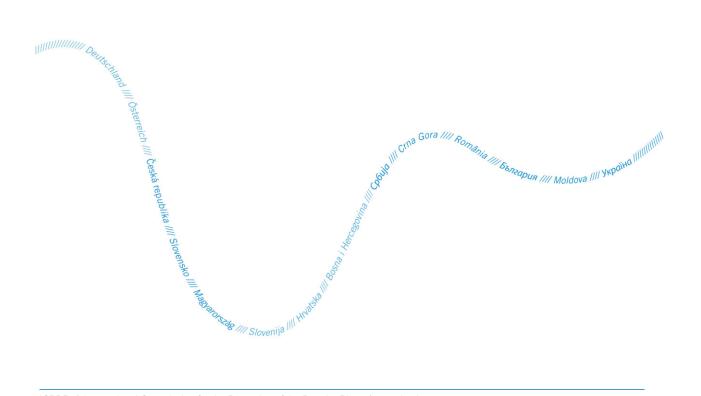


ANNEX

DRAFT May 2015


List of Annexes

- Annex 1: Competent Authorities and Weblinks to National RBM Plans in the DRBD
- Annex 2: Update on DRBD Surface Water Typology
- Annex 3: Urban Waste Water Inventories
- Annex 4: Industrial Emission Inventories
- Annex 5: Future Infrastructure Projects
- Annex 6: Groundwater
- Annex 7: Detailed Results Status Assessment Surface Water Bodies
- Annex 8: Inventory of Protected Areas
- Annex 9: Economic Analysis
- Annex 10: Progress in Urban Wastewater and industrial Sectors
- Annex 11: Overview on Agricultural Measures
- Annex 12: Progress on Measures Addressing Hydromorphological Alterations
- Annex 13: Ecological Prioritisation Approach River and Habitat Continuity Restoration
- Annex 14: Detailed list on Hydrological Alterations
- Annex 15: Financing the Joint Programme of Measures

Competent authorities and Weblinks to National RBM Plans in the DRB

Annex 1 DRAFT DRBM Plan – Update 2015

Austria

Federal Ministry for Agriculture, Forestry, Environment and Water Management Stubenring 1 A-1012 Wien Web link: www.bmlfuw.gv.at Web link national RBM Plan: http://wisa.bmlfuw.gv.at

Bosnia and Herzegovina

Ministry of Foreign Trade and Economic Relations Musala 9 BiH-71000 Sarajevo *Web link:* <u>www.mvteo.gov.ba</u> Federal Ministry of Agriculture, Water Management and Forestry Marka Marulica 2BiH-71000 Sarajevo *Web link:* <u>www.fmpvs.gov.ba</u> Ministry of Agriculture, Forestry and Water Management of Republika Srpska Trg Republike Srpske 1BiH-78000 Banja Luka *Web link:* <u>www.vladars.net</u>

Bulgaria

Ministry of Environment and Water 22 Maria-Luisa Blvd. BG-1000 Sofia *Web link:* <u>www.moew.government.bg</u> Danube River Basin Directorate 60, Chataldzha str. BG -5800 Pleven *Web link:* <u>www.dunavbd.org</u> *Web link national RBM Plan:* http://dunavbd.org/index.php?x=204

Croatia

Ministry of Agriculture Ulica grada Vukovara 78 HR-10000 Zagreb *Web link:* http://www.mps.hr

Czech Republic

Ministry of Environment Vrsovická 65 CZ-10010 Praha 10 *Web link:* <u>www.mzp.cz</u> Ministry of Agriculture Tesnov 17 CZ-117 05 Praha 1 *Web link:* <u>www.mze.cz</u>

Germany

Bavarian State Ministry for Environment and Consumer Protection Rosenkavalierplatz 2 D-81925 München *Web link:* <u>www.stmuv.bayern.de/</u> Ministry for Environment Baden-Württemberg Kernerplatz 10 D-70182 Stuttgart *Web link:* <u>www.um.baden-wuerttemberg.de/</u> Hungary Ministry of Interior Jozsef Attila u. 2-4 H-1051 Budapest Web link: www.kormany.hu/hu/belugyminiszterium Web link national RBM Plan: www.euvki.hu; www.vizeink.hu

Moldova

Ministry of Ecology, Construction and Territorial Development 9 Cosmonautilor St. MD-2005 Chisinau *Web link:* currently no web link available.

Montenegro

Ministry of Agriculture, Forestry and Water Management Rimski Trg 46 ME – 81000 Podgorica Web link: www.minpolj.gov.me

Romania

Ministry of Environment 12 Libertatii Blvd., Sector 5 RO-04129 Bucharest Web link: www.ape-paduri.ro

National Administration "Apele Romane" 6 Edgar Quinet St., Sector 1 RO-010018 Bucharest Web link: <u>http://www.rowater.ro</u>

Serbia

Ministry of Agriculture and Environmental Protection Nemanjina 22-26 RS-11000 Beograd *Web link:* <u>http://www.mpzzs.gov.rs/</u>

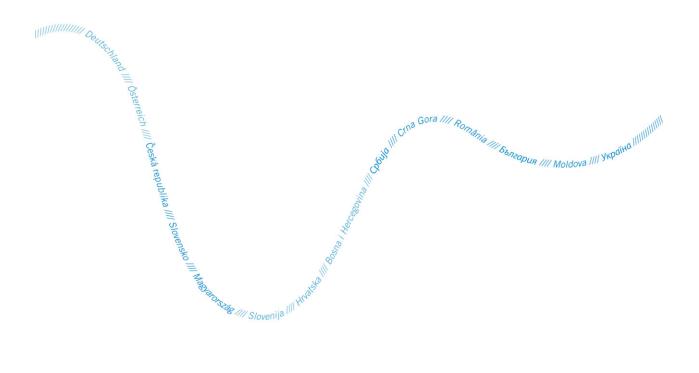
Slovak Republic

Ministry of the Environment Námestie L' Stúra 1 SK-81235 Bratislava Web link: www.enviro.gov.sk; www.vuvh.sk/rsv2

Slovenia

Ministry of the Environment and Spatial Planning Dunajska 48 SI-1000 Ljubljana Web link: www.mop.gov.si/en/ Web link national RBM Plan: http://www.mop.gov.si/si/delovna_podrocja/voda/nacrt_u pravljanja_voda/nuv_besedilni_in_kartografski_del/ Web link PoMs: http://www.mop.gov.si/si/delovna_podrocja/voda/nacrt_u pravljanja_voda/#c18223

Ukraine


Ministry for Environmental Protection of Ukraine 35, Uritskogo str. UA-03035 Kyiv State Committee of Ukraine for Water Management 8, Chervonoarmiyska Str. UA-01601 Kyiv *Web link:* www.menr.gov.ua

Internationale Kommission zum Schutz der Donau

Annex 2 **DRAFT DRBM Plan – Update 2015**

Typology of the Danube River

The typology of the Danube River has been developed in a joint activity by the countries sharing the Danube River for the first DBA in 2004. The Danube typology therefore constitutes a harmonised system used by all these countries. The Danube typology was based on a combination of abiotic factors of System A and System B. The most important factors are ecoregion, mean water slope, substratum composition, geomorphology and water temperature.

Ten Danube section types were identified (see Figure 1). The morphological and habitat characteristics are outlined for each section type. In order to ensure that the Danube section types are biologically meaningful, these were validated with biological data collected during the first Joint Danube Survey in 2001. Further details including definition of individual section types are given in the DBA 2013.

Figure 1: Danube section types; the dividing lines refer only to the Danube River itself.

Typology of the tributaries in the Danube River Basin District

The typologies of the Danube tributaries were developed by the countries individually. Stream types relevant on transboundary water courses were bilaterally harmonised with the neighbours. An overview of national surface water typologies is given in the DBA 2013.

Most countries in the DRB (Germany, Austria, Czech Republic, Hungary, Slovenia, Bosnia and Herzegovina, Serbia, Croatia, Romania, Bulgaria) have applied System B (Annex II, 1.2.1 WFD) for establishing their river typology. Only Slovakia and Ukraine have used System A. Countries using System B have used a number of optional factors to further describe the river types. River discharge, mean substratum composition and mean water slope are most frequently used.

Table 1 gives an overview of the class boundaries used by the DRB countries for the common descriptors: altitude, catchment area and geology.

Descriptor	Country				Cla	ass bo	oundar	ies					
	Germany	0-200 m			200-	-800m				> 800 t	n		
	Austria	0-200 m		200-5	00 m	50	00-800 t	n	800-1	600 m	> 16	600 m	
	Czech R.	0-200 m		200-5	00 m		500	-800 m		>	800 m		
	Slovak R.	0-200 m		200-5	00 m		500	-800 m		>	800 m		
	Hungary	0-200 m		200-350	0 m			>	• 350 m				
	Croatia	0-200 m		200) - 600 m				600-8	300 m			
	Slovenia			no alti	itude class	ses wer	e used i	n river typ					
Altitude	Serbia	0-200 m		200-5	00 m				> 500 r	n			
	Romania	0-200 m		200-500 m					> 500 r	n			
	Bulgaria	0-200 m			20	0-800 r	n			> 800	m		
	Bosnia and Herzegovina	< 200 m		200-500 m			500-800	m		> 800	m		
	Moldova	0-200 m			20	0-800n	n			> 800	m		
	Montenegro			200 0001									
	Ukraine	< 200 m		200-50			n			500-80	00 m		
	Germany	10-100 km ²		100-	-1000 km ²			1000)-10,000	km²		10,000 km²	
	Austria	10-100 km ²	100-	0-500 km ² 500-1000 l			12	1000-2	2500 km ²	2	250 10,000		
	Czech R.				Ν	Not appli	ed anymo	re					
	Slovak R. ¹		10-10	00 km²			100	- 1 000 k	4 km² 100		- 10000	km ²	
	Hungary	10-200 km ²		100-2000 km ²			100	0-12,000 k	.m² >),000 kn	n²	
	Croatia	10-100 km ²			100-100	00 km²		10	000-10,0	000 km²		10,000 km²	
Catchment	Slovenia	$<10 \text{ km}^2$ 10)-100 kr	m²	100-10	000 km²		1000-10	,000 km²	>	> 10,000 l	km²	
area	Serbia	10-100 km²		100-1000 km²			100	00-4000 kn	n ² 4000-10,000		km²	> 10,000 km²	
	Romania	10-100 km ²		100-1000 km²			100	0-10,000 kn	n ² > 10		0,000 km²		
	Bulgaria	10-100 km ²		100-	-1000 km	2				0,000 km²			
	Bosnia and Herzegovina	<100 km²		100-1000 km ²		1000-4000		-4000 km²	000 km ² 10,		> 10,000 km ²		
	Moldova	10-100 km ²		100)-1000 km²	2]		1000-10,000 kn		1 ²	> 10,0)00 km²	
	Montenegro												
	Ukraine	10-100 km²		100	0-1000 km²			1000-10,000	km ²	>	10,000 ki	m ²	
	Germany	siliceous		ca	lcareous				org	ganic			
	Austria	cristalline		tertiary ar	nd quaterna	ary sedi	ments	flysc	h and he	lveticum		estone olomite	
	Czech R.	crysta	alline a	and vulca	anites			sandstone	s, muds	tones and o	quatern	ary	
	Slovak R.					mi	ixed						
	Hungary	siliceou	15			calca	reous			orgai	nic		
	Croatia	siliceous		c	calcareous	s		organi	c		nixed		
Geology	Slovenia	siliceou	15			c	alcareou	s		f	lysch ²		
Geology	Serbia	siliceou	15			c	alcareou	s		с	rganic		
	Romania	siliceou	15			c	alcareou	s		с	rganic		
	Bulgaria	siliceous			calcareous	s		organi	c	1	nixed		
	Bosnia and Herzegovina	siliceou	15			c	alcareou	s		c	rganic		
	Moldova	siliceou	15			c	alcareou	careous			organic		
	Montenegro												
	Ukraine	siliceou	15			alcareou	organic						

