen, orthophosphate-phosphorus, total phosphorus, BOD5, chlorides and – where available – dissolved phosphorus are presented in Tables 8.5.1 to 8.5.4, separately for monitoring stations located on the Danube River and monitoring stations located on tributaries. Explanation of terms used in Tables 8.5.1 - 8.5.4 is to be found in the following legend.

Term used	Explanation
Station Code	TNMN monitoring station code
Profile	location of sampling site in profile (L-left, M-middle, R-right)
River Name	name of river
Location	name of monitoring site
River km	distance to mouth of the river
Q _a	mean annual discharge in the year 2001
c _{mean}	arithmetical mean of the concentrations in the year 2001
Annual Load	annual load of given determinand in the year 2001

The mean annual discharge and annual loads of suspended solids, inorganic N, ortho-phosphate P, total P, BOD5 and chlorides are presented on the plots, prepared separately for monitoring stations located on the Danube River and stations located on its primary tributaries (Figures 8.5.1 – 8.5.12). Looking at the Figures with calculated values of annual load, it is necessary to restate that in accordance with results of QualcoDanube proficiency testing comparability of BOD data analysed by laboratories included in the TNMN network is still not satisfactory.

Figures 8.5.1 – 8.5.12 show that the spatial pattern of annual load along the Danube River is similar to the previous year. In the Danube River itself, load of organic pollution and nutrients generally increases from the upper to the lower part of the river. An annual load of suspended solids decreases in the middle part of the Danube River due to reduced flow velocity through damming, and reaches its maximum at the beginning of the lower Danube River section (at monitoring station RO02). Similarly, the highest annual load values of BOD₅, ortho-phosphate-P and total P are observed there.

In the case of tributaries, as in year 2001 discharge data have been available from the most downstream station on Sava River (HR08 – Savads. Zupanja), and in the Figures load from this location is shown instead of Sava-Jesenice. Therefore while in the previous year the Tisza River showed the highest load among the tributaries, in 2001 the highest load of inorganic N, total P and BOD₅ is observed in Sava River. Regarding ortho-phosphate phosphorus and suspended solids, the highest contribution to the load of the Danube comes from the Tisza River.

able 8.5.1 Station	: Mean Profil	annual conc e River	centrations in mon Location	itoring River	stations Q _a	selected fc	or load ass	essment on c _{mean}	Danube	River.		
Code		Name		Km		Suspended	Inorganic	Ortho-	Total	BODE	Chlorides	Phosphorus
						Solids	Nitrogen	Phosphate	Phos-	n		dissolved
								Phosphorus	phorus			
					(m ³ .s ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.1 ⁻¹)	(mg.1 ⁻¹)	(mg.l ⁻¹)
D02+A01	M	Danube	Jochenstein	2204	1627.6	53	2.25	0.032	0.09	2.0	15	0.036
A04	R	Danube	Wolfsthal	1874	2218.2	25	2.20	0.029	0.07	1.3	16	0.039
SK01	Μ	Danube	Bratislava	1869	2231.3	27	2.32	0.042	0.10	2.0	17	0.066
H03	LMR	Danube	Szob	1708	2382.3	22	2.00	0.063	0.13	4.4	22	
H05	Μ	Danube	Hercegszántó	1435	2432.5	24	2.07	0.053	0.15	3.5	18	
R002	LMR	Danube	Pristol-Novo Selo	834	5421.8	45	1.61	0.100	0.11	3.4	20	
R004	LMR	Danube	Chiciu-Silistra	375	5919.4	15	2.35	0.029	0.05	1.9	31	
R005	LMR	Danube	Reni-Chilia arm	132	6304.3	19	2.22	0.028	0.06	1.5	32	
[able 8.5.2	:: Mean	annual conc	entrations in mon	itoring	stations	selected fc	or load ass	essment on	tributar	ies.		
Station	Profile	River	Location	River	Qa			c _{mean}				
Code		Name		Кш		Suspended	Inorganic	Ortho-	Total	BODE	Chlorides	Phosphorus
						4	,			,		

ĥ	2
•	Janube
6	nL
	assessment o
	load
ç	tor
	selected
•	stations
•	monitoring
•	
•	concentrations
-	annual
	Mean
,	
1	8.5
	Table

	Phosphorus	dissolved		(mg.l ⁻¹)		0.022				0.023	0.074			
	Chlorides			(mg.l ⁻¹)	4	7	25	44	31	4	9	7	8	15
	BOD ₅			(mg.l ⁻¹)	1.1	2.2	3.7	3.9	1.8	2.2	2.8	2.2	2.5	2.5
	Total	Phos-	phorus	(mg.l ⁻¹)	0.09	0.06	0.22	0.27	0.23			0.17	0.23	0.22
cmean	Ortho-	Phosphate	Phosphorus	(mg.l ⁻¹)	0.011	0.018	0.131	0.218	0.063	0.012	0.056	0.026	0.040	0.016
	Inorganic	Nitrogen		(mg.l ⁻¹)	0.57	0.72	3.17	3.55	1.21	1.02	1.44	1.60	1.01	1.68
	Suspended	Solids		(mg.l ⁻¹)	57	28	22	17	113	11	31	13	12	38
Qa				(m ³ .s ⁻¹)	320.3	252.6	67.2	32.1	921.4	294.4	276.8	188.2	585.0	1102.4
River Km					195	47	79	17	163	300	729	729	525	254
Location					Kirchdorf	Laufen	Lanzhot	Pohansko	Tiszasziget	Ormoz	Jesenice	Jesenice	us. Una Jasenovac	ds. Zupanja
River Name					Inn	Inn/Salzach	Morava	Morava/Dyje	Tisza	Drava	Sava	Sava	Sava	Sava
Profile					Μ	Γ	M	Γ	LMR	Γ	R	Γ	Γ	R
Station					D03	D04	CZ01	CZ02	H08	SI01	SI02	HR06	HR07	HR08