Table 1: Obligatory factors used in river typologies (Systems A and B)

ICPDR / International Commission for the Protection of the Danube River / www.icpdr.org

¹ The river typology is not based on strict boundaries of catchment area. Rivers > $1,000 \text{ km}^2$ make up individual types; definition of types for smaller rivers is based on ecoregion, altitude and geology.

² not for the tributaries in the Danube river basin district

Lakes

In total, four lakes were reported at the DRB overview level: Neusiedler/Fertö-to (Austria/Hungary), Balaton (Hungary), Ialpug (Ukraine) and Razim/Razelm (Romania). Information is provided in Table 2. Further details of the lake typology are given in the DBA 2013.

Lakes > 100 km ²	Country(s)	Type of lake	Ecoregion	Altitude class	Depth class	Size class	Geology
Neusiedler See / Fertő-tó	AT, HU	large shallow, salinic steppe- type lake	11	lowland: < 200 m	< 3 m	> 100 km²	calcareous
Lake Balaton	HU	very large shallow steppe-type lake	11	lowland: < 200 m	3-15 m	> 100 km²	calcareous
Ozero Ialpug	UA	n.a.	12	n.a.	n.a.	> 100 km ²	n.a.
Lacul Razim / Razelm	RO	lowland, very shallow, calcareous, very large lake type	12	lowland: < 200 m	< 3 m	> 100 km²	calcareous

Table 2: Lakes selected for the basin-wide overview and their types

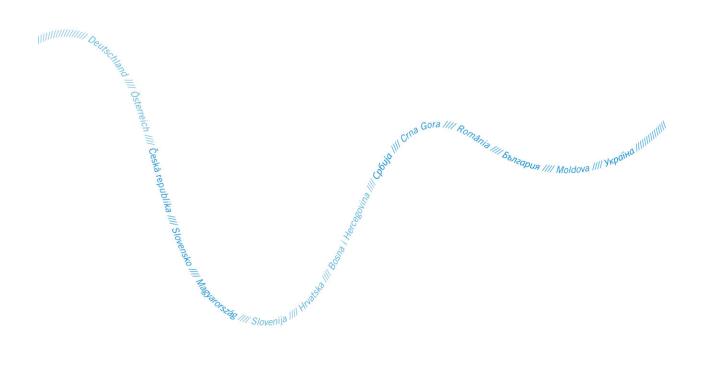
Transitional and coastal waters

The transitional and coastal waters of the DRB are located in Romania and Ukraine. For the development of the typology of transitional and coastal waters System B was applied. The transitional waters are differentiated into lacustrine and marine transitional waters (Table 3).

Table 3: Types of transitional waters in the DRBD

Transitional water	Туре
Lake Sinoe	Transitional lacustrine type
Black Sea coastal waters (northern sector) – Chilia mouth to Periboina	Transitional marine type

Two coastal water types have been defined for the coastal waters in the DRBD (Table 4). Further information can be obtained from the DBA 2013.


Table 4: Types of coastal waters in the Danube River Basin District

Coastal water	Туре
Periboina – Singol Cape	Sandy shallow coastal water
Singol Cape – Vama veche	Mixed shallow coastal water

Urban waste water inventories

Urban waste water data were collected from the countries in order to assess the point source organic substances and nutrient emissions via urban waste water discharges for the reference year 2011/2012. Summarizing tables of the data submitted are presented in the followings.

Table 1: Agglomerations and population equivalents (PE)	

			l l	Number of agglom	erations		Generated load (PE)								
Co	untry	Total	Collected and treated	Addressed through IAS	Collected and not treated	Not collected and not treated	Total	Collected and treatment	Addressed through IAS	Collected and no treatment	Not collected and not treated				
1	DE	718	718	-	-	-	13,629,528	13,611,069	18,459	-	-				
2	AT	608	608	-	-	-	13,137,976	13,043,568	94,408	-	-				
3	CZ	185	181	4	-	-	2,395,708	2,395,708 2,261,870 118,431		14,907	499				
4	SK	344	274	70	-	-	4,874,448	4,151,739	648,449	52,120	22,140				
5	HU	511	508	3	-	-	11,698,020	9,957,010	1,741,010	-	-				
6	SI	138	97	16	17	8	1,313,346	873,980	111,831	173,827	153,708				
7	HR	152	27	-	61	64	2,916,445	1,432,588	-	479,485	1,004,372				
8	BiH	241	6	-	79	156	2,045,920	299,475	-	590,254	1,156,191				
9	RS	241	36	205	-	-	4,581,832	697,132	737,987	3,119,028	27,685				
10	RO	1,852	403	102	142	1,205	21,411,700	10,554,488	179,939	1,913,212	8,764,060				
11	BG	138	29	2	50	57	4,049,697	2,540,998	7,630	522,343	978,726				
12	MD	169	17	3	22	127	899,189			29,017	658,814				
13	UA	315	32	-	7	276	1,952,299	708,743	-	28,346	1,215,209				
	Total	5,612	2,936	405	378	1,893	84,906,108	60,307,375	3,696,469	6,922,356	13,979,908				

Categorisation of agglomerations is based on the highest technical level available.

Table 2: Organic substances (biochemical oxygen demand – BOD, chemical oxygen demand, COD) and nutrient (total nitrogen – TN, total phosphorus - TP) discharges

		BC	DD discharges (t/	/year)	CC	DD discharges (t	/year)	T	N discharges (t/	year)		TP discharges (t	year)
Co	untry	Total	Collected and treated	Collected and not treated	Total	Collected and treated	Collected and not treated	Total	Collected and treated	Collected and not treated	Total	Collected and treated	Collected and not treated
1	DE	4,541	4,541	-	24,019	24,019	-	12,519	12,519 12,519		1,026	1,026	-
2	AT	4,262	4,262	_	26,079	26,079	_	8,453 8,453		_	647	647	-
3	CZ	941	693	248	4,897	4,427	470	1,618	8 1,573		162	155	7
4	SK	3,344	2,816	527	14,248	13,241	1,007	5,139	5,139 4,898		360	335	25
5	HU	5,745	5,745	-	21,606	21,606	-	7,527	7,527	-	879	879	-
6	SI	5,123	1,316	3,807	12,380	5,401	6,979	2,188	1,630	558	390	295	95
7	HR	19,640	9,139	10,501	33,899	14,648	19,251	4,298	2,758	1,540	1,123	764	359
8	BiH	17,114	4,188	12,927	31,500	7,801	23,699	2,752	856	1,896	639	197	442
9	RS	75,444	6,065	69,379	138,450	11,255	127,195	11,665	1,490	10,176	2,418	337	2,081
10	RO	62,278	32,790	29,489	141,770	85,523	56,247	21,509	16,535	4,974	2,472	1,694	778
11	BG	17,838	6,398	11,439	31,285	10,313	20,972	4,263	2,585	1,678	677	391	286
12	MD	3,534	2,728	806	6,072	4,594	1,478	675	557	118	169	141	28
13	UA	4,261	3,744	517	6,611	5,473	1,138	1,260	1,168	91	393	372	21
	Total	224,066	84,426	139,640	492,814	234,378	258,436	, ,		21,318	11,355	7,232	4,122

	Country	Numb	er of agglomerat	tions	Ge	enerated load (PI	Ξ)
	Country	Primary	Secondary	Tertiary	Primary	Secondary	Tertiary
1	DE	-	138	580	-	470,533	13,140,536
2	AT	-	5	603	-	9,037	13,034,531
3	CZ	-	31	150	-	132,782	2,129,088
4	SK	4	151	119	10,029	2,110,840	2,030,870
5	HU	8	198	302	68,845	2,441,449	7,446,716
6	SI	-	72	25	-	605,077	268,903
7	HR	11	13	3	116,606	1,214,192	101,790
8	BiH	1	5	-	268,800	30,675	
9	RS	5	30	1	117,998	510,921	68,213
10	RO	58	313	32	547,577	5,688,213	4,318,698
11	BG	7	12	10	39,924	607,266	1,893,807
12	MD	11	6	-	89,123	84,160	
13	UA	3	29	-	42,805	665,939	
	Total	108	1,003	1,825	1,301,635	14,570,527	44,435,214

Table 3: Agglomerations with operating waste water treatment plant and their PE values

Categorisation of agglomerations is based on the highest technical level available.

	Country		BOD	discharges (t/y	ear)		COD discharges (t/year)							
	Country	NP removal	N removal	P removal	Secondary	Primary	NP removal	N removal	P removal	Secondary	Primary			
1	DE	3,575	123	154	688	-	19,987	641	997	2,393	-			
2	AT	3,956	297	0	9	-	24,624	1,423	3	29	-			
3	CZ	529	37	37	90	0	3,641	191	218	376	1			
4	SK	886	-	318	1,421	191	3,238	-	1,215	8,440	348			
5	HU	3,045	71	149	2,392	88	13,529	248	639	6,949	240			
6	SI	190	-	-	998	128	1,448	-	-	3,700	252			
7	HR	105	-	-	7,620	1,415	577	-	-	11,608	2,463			
8	BiH	-	-	-	67	4,121	-	-	-	246	7,555			
9	RS	299	-	-	4,263	1,503	548	-	-	7,951	2,756			
10	RO	2,729	7,242	3,379	15,144	4,296	6,235	20,743	8,981	39,309	10,255			
11	BG	1,923	-	161	3,699	615	4,784	-	885	3,567	1,077			
12	MD	-	-	-	689	2,039	-	-	-	1,086	3,508			
13	UA	-	-	-	3,156	588	-	-	-	4,536	937			
	Total	17,236	7,770	4,200	40,235	14,985	78,611	23,247	12,937	90,192	29,392			

Table 4: BOD and COD discharges of the operating waste water treatment plants

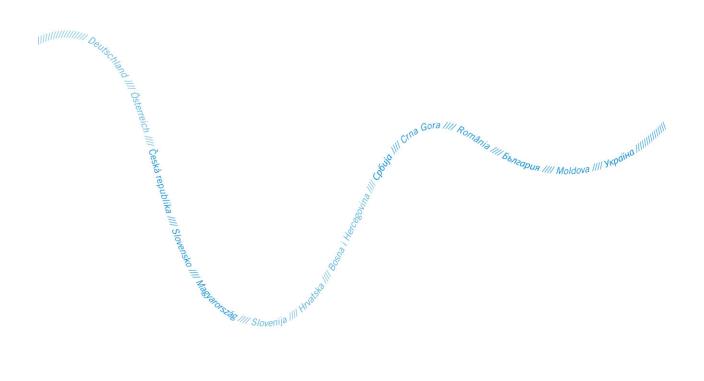

	Ocumture		TN	discharges (t/ye	ear)		TP discharges (t/year)							
	Country	NP removal	N removal	P removal	Secondary	Primary	NP removal	N removal	P removal	Secondary	Primary			
1	DE	11,204	331	290	694	-	742	29	113	142				
2	AT	7,711	722	0	20	-	600	42	0	5				
3	CZ	1,241	80	109	142	0	116	6	16	17				
4	SK	1,422	-	582	2,863	31	111	-	42	178				
5	HU	4,704	98	260	2,403	62	504	9	52	309				
6	SI	242	-	-	1,354	34	38	-	-	253				
7	HR	92	-	-	2,421	244	14	-	-	694	5			
8	BiH	-	-	-	79	777	-	-	-	16	18			
9	RS	66	-	-	1,210	214	9	-	-	282	4			
10	RO	1,245	2,995	2,410	8,931	954	159	300	249	837	14			
11	BG	1,429	-	142	907	106	129	-	80	164	1			
12	MD	-	-	-	218	339	-	-	-	62	7			
13	UA	-	-	-	1,022	146	-	-	-	345	2			
	Total	29,356	4,226	3,793	22,265	2,908	2,422	385	552	3,305	56			

Table 5: TN and TP discharges of the operating waste water treatment plants

Industrial emission inventories

Industrial pollutant release data were collected from the countries in order to assess the point source organic substances and nutrient emissions via direct industrial discharges for the reference year 2012. Summarizing tables of the data submitted are presented in the followings.

DE AT CZ SK HU SI HR BA RS RO MD UA Basin Activity category BG Energy sector -1,167 -729 2,268 ---173 1,962 232 68 6,599 -Production and processing of metals 363 363 ------------1,974 1,521 573 6,120 10,189 Chemical industry ---------20,481 292 135 20,908 Waste and wastewater management ----------Paper and wood production and processing 8,080 240 5.343 577 1,254 758 16,251 -------165 164 329 Intensive livestock production and aquaculture -----------Animal and vegetable products from the food and beverage sector 720 ----636 --1,356 -----Total 9,601 22,608 8,409 3,298 577 --972 8,082 1,486 203 758 55,995 -

Table 1: Chemical oxygen demand (COD) discharges according to several industrial sectors (t/year)

Table 2: Total nitrogen (TN) discharges according to several industrial sectors (t/year)

Total	944	2,579	-	4,319	824	136	-	-	-	1,989	494	-	132	11,417
Animal and vegetable products from the food and beverage sector	-	51	-	-	-	-	-	-	-	-	-	-	-	51
Intensive livestock production and aquaculture	-	-	-	-	192	-	-	-	-	-	-	-	-	192
Paper and w ood production and processing	762	199	-	-	-	136	-	-	-	-	403	-	132	1,631
Waste and wastewater management	-	2,240	-	-	73	-	-	-	-	-	-	-	-	2,313
Chemical industry	182	-	-	4,089	178	-	-	-	-	722	-	-	-	5,171
Production and processing of metals	-	-	-	180	-	-	-	-	-	-	-	-	-	180
Energy sector	-	89	-	50	381	-	-	-	-	1,267	91	-	-	1,878
Activity category	DE	AT	CZ	SK	HU	SI	HR	BA	RS	RO	BG	MD	UA	Basin

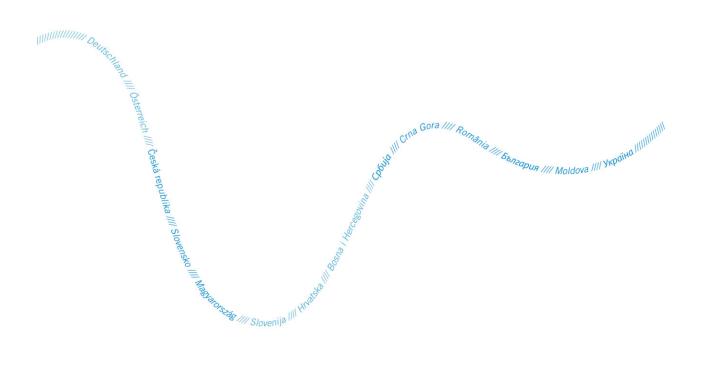

	-													
Activity category	DE	AT	CZ	SK	HU	SI	HR	BA	RS	RO	BG	MD	UA	Basin
Energy sector	-	13	-	-	8	-	-	-	-	59	14	-	-	94
Production and processing of metals	-	-	-	-	-	-	-	-	-	-	-	-	-	0
Chemical industry	28	-	-	-	30	-	-	-	-	-	-	-	-	59
Waste and wastewater management	-	76	-	-	49	-	-	-	-	-	-	-	-	125
Paper and w ood production and processing	107	9	-	-	-	-	-	-	-	-	13	-	64	193
Intensive livestock production and aquaculture	-	-	-	-	12	-	-	-	-	-	-	-	-	12
Animal and vegetable products from the food and beverage sector	-	7	-	-	-	-	-	-	-	-	-	-	-	7
Total	136	105	-	-	99	-	-	-	-	59	27	-	64	490

Table 3: Total phosphorus (TP) discharges according to several industrial sectors (t/year)

List of Future Infrastructure Projects in the DRBD

Explanations

- SEA = Strategic Environmental Assessment
- EIA = Environmental Impact Assessment

Country	River	Water body	Project title	Main purpose	Description	Project status	Start imple- mentation	Expected deterioration of water body status	Trans- boundary impact	SEA	EIA	Exemption WFD Art. 4(7)
AT	Donau	Donau_02, KW Freudenau bis Devin, EP groß	Flussbauliches Gesamtprojekt - Freudenau - Austrian border	Navigation	Flussbauliches Gesamtprojekt - Freudenau - Austrian border	Officially planned	2014	No	No	No	Intended	No
BG	Dunav	DUNAV RWB01	Improving the navigation of the Bulgarian- Romanian section of the Danube River	Navigation	Improving the navigation of BG-RO Danube sectors from km 520 to km 530 - Batin	Planning under preparation	2012	No	Yes	No	Already done	No
BG	Dunav	DUNAV RWB01	Improving the navigation of the Bulgarian- Romanian section of the Danube River	Navigation	Improving the navigation of BG-RO Danube sectors from km 576 to km 560 - Belene	Planning under preparation	2012	No	Yes	No	Already done	No
HR	-		Danube-Sava Canal	Navigation	Construction of 61,4 km artificial canal (category Vb) from Vukovar to Samac on the Sava River; will shorten the waterway	Planning under preparation	2006	No	Yes	No	Intended	No
HR	Sava	DSRI010001, DSRI010002, DSRI010003, DSRI010004, DSRN010005, DSRN010006	Reconstruction and Improvement of the Sava waterway in Croatia	Navigation	Reconstruction of the waterway, and upgrading it to Category IV	Implementation of project	2003	No	Yes	No	Already done	No
HU	Sebes- Körös	Sebes-Körös felső	Árvízvédelmi biztonság növelésének közös elősegítése a Sebes-Körös bal parti határszelvényénél	Flood protection	The project aims to raise the flood security of the populationon Sebes-Körös.	Implementation of project	2013	No	Yes	No	No	No
HU	Duna	Duna Gönyü- Szob között	Komárom, Almásfüzitő árvízvédelmi	Flood protection	In the flood basin of Komarom- Almasfuzito the	Implementation of project	2011	No	No	No	No	No