			hosphorus	lissolved		x10 ³ tonns)		8.	7.7
			Chlorides F	Q		(x10 ⁶ tonns) (0.7	1.1 2
			BOD ₅	1		(x10 ³ tonns)		106	89
			Total	Phos-	phorus	(x10 ³ tonns)		5.9	5.2
	Annual Load		Ortho-	Phosphate	Phosphorus	(x10 ³ tonns)		1.6	2.0
			Inorganic	Nitrogen		(x10 ³ tonns)		116	152
			Suspended	Solids		(x10 ⁶ tonns)		4.1	1.9
סומרוחו	River	Km						2204	1874
	Location							Jochenstein	Wolfsthal
ar road	River	Name						Danube	Danube
n111177 • C •	Profile							M	R
	Station	Code					D02	+A01	A04

4.4

1.1 1.6 1.4 3.4 5.7 6.3

145 336 268 584 378 303

7.3 9.6 12.1 18.4 9.9 13.1

159 149 157 286 429 437

2.3 1.7 2.0 8.0 3.7 3.7

> 834 375 132

Pristol-Novo Selo

Hercegszántó

Chiciu-Silistra Reni-Chilia arm

Danube

R005

Danube Danube Danube

> LMR LMR LMR

R002 R004

1435

1869 1708

Bratislava Szob

Danube Danube

 \geq

LMR

SK01 H03 H05

Μ

3.0

4.0 16.9 5.3 5.2

Table 8.5.3: Annual load in selected monitoring stations on Danube River.

Table 8.5.4: Annual load in selected monitoring stations on tributaries.

	Phosphorus dissolved	(x10 ³ tonns)		0.16				0.22	0.52			
	Chlorides	(x10 ⁶ tonns)	0.03	0.05	0.05	0.04	0.83	0.04	0.04	0.02	0.13	0.42
	BOD ₅	(x10 ³ tonns)	11.0	17.1	7.7	4.2	48.8	19.6	25.2	11.4	40.7	90.9
	Total Phos- phorus	(x10 ³ tonns)	1.62	0.64	0.49	0.27	6.47			0.94	3.87	7.65
Annual Load	Ortho- Phosphate Phosphorus	(x10 ³ tonns)	0.10	0.13	0.27	0.19	1.60	0.12	0.38	0.15	0.63	0.61
	Inorganic Nitrogen	(x10 ³ tonns)	5.1	5.3	6.7	4.0	35.4	9.1	11.8	8.2	18.8	60.4
	Suspended Solids	(x10 ⁶ tonns)	1.17	0.37	0.05	0.02	3.59	0.12	0.53	0.14	0.21	1.63
River Km			195	47	79	17	163	300	729	729	525	254
Location			Kirchdorf	Laufen	Lanzhot	Pohansko	Tiszasziget	Ormoz	Jesenice	Jesenice	us. Una Jasenovac	ds. Zupanja
River			Inn	Inn/Salzach	Morava	Morava/Dyje	Tisza	Drava	Sava	Sava	Sava	Sava
Profile			Μ	Γ	Μ	Γ	LMR	Γ	R	L	Γ	R
Station			D03	D04	CZ01	CZ02	H08	SI01	SI02	HR06	HR07	HR08

Figure 8.5.1: Annual load of suspended solids at monitoring stations along the Danube River.

Figure 8.5.2: Annual load of suspended solids at monitoring stations on tributaries.

Figure 8.5.3: Annual load of inorganic nitrogen at monitoring stations along the Danube River.

Figure 8.5.4: Annual load of inorganic nitrogen at monitoring stations on tributaries.

Figure 8.5.5: Annual load of ortho-phosphate-P at monitoring stations along the Danube River.

Figure 8.5.6: Annual load of ortho-phosphate-P at monitoring stations on tributaries.

Figure 8.5.7: Annual load of total phosphorus at monitoring stations along the Danube River.

Figure 8.5.8: Annual load of total phosphorus at monitoring stations on tributaries.

Figure 8.5.9: Annual load of BOD_5 at monitoring stations along the Danube River.

Figure 8.5.10: Annual load of BOD_5 at monitoring stations on tributaries.

Figure 8.5.11: Annual load of chlorides at monitoring stations along the Danube River.

Figure 8.5.12: Annual load of chlorides at monitoring stations on tributaries.