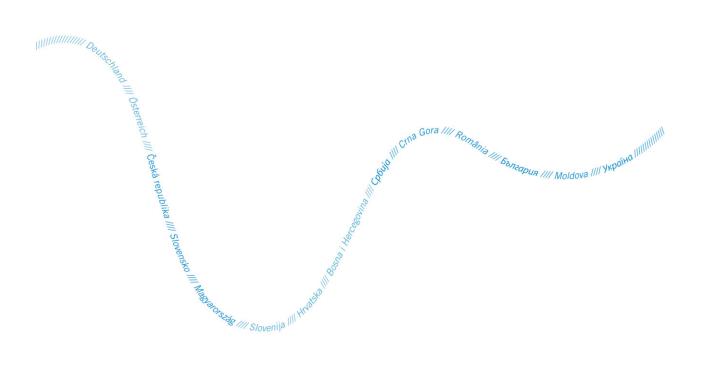
Country	River	Water body	Project title	Main purpose	Description	Project status	Start imple- mentation	Expected deterioration of water body status	Trans- boundary impact	SEA	EIA	Exemption WFD Art. 4(7)
			öblözet árvízvédelmi biztonságának javítása (2. forduló)		project aims to raise the security of the population by increasing the dam height							
HU	Tisza	Tisza Belfő- csatornától Keleti- főcsatornáig, Tisza Keleti- főcsatornától Tiszabábolnáig, Tisza Tiszabábolnától Kisköréig	Tiszai védvonal fejlesztések a Tisza bal parton Tiszafüred– Rakamaz között	Flood protection	The project aims to raise the flood security of the population by reconstruction of the dam, protecting forests and restoration of engineering works.	Implementation of project	2008	No	No	No	No	No
HU	-, Duna, Szentendrei -Duna	Duna Bajától délre, Duna Gönyü-Szob között, Duna Szigetköznél, Duna Szob-Baja között	Duna projekt	Flood protection	The project aims to raise the flood security of the population by increasing the dam height at several segments and restoration of engineering works.	Implementation of project	2009	No	No	Already done	No	No
HU	Tisza	Tisza Kiskörétől Hármas- Körösig	Tisza hullámtér: Nagyvízi meder vízszállító képességének helyreállítása a szolnoki vasúti híd és Kis	Flood protection	Between the settlements of Kisköre and Szolnok along the Tisza river the project aims to raise the flood security. The project increases the water transport potential of the river bed.	Implementation of project	2009	No	No	No	No	No
HU	Tisza	Tisza Kiskörétől Hármas- Körösig	Árvízvédelmi fővédvonal fejlesztése, Szolnok város térségi fejlesztése, a Tisza jobb parti 10.02-es	Flood protection	The project aims to raise the flood security of the population in Szolnok.	Implementation of project	2010	No	No	No	No	No

Country	River	Water body	Project title	Main purpose	Description	Project status	Start imple- mentation	Expected deterioration of water body status	Trans- boundary impact	SEA	EIA	Exemption WFD Art. 4(7)
HU	Berettyó	Berettyó	Berettyó védtöltések fejlesztése a Kis sárréti és a Berettyóújfalui ártéri öblözetekben	Flood protection	The project aims to raise the flood security of the population by reconstruction of the dam, protecting forests and restoration of engineering works.	Implementation of project	2008	No	No	No	No	No
HU	Duna	Duna Szob-Baja között	Duna-menti árvízvédelmi beruházások Visegrádon	Flood protection	The project aims to raise the flood security of the population in Visegrad.	Implementation of project	2011	No	No	No	No	No
HU	Duna	Duna Szob-Baja között	Sződliget Község árvízvédelmi fejlesztése	Flood protection	The project aims to raise the flood security of the population in Sződliget.	Implementation of project	2012	No	No	No	No	No
HU	Mura	Mura	Mura 44+000- 48+000 fkm szelvények közötti szakaszának mederrendezése, Murai árvízvédelmi szakasz fejlesztése II. forduló	Flood protection	Pit lakes are too close to the main river bed endangering the shore line to break in., The project aims to raise the flood security of the population by increasing the dam height	Implementation of project, Planning under preparation	2011, 2015	No	No	Already done, No	Already done, No	No, Yes
HU	Fekete- Körös	Fekete-Körös	Mályvádi árvízi szükségtározó fejlesztése. 2. forduló	Flood protection	The project aims to raise the flood security by improving the condition of the Mályvád flood reservoir on the Fekete-Körös by building new segments in the dam for water intake and increasing the height of the dam.	Implementation of project	2011	No	No	No	No	No
RO	Dunarea	PFII-Chiciu	Imbunatatirea coditiilor de navigatie pe sectorul comun	Navigation	Imb.cond. de navig. pe Dunare intre km 824- km403,prin redistrib.debit. intre	Planning under preparation	2011	No	Yes	No	Already done	No

Country	River	Water body	Project title	Main purpose	Description	Project status	Start imple- mentation	Expected deterioration of water body status	Trans- boundary impact	SEA	EIA	Exemption WFD Art. 4(7)
			romano-bulgar - Popina - km 403- km 408		Dunare si bratele secundare, redirijarea curentilor de apa si calibrarea albiei.12 puncte critice. EIA este in curs de revizuire.							
RO	Dunarea	PFII-Chiciu	Imbunatatirea coditiilor de navigatie pe sectorul comun romano-bulgar - Corabia - km 626- km 632	Navigation	Imb.cond. de navig. pe Dunare intre km 824- km403,prin redistrib.debit. intre Dunare si bratele secundare, redirijarea curentilor de apa si calibrarea albiei.12 puncte critice. EIA este in curs de revizuire.	Planning under preparation	2011	No	Yes	No	Already done	No
RO	Dunarea	PFII-Chiciu	Imbunatatirea coditiilor de navigatie pe sectorul comun romano-bulgar - Bechet - km 675- km 678	Navigation	Imb.cond. de navig. pe Dunare intre km 824- km403,prin redistrib.debit. intre Dunare si bratele secundare, redirijarea curentilor de apa si calibrarea albiei.12 puncte critice. EIA este in curs de revizuire.	Planning under preparation	2011	No	Yes	No	Already done	No
RO	Dunarea	PFII-Chiciu	Imbunatatirea coditiilor de navigatie pe sectorul comun romano-bulgar - Dobrina - km 758-km 760	Navigation	Imb.cond. de navig. pe Dunare intre km 824- km403,prin redistrib.debit. intre Dunare si bratele secundare, redirijarea curentilor de apa si calibrarea albiei.12 puncte critice. EIA este in curs de revizuire.	Planning under preparation	2011	No	Yes	No	Already done	No

								Expected	Trans-			Exemption
Country	River	Water body	Project title	Main purpose	Description	Project status	Start imple- mentation	deterioration of water body status	boundary impact	SEA	EIA	WFD Art. 4(7)
RO	Dunarea	PFII-Chiciu	Imbunatatirea coditiilor de navigatie pe sectorul comun romano-bulgar - B.Secia - km 783- km 786	Navigation	Imb.cond. de navig. pe Dunare intre km 824- km403,prin redistrib.debit. intre Dunare si bratele secundare, redirijarea curentilor de apa si calibrarea albiei.12 puncte critice. EIA este in curs de revizuire.	Planning under preparation	2011	No	Yes	No	Already done	No
RO	Dunarea	PFII-Chiciu	Imbunatatirea coditiilor de navigatie pe sectorul comun romano-bulgar - Salcia - km 820- km 824	Navigation	Imb.cond. de navig. pe Dunare intre km 824- km403,prin redistrib.debit. intre Dunare si bratele secundare, redirijarea curentilor de apa si calibrarea albiei.12 puncte critice. EIA este in curs de revizuire.	Planning under preparation	2011	No	Yes	No	Already done	No
RO	Dunarea	Chiciu-Isaccea	Imbunatatirea conditiilor de navigatie pe Dunare intre Calarasi si Braila km 375-km175 - etapa I	Navigation	Executie lucrari hidrotehnice: km 196- km 197 (bifurcatia bratului Caleea)	Implementation of project	2011	No	No	No	Already done	No
RO	Dunarea	Chiciu-Isaccea	Imbunatatirea conditiilor de navigatie pe Dunare intre Calarasi si Braila km 375-km175 - etapa I	Navigation	Executie lucrari hidrotehnice: km 196- km 197 (bifurcatia bratului Caleea)	Implementation of project	2011	No	No	No	Already done	No
RO	Dunarea	Chiciu-Isaccea	Imbunatatirea conditiilor de navigatie pe Dunare intre	Navigation	Executie lucrari hidrotehnice: km 341- km 342 (bifurcatia	Implementation of project	2011	No	No	No	Already done	No

Country	River	Water body	Project title	Main purpose	Description	Project status	Start imple- mentation	Expected deterioration of water body status	Trans- boundary impact	SEA	EIA	Exemption WFD Art. 4(7)
			Calarasi si Braila km 375-km175 - etapa I		bratului Epurasu)							
RO	Dunarea	Chiciu-Isaccea	Imbunatatirea conditiilor de navigatie pe Dunare intre Calarasi si Braila km 375-km175 - etapa I	Navigation	Executie lucrari hidrotehnice: km 341- km 342 (bifurcatia bratului Epurasu)	Implementation of project	2011	No	No	No	Already done	No
RO	Dunarea	Chiciu-Isaccea	Imbunatatirea conditiilor de navigatie pe Dunare intre Calarasi si Braila km 375-km175 - etapa I	Navigation	Executie lucrari hidrotehnice: km 345- km 346 (bifurcatia bratului Bala din Dunare)	Implementation of project	2011	No	No	No	Already done	No
RO	Dunarea	Chiciu-Isaccea	Imbunatatirea conditiilor de navigatie pe Dunare intre Calarasi si Braila km 375-km175 - etapa I	Navigation	Executie lucrari hidrotehnice: km 345- km 346 (bifurcatia bratului Bala din Dunare)	Implementation of project	2011	No	No	No	Already done	No
RS	Dunav	Akumulacija HE Đerdap I od ušća Save do ušća Tise, Akumulacija HE Đerdap I od ušća Tise do Novog Sada, Dunav od Novog Sada do RS-HR granice	Documentation for River Training and Dredging Works on Selected Locations along the Danube River	Navigation	The Project aim is to improve navigability of the international waterway on Danube River, between Belgrade and Backa Palanka (RS-HR state border). Documentation is prepared in line with Joint statement	Implementation of project	2015	No	No	Already done	Already done	No
RS	Dunav	Dunav od RH- HR granice do ušća Drave, Dunav uzvodno	River training and dredging works on critical sectors on the RS-HR	Navigation	The Project aim is to improve navigability of the international waterway on Danube	Planning under preparation	2018	No	Yes	Already done	No	No


Country	River	Water body	Project title	Main purpose	Description	Project status	Start imple- mentation	Expected deterioration of water body status	Trans- boundary impact	SEA	EIA	Exemption WFD Art. 4(7)
		od ušća Drave	joint stretch of the Danube River		River,on the common RS-HR sector.							
RS	Sava	Sava uzvodno od ušća Drine do RS-HR granice	Sava Waterway Rehabilitation Project	Navigation	The Project is part of a Program to improve navigability in the Sava River between Belgrade, Serbia and Sisak, Croatia.	Officially planned	2016	No	Yes	Already done	Intended	No
RS	Lim	Lim uzvodno od akumulacije HE Potpeć do RS- ME granice	Projekat izgradnje HE Brodarevo 1 i HE Brodarevo 1	Hydropowe r	Hydropower plant 26 MW	Officially planned	Not yet determined	Yes	Yes	Already done	Already done	Yes
RS	Lim	Lim uzvodno od akumulacije HE Potpeć do RS- ME granice	Projekat izgradnje HE Brodarevo 1 i HE Brodarevo 2	Hydropowe r	Hydropower plant 32,4 MW	Officially planned	Not yet determined	Yes	Yes	Already done	Already done	Yes
SI	Sava	VT Sava Krško – Vrbina	Hidroelektrarna Brežice	Hydropowe r	Hydropower plant	Implementation of project	2014	Yes	No	Already done	Already done	No
SI	Sava	VT Sava Krško – Vrbina	Hidroelektrarna Mokrice	Hydropowe r	Hydropower plant	Officially planned	2016	Yes	No	Already done	Intended	Yes

8

Groundwater in the DRBD

ANNEX 6 DRAFT DRBM Plan – Update 2015

GWB	Nat.	Area		uifer teristics		Overlying			
	part	[km²]	Aquifer Type	Confined	Main use	strata [m]	Criteria for importance		
1	AT-1	1,650	V	V	SPA, CAL	100 1000	Latera de la com		
	DE-1	4,250	K	Yes	SPA, CAL	100-1000	Intensive use		
2	BG-2	12,844	БК	Ver		0.600	> 4000 hm²		
	RO-2	11,340	F, K	Yes	DRW, AGR, IND	0-600	> 4000 km²		
3	MD-3	9,662	Р	Yes	DRW, AGR, IND	0-150	> 4000 km²		
	RO-3	12,646	P	res	DRW, AGR, IND	0-130	> 4000 KIII ²		
4	BG-4	3,225	K, F-P	Yes	DRW, AGR, IND	0-10	> 4000 km²		
	RO-4	2,187	к, г-г	105	DRW, AGK, IND	0-10	> 4000 KIII ²		
5	HU-5	4,989	Р	No	DRW, IRR, IND	2-30	GW resource, DRW		
	RO-5	2,227	ſ	Yes	DRW, IKK, IND	2-30	protection		
6	HU-6	1,035	Р	No	DRW, AGR, IRR	5-30	GW resource, DRW		
	RO-6	1,459	Г	Yes	DKW, AOK, IKK	5-30	protection		
7	HU-7	7,098		No			• 4000 L ··· 2 CW		
	RO-7	11,355	Р	Yes	DRW, AGR, IND, IRR	0-125	> 4000 km ² , GW use, GW resource, DRW protection		
	RS-7	10,506		Yes	nux		resource, Diew protocuon		
8	HU-8	1,152	Р	No	DRW, IRR, AGR,	2-5	GW resource, DRW		
	SK-8	2,211	1	NO	IND	2-5	protection		
9	HU-9	750	Р	Yes	DRW,IRR	2-10	GW resource		
	SK-9	1,466	1	105	DRW,IKK	2-10			
10	HU-10	492	Κ	No	DRW OTH	0-500	DRW protection, dependent		
	SK-10	598	K, F	Yes	DRW, OTH	0-500	ecosystem		
11	HU-11	3,248	Κ	No	DRW, SPA, CAL	0-2500	Thermal water resource		
	SK-11	563	F, K	Yes	, or 1, or 12	0 -2000	I nermal water resource		

Nominated transboundary GWBs of Danube basin wide importance

Nominated tran	nsboun	dary GWBs	of Danul	be basir	n wide import	tance

		ual y G W DS O				-			
					Aquifer cl sat			strata	or
Transboundary GWB	Nat. part	National GWB Codes	Area [km²]	Area [km²]	Aquifer Type	Confined	Main use	Overlying strata	Criteria for importance
1:	AT-1	ATGK100158	5,900	1,650	K	Yes	SPA, CAL	100-	Intensive use
Deep Thermal	DE-1	DEGK1110		4,250				1000	
2:	BG-2	BG1G0000J3K051	24,184	12,844	F, K	Yes	DRW, AGR,	0–600	>4000 km ²
Upper Jurassic – Lower Cretaceous	RO-2	RODL06		11,340			IND		
3:	MD-3	MDPR01	22,308	9,662	Р	Yes	DRW, AGR,	0-150	>4000 km2
Middle Sarmatian - Pontian	RO-3	ROPR05		12,646			IND		
4:	BG-4	BG1G00000N049	5,412	3,225	К,	No	DRW, AGR,	0–10	>4000 km2
Sarmatian	RO-4	RODL04		2,187	F-P		IND		
5: Mures / Maros	HU-5	HU_AIQ605 HU_AIQ604 HU_AIQ594 HU_AIQ593	7,216	4,989	Р	Yes / No	DRW, IRR, IND	2-30	GW resource, DRW protection
	RO-5*	ROMU20 ROMU22		2,227 1,774					
6: Somes / Szamos	HU-6	HU_AIQ649 HU_AIQ648 HU_AIQ600 HU_AIQ601	2,494	1,035	Р	Yes / No	DRW,AGR, IRR	5–30	GW resource, DRW protection
	RO-6*	ROSO01 ROSO13		1,459 1,392					
7: Upper Pannonian- Lower Pleistocene / Vojvodina / Duna- Tisza köze déli r.	HU-7	HU_AIQ528 HU_AIQ523 HU_AIQ532 HU_AIQ487 HU_AIQ590 HU_AIQ529 HU_AIQ522 HU_AIQ533 HU_AIQ486 HU_AIQ591	28,959	7,098	Ρ	Yes / Yes / No	DRW, AGR, IND, IRR	0–125	> 4000 km², GW use, GW resource, DRW protection
	RO-7	ROBA18		11,355					
	RS-7	RS_TIS_GW_I_1 RS_TIS_GW_SI_1 RS_TIS_GW_I_2 RS_TIS_GW_SI_2 RS_TIS_GW_I_3 RS_TIS_GW_SI_3 RS_TIS_GW_I_4 RS_TIS_GW_SI_4 RS_TIS_GW_I_7 RS_TIS_GW_SI_7 RS_D_GW_SI_1		10,506					
8: Podunajska Basin, Zitny Ostrov / Szigetköz, Hanság-	HU-8	HU_AIQ654 HU_AIQ572 HU_AIQ653 HU_AIQ573	3,363	1,152	Р	No	DRW, IRR, AGR, IND	2–5	GW resource, DRW protection
Rábca	SK-8	SK1000300P		2,211					
	517-0	SK1000500P SK1000200P		2,211					

					Aquifer class	haracteri- ion		strata	
Transboundary GWB	Nat. part	National GWB Codes	Area [km²]	Area [km²]	Aquifer Type	Confined	Main use	Overlying str	Criteria for importance
9: Bodrog	HU-9	HU_AIQ495 HU_AIQ496	2,216	750	Р	Yes	DRW,IRR	2–10	GW resource
	SK-9	SK1001500P		1,466					
10:	HU-10	HU_AIQ485	1,090	492	Κ	Yes /	DRW, OTH	0–500	DRW
Slovensky kras / Aggtelek-hgs.	SK-10	SK200480KF		598	K, F	No			protection, depend. ecosystems
11: Komarnanska Vysoka Kryha / Dunántúli-	HU-11	HU_AIQ558 HU_AIQ552 HU_AIQ564	3,811	3,248	К	Yes / No	DRW, SPA, CAL	0– 2,500	Thermal water resource
khgs. északi r.	SK-11	SK300010FK SK300020FK		563	F, K				

*...GWBs overlying

Explanation to Table 1 and 2

Transboundary GWB	ICPDR GWB code which is a unique identifier and the name
Nat. part	Code of national shares of ICPDR GWB
National GWB Codes	National codes of the individual GWBs forming the national part of a transboundary GWB of basin wide importance.
Area	Whole area of the transboundary GWB covering all countries concerned / Area of national shares in $\rm km^2$
Aquifer characterisation	Aquifer Type: Predom. $P = porous/K = karst/F = fissured$. Multiple selections possible: Predominantly porous, karst, fissured and combinations are possible. Main type should be listed first. Confined: Yes / No
Main use	DRW = drinking water / AGR = agriculture / IRR = irrigation / IND = Industry / SPA = balneology / CAL = caloric energy / OTH = other. Multiple selections possible.
Overlying strata	Indicates a range of thickness (minimum and maximum in metres)
Criteria for importance	If size < 4 000 km ² criteria for importance of the GW body have to be named, they have to be bilaterally agreed upon.

		QUALITY Associated to QUANTIT							ſY		Associated to		
Transboundary GWB	Nat. part	Area [km²]	Sites	km²/ site	Sites bilaterally agreed for data exchange	Drinkin g water protect ed areas	Eco- system s	Sites	km²/ site	Sites bilaterally agreed for data exchange	Drinkin g water protect ed areas	Eco- system s	
	AT-1	1,650	4	413	_2	-	-	3	550	_2	-	-	
1	DE-1	4,250	4	1063	_2	-	-	4	1063	_2	-	-	
Deep Thermal	Σ	5,900	8	738				7	843				
2	BG-2	12,844	6	2,141	6	yes	-	6	2,141	6	yes	-	
Upper Jurassic – Lower	RO-2	11,340	26	436	_+	5	-	1	11,318	-+	0	-	
Cretaceous	Σ	24,184	32	756				7	3,479				
3	MD-3	9,662	6	1,610				23	420				
Sarmatian –	RO-3	12,646	14	903	0	6	-	10	1,253	0	0	-	
Pontian	Σ	22,308	20	1,115				33	673				
	BG-4	3,225	5	645	5	yes	-	4	806	4	yes	-	
4	RO-4	2,187	21	104	_+	2	-	13	167		0	-	
Sarmatian	Σ	5,412	26	208				17	318				
	HU-5	4,989	136	37	6	88	6	111	45	5	37	16	
_	D0 5*	2,227	15	148	_			78	29	_			
5	RO-5*	1,774	4	443	5	0	-	3	561	5	0	-	
Mures/Maros	Σ	7,216	155	47		00		192	38	4	C		
	HU-6	1,035	27	38	5	23	4	19	54	1	6	2	
C	RO-6*	1,459 1,392	32 9	46 155	3			115 8	13 173	3			
6 Somes/Szamos	Σ	1,392 2,494	68	37	3			142	18	5			
7	HU-7	7,098	149	48	0	102	10	147	48	0	43	13	
, Upper Pannonian	R0-7	11,355	25	454	0	23	10	16	712	0	18	10	
- Lower Pleisto-	RS-7	10,506	16	657	0	**	**	39	269	0	**	**	
cene / Vojvodina / Duna-Tisza		10,000	10						200				
köze deli r.	Σ	28,959	190	152				202	144				
8	HU-8	1,152	54	21	19	35	18	106	11	41	55	31	
Podunajska	SK-8	2,211	51	43	0	**	**	277	8	136	**	**	
Basin, Zitny Ostrov /													
Szigetköz,													
Hanság-Rábca	Σ	3,363	105	32				383	9				
	HU-9	750	10	75	0	5	1	17	44	0	3	3	
9	SK-9	1,466	17	86	0	**	**	101	15	8	**	**	
Bodrog	Σ	2,216	27	82				118	19				
10	HU-10	492	13	38	0	11 **	6 **	16	31	0	9 **	9 **	
Slovensky kras	SK-10	598	5	120	0	•••		28	21	3	••	••	
/Aggtelek-hsg. 11	Σ	1,090	18	125		00	0	44 45	2 72		00	40	
11 Komarnanska	HU-11	3,248	24	135	0	22 **	8 **	45		0	20 **	18 **	
Vysoka Kryha /	SK-11	563	-	-	0			-	-	-			
Dunántúli-khgs.													
Északi r.	Σ	3,811	24	159				45	85				

Number of monitoring stations and density per GWB

*...GWBs overlying; ** no information; ² unrestricted data exchange on demand; + will be updated

Explanation to Table 3

Transboundary GWB	ICPDR GWB code which is a unique identifier and the name
Nat. part	Code of national shares of ICPDR GWB
Area	Area of the whole transboundary ICPDR GWB covering all countries
	concerned and of the national shares of the ICPDR GWB in km ² .
QUALITY / QUANTITY	
Sites	Number of monitoring sites – Reference year 2012/2013
km²/site	Area in km ² represented by each site – Reference year 2012/2013
Number of sites bilaterally	Number of monitoring sites for which transboundary data exchange is
agreed for data exchange	bilaterally agreed.
Associated to	
Drinking water protected	Number of monitoring sites associated to drinking water protected areas
areas	Number of momorning sites associated to diffiking water protected areas
Ecosystems	Number of monitoring sites associated to ecosystems

	AT/DE	BG	RS	HU	MD	RO	SK
Transboundary GWB	1	2, 4	7	5, 6, 7, 8, 9, 10, 11	3	2, 3, 4, 5, 6, 7	8, 9, 10, 11
G	UALITY (with es	timatior	of fre	quency)			
Oxygen	1/a	>1/a	1/a	1/6; <1/a		1/a	>1/a
pH-value	1/a	>1/a	1/a	>1/a*		1/a	>1/a
Electrical conductivity	1/a (cont. DE)	>1/a	1/a	>1/a*		1/a	>1/a
Nitrate	1/a	>1/a	1/a	>1/a*		1/a	>1/a
Ammonium	1/a	>1/a	1/a	>1/a*		1/a	>1/a
Temperature	cont.	>1/a	1/a	>1/a*		1/a	>1/a
Further parameters, e.g. major ions	x**	х	Х	х		х	х
operational		х		х		Х	х
Q	UANTITY (with e	stimatio	n of fre	equency)			
GW levels/well head pressure	Х	х	х	Х		Х	х
spring flows		х		Х		Х	х
Flow characteristics							х
Extraction (not obligatory)	х						
Reinjection (not obligatory)	Х						

Parameters and frequency for the surveillance monitoring program

Remarks:

Transboundary GWB:	Code of transboundary GWB of Danube basin wide importance
>1/a:	More than 1 per year
x:	Parameter is measured
*	In the starting year
**	A yearly program and a five year monitoring program were established. Further
	parameters in DE are chloride, sulfate and total hardness

	QUALITY										QUANTITY									
GWB Nat. part	Status 2009	Status Pressure Types 2009	Risk 2004 -→2015	Exemp- tions from 2015	Status 2015	Status Pressure Types 2015	Significant upward trend (parameter)	Trend reversal (parameter)	Risk 2013 →2021	Risk Pressure Types →2021	Exemptions from 2021 (Date of achievement)	Status 2009	Status Pressure Types 2009	Risk 2004 -→2015	Exemp- tions from 2015	Status 2015	Status Pressure Types 2015	Risk 2013 →2021	Risk Pressure Types →2021	Exemptions from 2021 (Date of achievement)
1 AT-1 DE-1	Good	-	-	-	Good	-	-	-	-	-	-	Good	-	-	-	Good	-	-	-	-
2 BG-2 RO-2	Good	-	-	-	Good	-	-		-	-	-	Good	-	-	-	Good	-	-	-	-
3 MD-3 RO-3	Good	-	Risk -	. <u>-</u>	Good	-			Risk -	PS, DS, WA -		Good	-	-	-	Good	-	-	-	-
4 BG-4 RO-4	Good	-	-	-	Good	-	-		-	-	-	Good	-	-	-	Good	-	-	-	-
5 HU-5 RO-5	Poor	DS	Risk	Yes	Poor	DS	NH4		Risk	DS	2027 2027	Good	-	Risk -		Good	-	-	-	-
6 HU-6 RO-6	Good	-	Risk -	_	Good	-	-	-	-	-		Good	-	-	-	Good	-	-	-	-
7 HU-7	Poor	DS	Risk	Yes	Poor	DS			Risk	DS	2027	Poor	WA	Risk	Yes	Poor	WA	Risk	WA	2027
RO-7	Good	-	-	-	Good	-	-	-	-	-	-	Good	-	-	-	Good	-	-	-	-
RS-7	Good*	-	Risk	Yes	Good*	-			-	-	-	Poor*	WA	Risk	Yes	Poor*	WA	Risk	WA	-**
8 HU-8	Poor	DS	Risk	Yes	Poor	DS				DS	2027	Poor	WA	Risk	Yes	Poor	WA			
SK-8	Good		Risk	-	Good	-	NH4, NO3, CI, As, SO4	-	Risk	PS, DS	-	Good	-	-	-	Good	-	-	-	-
9 HU-9 SK-9	Good	-	Risk -	-	Good	-	-	-	-	-	-	Good	-	-	-	Good	-	-	-	-
10 HU-10 SK-10	Good	-	-	-	Good	-	-	-	-	-	-	Good	-	-	-	Good		-	-	-
11 HU-11	Good		Risk		Good							Poor	WA	Risk	Yes	Poor	WA	Risk	WA	2027
SK-11	Good	-	RISK	-	Unknown	-	Unknown*	-	-	-	-	Good		RISK	-	Unknown		RISK	VVA	-

Summary table: Risk and Status Information of the ICPDR GW-bodies over a period of 2009 to 2021

'-' means 'No'; * The status information is of low confidence as it is based on risk assessment; ** Not yet discussed

Explanation: see next page

Explanation to Table 4

Nat. partCode of national shares of ICPDR GWBsQUALITY / QUANTITYStatus 2009Good / PoorStatus Pressure Types 2009Indicates the significant pressures causing poor status in 2009. AR = artificial recharge, DS = diffuse sources, PS = point sources, OP = other significant pressures, WA = water abstractionsRisk 2004→2015Risk / - (which means 'no risk')Exemptions from 2015Indicates whether there are exemptions for the GWB from achieving good status by 2015 at the latest.Status 2015Good / PoorIndicates the significant pressures causing poor status in 2015. AR = artificial recharge, DS = diffuse sources, PS = point sources, OP = other significant pressures, WA = water abstractionsStatus Pressure Types 2015Indicates the significant pressures causing poor status in 2015. AR = artificial recharge, DS = diffuse sources, PS = point sources, OP = other significant pressures, WA = water abstractionsSignificant upward trend (parameter)Indicates for which parameter a significant sustained upward trend has been identified.Trend reversal (parameter)Indicates the significant pressures causing risk of failing to achieve good status in 2021.Risk 2013→2021Risk / - (which means 'no risk')Risk Pressure Types →2021AR = artificial recharge, DS = diffuse sources, PS = point sources, OP = other significant pressures, WA = water abstractions	1								
QUALITY / QUANTITY Status 2009 Good / Poor Status Pressure Types Indicates the significant pressures causing poor status in 2009. AR = artificial recharge, DS = diffuse sources, PS = point sources, OP = other significant pressures, WA = water abstractions Risk 2004→2015 Risk / (which means 'no risk') Exemptions from 2015 Indicates the significant pressures causing poor status in 2015. AR = artificial recharge, DS = diffuse sources, PS = point sources, OP = other significant pressures 2015 Status 2015 Good / Poor Indicates the significant pressures causing poor status in 2015. AR = artificial recharge, DS = diffuse sources, PS = point sources, OP = other significant pressures, WA = water abstractions Status Pressure Types Indicates for which parameter a significant sustained upward trend has been identified. Trend reversal (parameter) Indicates for which parameter a trend reversal could have been achieved. Risk 2013→2021 Risk / - (which means 'no risk') Risk 2013→2021 Risk / - (which means 'no risk') Risk Pressure Types 2021. →2021 AR = artificial recharge, DS = diffuse sources, PS = point sources, OP = other significant pressures, WA = water abstractions	GWB	ICPDR GWB code which is a unique identifier.							
Status 2009 Good / Poor Status Pressure Types Indicates the significant pressures causing poor status in 2009. AR = artificial recharge, DS = diffuse sources, PS = point sources, OP = other significant pressures, WA = water abstractions Risk 2004→2015 Risk / - (which means 'no risk') Exemptions from 2015 Indicates the significant pressures causing poor status in 2015. AR = artificial recharge, DS = diffuse sources, PS = point sources, OP = other significant pressures, 2015 at the latest. Status 2015 Good / Poor Indicates the significant pressures causing poor status in 2015. AR = artificial recharge, DS = diffuse sources, PS = point sources, OP = other significant pressures, WA = water abstractions Significant upward trend Indicates for which parameter a significant sustained upward trend has been identified. Trend reversal (parameter) Indicates for which parameter a trend reversal could have been achieved. Risk 2013→2021 Risk / - (which means 'no risk') Risk Pressure Types Indicates the significant pressures causing risk of failing to achieve good status in 2021. AR = artificial recharge, DS = diffuse sources, PS = point sources, OP = other significant in 2021. AR = artificial recharge, DS = diffuse sources, PS = point sources, OP = other significant pressures causing risk of failing to achieve good status in 2021.	Nat. part	Code of national shares of ICPDR GWBs							
Status Pressure Types 2009Indicates the significant pressures causing poor status in 2009. AR = artificial recharge, DS = diffuse sources, PS = point sources, OP = other significant pressures, WA = water abstractionsRisk 2004→2015Risk / - (which means 'no risk')Exemptions from 2015Good / PoorStatus 2015Good / PoorStatus Pressure Types 2015Indicates the significant pressures causing poor status in 2015. AR = artificial recharge, DS = diffuse sources, PS = point sources, OP = other significant pressures, WA = water abstractionsSignificant upward trend (parameter)Indicates for which parameter a significant sustained upward trend has been identified.Trend reversal (parameter)Indicates the significant pressures causing risk of failing to achieve good status in 2021.Risk Pressure Types →2021Risk / - (which means 'no risk')All A = artificial recharge, DS = diffuse sources, PS = point sources, OP = other significant pressures for which parameter a trend reversal could have been achieved.Risk Pressure Types →2021Risk / - (which means 'no risk')Risk Pressure Types →2021AR = artificial recharge, DS = diffuse sources, PS = point sources, OP = other significant pressures, WA = water abstractions	QUALITY / QUANTITY								
Status Pressure Types 2009recharge, $DS = diffuse sources, PS = point sources, OP = other significant pressures,WA = water abstractionsRisk 2004 \rightarrow 2015Risk / - (which means 'no risk')Exemptions from 2015Indicates whether there are exemptions for the GWB from achieving good status by2015 at the latest.Status 2015Good / PoorStatus Pressure Types2015Indicates the significant pressures causing poor status in 2015. AR = artificialrecharge, DS = diffuse sources, PS = point sources, OP = other significant pressures,WA = water abstractionsSignificant upward trend(parameter)Indicates for which parameter a significant sustained upward trend has beenidentified.Trend reversal(parameter)Indicates for which parameter a trend reversal could have been achieved.Risk 2013 \rightarrow 2021Risk / - (which means 'no risk')Risk Pressure Types\rightarrow 2021AR = artificial recharge, DS = diffuse sources, PS = point sources, OP = othersignificant pressures causing risk of failing to achieve good status in2021.AR = artificial recharge, DS = diffuse sources, PS = point sources, OP = othersignificant pressures, WA = water abstractions$	Status 2009	Good / Poor							
2009Fecharge, DS = diffuse sources, PS = point sources, OP = other significant pressures, WA = water abstractionsRisk 2004→2015Risk / - (which means 'no risk')Exemptions from 2015Indicates whether there are exemptions for the GWB from achieving good status by 2015 at the latest.Status 2015Good / PoorStatus Pressure Types 2015Indicates the significant pressures causing poor status in 2015. AR = artificial recharge, DS = diffuse sources, PS = point sources, OP = other significant pressures, WA = water abstractionsSignificant upward trend (parameter)Indicates for which parameter a significant sustained upward trend has been identified.Trend reversal (parameter)Indicates for which parameter a trend reversal could have been achieved.Risk 2013→2021Risk / - (which means 'no risk')Risk Pressure Types →2021Indicates the significant pressures causing risk of failing to achieve good status in 2021. AR = artificial recharge, DS = diffuse sources, PS = point sources, OP = other significant pressures, WA = water abstractions	Status Prossure Types	Indicates the significant pressures causing poor status in 2009. $AR = artificial$							
WA = water abstractionsRisk 2004→2015Risk / - (which means 'no risk')Exemptions from 2015Indicates whether there are exemptions for the GWB from achieving good status by 2015 at the latest.Status 2015Good / PoorStatus Pressure Types 2015Indicates the significant pressures causing poor status in 2015. AR = artificial recharge, DS = diffuse sources, PS = point sources, OP = other significant pressures, WA = water abstractionsSignificant upward trend (parameter)Indicates for which parameter a significant sustained upward trend has been identified.Trend reversal (parameter)Indicates for which parameter a trend reversal could have been achieved.Risk 2013→2021Risk / - (which means 'no risk')Risk Pressure Types →2021Indicates the significant pressures causing risk of failing to achieve good status in 2021. AR = artificial recharge, DS = diffuse sources, PS = point sources, OP = other significant pressures, WA = water abstractions		recharge, DS = diffuse sources, PS = point sources, OP = other significant pressures,							
Exemptions from 2015Indicates whether there are exemptions for the GWB from achieving good status by 2015 at the latest.Status 2015Good / PoorStatus Pressure Types 2015Indicates the significant pressures causing poor status in 2015. AR = artificial recharge, DS = diffuse sources, PS = point sources, OP = other significant pressures, WA = water abstractionsSignificant upward trend (parameter)Indicates for which parameter a significant sustained upward trend has been identified.Trend reversal (parameter)Indicates for which parameter a trend reversal could have been achieved.Risk 2013→2021Risk / - (which means 'no risk')Risk Pressure Types →2021Indicates the significant pressures causing risk of failing to achieve good status in 2021.AR = artificial recharge, DS = diffuse sources, PS = point sources, OP = other significant pressures, WA = water abstractions	2007	WA = water abstractions							
Exemptions from 20152015 at the latest.Status 2015Good / PoorStatus Pressure Types 2015Indicates the significant pressures causing poor status in 2015. AR = artificial recharge, DS = diffuse sources, PS = point sources, OP = other significant pressures, WA = water abstractionsSignificant upward trend (parameter)Indicates for which parameter a significant sustained upward trend has been identified.Trend reversal (parameter)Indicates for which parameter a trend reversal could have been achieved.Risk 2013→2021Risk / - (which means 'no risk')Risk Pressure Types →2021Indicate recharge, DS = diffuse sources, PS = point sources, OP = other significant pressures, WA = water abstractions	Risk 2004→2015	Risk / - (which means 'no risk')							
2015 at the latest.Status 2015Good / PoorStatus Pressure Types 2015Indicates the significant pressures causing poor status in 2015. AR = artificial recharge, DS = diffuse sources, PS = point sources, OP = other significant pressures, WA = water abstractionsSignificant upward trend (parameter)Indicates for which parameter a significant sustained upward trend has been identified.Trend reversal (parameter)Indicates for which parameter a trend reversal could have been achieved.Risk 2013 \rightarrow 2021Risk / - (which means 'no risk')Risk Pressure Types \rightarrow 2021Indicates the significant pressures causing risk of failing to achieve good status in 2021.AR = artificial recharge, DS = diffuse sources, PS = point sources, OP = other significant pressures, WA = water abstractions	Examptions from 2015	Indicates whether there are exemptions for the GWB from achieving good status by							
Status Pressure Types 2015Indicates the significant pressures causing poor status in 2015. AR = artificial recharge, DS = diffuse sources, PS = point sources, OP = other significant pressures, WA = water abstractionsSignificant upward trend (parameter)Indicates for which parameter a significant sustained upward trend has been identified.Trend reversal (parameter)Indicates for which parameter a trend reversal could have been achieved.Risk 2013->2021Risk / - (which means 'no risk')Risk Pressure Types > >2021Indicates the significant pressures causing risk of failing to achieve good status in 2021.AR = artificial recharge, DS = diffuse sources, PS = point sources, OP = other significant pressures, WA = water abstractions	Exemptions from 2015	2015 at the latest.							
Status Pressure Types 2015recharge, $DS = diffuse sources$, $PS = point sources$, $OP = other significant pressures$, $WA = water abstractions$ Significant upward trend (parameter)Indicates for which parameter a significant sustained upward trend has been identified.Trend reversal (parameter)Indicates for which parameter a trend reversal could have been achieved.Risk 2013 \rightarrow 2021Risk / - (which means 'no risk')Risk Pressure Types \rightarrow 2021Indicates the significant pressures causing risk of failing to achieve good status in 2021.AR = artificial recharge, DS = diffuse sources, PS = point sources, OP = other significant pressures, WA = water abstractions	Status 2015	Good / Poor							
2015Fecharge, $DS = diffuse sources, PS = point sources, OP = other significant pressures,WA = water abstractionsSignificant upward trend(parameter)Indicates for which parameter a significant sustained upward trend has beenidentified.Trend reversal(parameter)Indicates for which parameter a trend reversal could have been achieved.Risk 2013→2021Risk / - (which means 'no risk')Risk Pressure Types→2021Indicates the significant pressures causing risk of failing to achieve good status in2021.AR = artificial recharge, DS = diffuse sources, PS = point sources, OP = othersignificant pressures, WA = water abstractions$	Status Prossura Typos	Indicates the significant pressures causing poor status in 2015. $AR = artificial$							
WA = water abstractionsSignificant upward trend (parameter)Indicates for which parameter a significant sustained upward trend has been identified.Trend reversal (parameter)Indicates for which parameter a trend reversal could have been achieved.Risk 2013→2021Risk / - (which means 'no risk')Risk Pressure Types →2021Indicates the significant pressures causing risk of failing to achieve good status in 2021.AR = artificial recharge, DS = diffuse sources, PS = point sources, OP = other significant pressures, WA = water abstractions	• -	recharge, DS = diffuse sources, PS = point sources, OP = other significant pressures,							
(parameter)identified.Trend reversal (parameter)Indicates for which parameter a trend reversal could have been achieved.Risk 2013 \rightarrow 2021Risk / - (which means 'no risk')Risk Pressure Types \rightarrow 2021Indicates the significant pressures causing risk of failing to achieve good status in 2021.Risk Pressure Types \rightarrow 2021AR = artificial recharge, DS = diffuse sources, PS = point sources, OP = other significant pressures, WA = water abstractions	2015	WA = water abstractions							
Trend reversal (parameter)Indicates for which parameter a trend reversal could have been achieved.Risk 2013 \rightarrow 2021Risk / - (which means 'no risk')Risk Pressure Types \rightarrow 2021Indicates the significant pressures causing risk of failing to achieve good status in 2021.AR = artificial recharge, DS = diffuse sources, PS = point sources, OP = other significant pressures, WA = water abstractions	Significant upward trend	Indicates for which parameter a significant sustained upward trend has been							
(parameter)Indicates for which parameter a trend reversal could have been achieved.Risk 2013 \rightarrow 2021Risk / - (which means 'no risk')Risk Pressure TypesIndicates the significant pressures causing risk of failing to achieve good status in 2021. \rightarrow 2021AR = artificial recharge, DS = diffuse sources, PS = point sources, OP = other significant pressures, WA = water abstractions	(parameter)	identified.							
(parameter)Risk 2013 \rightarrow 2021Risk / - (which means 'no risk')Risk Pressure TypesIndicates the significant pressures causing risk of failing to achieve good status in 2021. \rightarrow 2021AR = artificial recharge, DS = diffuse sources, PS = point sources, OP = other significant pressures, WA = water abstractions	Trend reversal	Indicates for which parameter a trand reversal could have been achieved							
Risk Pressure TypesIndicates the significant pressures causing risk of failing to achieve good status in 2021. \rightarrow 2021AR = artificial recharge, DS = diffuse sources, PS = point sources, OP = other significant pressures, WA = water abstractions	(parameter)	indicates for which parameter a trend reversar could have been achieved.							
Risk Pressure Types $2021.$ $\rightarrow 2021$ AR = artificial recharge, DS = diffuse sources, PS = point sources, OP = other significant pressures, WA = water abstractions	Risk 2013→2021								
$\Rightarrow 2021$ AR = artificial recharge, DS = diffuse sources, PS = point sources, OP = other significant pressures, WA = water abstractions		Indicates the significant pressures causing risk of failing to achieve good status in							
significant pressures, $WA =$ water abstractions	Risk Pressure Types	2021.							
	→2021								
Exemptions from 2021 Indicates the year by when good status is expected to be achieved.		significant pressures, WA = water abstractions							
	Exemptions from 2021	Indicates the year by when good status is expected to be achieved.							

9

GWB	Name	National part	Year of status assessment	Chemical Status	Which parameters cause poor status	Failed general assessment of GWB as a whole	Saline or other intrusions	Failed achievement of WFD Article 4 objectives for associated surface waters	Significant damage to GW dependent terrestrial ecosystem	WFD Art 7 drinking water protected area affected	Increasing trend exceeding starting points of trend reversal
		· · · · · · · · · · · · · · · · · · ·		good / poor	parameter	Yes / No / Unknown (parameter)	Yes / No / Unknown (parameter)	Yes / No / Unknown (parameter)	Yes / No / Unknown (parameter)	Yes / No / Unknown (parameter)	Yes / No / Unknown (parameter)
GWB-1	Deep GWB – Thermal Water	AT-1	2014	Good	-	-	-	-	-	-	-
		DE-1	2014	Good	-	-	-	-	-	-	-
GWB-2	Upper Jurassic – Lower Cretaceous GWB	BG-2	2014	Good	-	-	-	-	-	-	-
		RO-2	2014	Good	-	-	-	-	-	-	-
GWB-3	Middle Sarmatian - Pontian GWB	MD-3	2014	Good	-	-	-	-	-	-	-
		RO-3	2014	Good	-	-	-	-	-	-	-
GWB-4	Sarmatian GWB	BG-4	2014	Good	-	-	-	-	-	-	-
		RO-4	2014	Good	-	-	-	-	-	-	-
GWB-5	Mures / Maros	HU-5	2014	Poor	nitrates	Yes	-	-	-	-	-
0.112 0		RO-5	2014	Poor	nitrates	Yes	-	-	-	-	-
GWB-6	Somes / Szamos	HU-6	2014	Good	-	-	-	-	-	-	-
0110 0		RO-6	2014	Good	-	-	-	-	-	-	-
	Upper Pannonian – Lower Pleistocene /	HU-7	2014	Poor	nitrates	Yes	-	Yes	-	-	-
GWB-7	Vojvodina / Duna-Tisza köze deli r.	RO-7	2014	Good	-	-	-	-	-	-	-
		RS-7	2013	Good*	-	-	-	-	-	-	-
	Podunajska Basin, Zitny Ostrov / Szigetköz,	HU-8	2014	Poor	nitrates	Yes	-	-	-	-	-
GWB-8	Hanság-Rábca	SK-8	2014	Good		-	-	Unknown	Unknown	-	(NH ₄ ,NO ₃ – agri) (Cl, As, SO ₄ , TOC – industry)
GWB-9	Bodrog	HU-9	2014	Good	-	-	-	-	-	-	-
GVVD-9	boulog	SK-9	2014	Good	-	-	-	Unknown	Unknown	-	-
GWB-10	Slovensky kros / Agetalak has	HU-10	2014	Good	-	-	-	-	-	-	-
GVVD-10	Slovensky kras / Aggtelek-hgs.	SK-10	2014	Good	-	-	-	Unknown	Unknown	-	-
	Komarnanska Vysoka Kryha / Dunántúli-	HU-11	2014	Good	-	-	-	-	-	-	-
GWB-11	khgs. északi r.	SK-11	2014	Unknown	-	-	-	-	-	-	Unknown

Summary table: Reasons for failing good groundwater CHEMICAL status in 2015 for the ICPDR GW-bodies.

'-' means 'No'; * The status information is of low confidence as it is based on risk assessment;

Summary table: Reasons of failing good groundwater QUANTITATIVE status in 2015 for the ICPDR GW-bodies.

			Year of status		Exceedance of available	Failed achievement of WFD Article 4 objectives for associated surface	Significant damage to GW dependent terrestrial	Uses affected (drinking	Intrusions detected or likely to happen due to alterations of flow directions resulting from level
GWB	Name	National part	assessment	Quantitative status	GW resource Yes / No / Unknown	waters Yes / No / Unknown	ecosystem Yes / No / Unknown	water use, irrigation etc.) Yes / No / Unknown If yes, which?	changes Yes / No / Unknown
GWB-1	Deep GWB – Thermal Water	AT-1 DE-1	2014 2014	Good Good	-	-	-	-	-
GWB-2	Upper Jurassic – Lower Cretaceous GWB	BG-2	2014	Good	-	-	-	-	-
GWB-3	Middle Sarmatian - Pontian GWB	RO-2 MD-3	2014 2014	Good	-	-	-	-	-
GWB-4	Sarmatian GWB	RO-3 BG-4	2014 2014	Good Good	-	-	-	-	-
GWB-5	Mures / Maros	RO-4 HU-5	2014 2014	Good Good					-
		RO-5 HU-6	<u>2014</u> 2014	Good Good	-	-	-	-	-
GWB-6	Somes / Szamos	RO-6	<u>2014</u> 2014	Good Poor	-	-		-	-
GWB-7	Upper Pannonian – Lower Pleistocene / Vojvodina / Duna-Tisza köze deli r.	HU-7 RO-7 RS-7	2014 2014 2013	Good Poor*	Yes - Yes	- - Unknown	Yes - Unknown	- - Unknown	- - Unknown
GWB-8	Podunajska Basin, Zitny Ostrov / Szigetköz, Hanság-Rábca	HU-8 SK-8	2014 2014 2014	Poor Good	-	-	Yes	-	-
GWB-9	Bodrog	HU-9 SK-9	2014 2014 2014	Good Good	-	-	-	-	-
GWB-10	Slovensky kras / Aggtelek-hgs.	HU-10 SK-10	2014 2014 2014	Good Good	-	-	-	_	-
GWB-11	Komarnanska Vysoka Kryha / Dunántúli-khgs. északi r.	HU-11 SK-11	2014 2014 2014	Poor Unknown	Yes	Yes	Yes	_	-

- means 'No'; * The status information is of low confidence as it is based on risk assessment;

Summary table: Groundwater threshold values

		GWB-2	GWB-3	GWB-4	GWE	8-5	GWB	-6	GWB-	-7	GI	VB-8	GWB	.9	GWB-10	GWB-11
Parameter	unit	RO-2	RO-3	RO-4	RO-5	HU-5	HU-6	RO-6	HU-7	RO-7	HU-8	SK-8	HU-9	SK-9	HU-10	HU-11
Ammonium	mg/l	0.5	6.4	0.7	0.5–1.9	2–5	2–5	0.5–1.3	2–5	6.4	0.5–2	0.255-0.26	2–5	0.295	0.5	0.5
AOX	µg/l					20	20		20		20		20		20	20
Arsenic	µg/l	10	10–40	10	40	10		10				6				
Benzene	µg/l	10	10	10	10			10		10						
Cadmium	µg/l	5	5	5	5	5	5	5	5	5	5		5		5	5
Chloride	mg/l	250	250	250	250	250	250	250	250	250	250	60.75–62.3	250		250	250
Chromium	µg/l		500		50			500		50						
Conductivity	µS/cm					2500	2500		2500		2500		2500		2500	2500
Copper	µg/l		100		100			100		100						
Lead	µg/l	10	10–70	10	10–20	10	10	30–70	10	10	10		10		10	10
Mercury	µg/l	1	1	1		1	1	1	1	1	1		1		1	1
Nickel	µg/l		200	20	20			20		20						
Nitrates	mg/l					50	50		50		50		50		50	50
Nitrites	mg/l	0.5	0.5	0.5	0.5			0.5		0.5						
Phenols	µg/l				2			2		4						
Phosphates	mg/l	0.5–1.4	1.4	0.5	0.5–0.6			0.5		1						
Sulphates	mg/l	250	250	250	250	250–500	250	250	250–500	250	250	148.9–157.6	250		250	250
Tetrachloroethylen	µg/l	10	10	10	10	10	10	10	10	10	10		10		10	10
Trichlorethylene	µg/l	10	10	10	10	10	10	10	10	10	10		10		10	10
Zinc	µg/l		5	5	5			5		5						

Methodologies of status and trend assessment of the ICPDR GW-bodies

GWB-1		National share	AT-1 DE-1		r each national /B?
				Quality (substance)	Quantity
List of individua	ll GW-bodies	AT	ATGK100158	Good	Good
	le national share tcl. country code)	DE	DEGK1110	Good	Good
Description/C haracterisation of the ICPDR GW-body	 Upper Austrian Molasse Basin is of transboundary importance. It is used for spa put to gain geothermal energy. The geothermal used water is totally re-injected in the sa aquifer. The transboundary GW-body covers a total area of 5,900 km²; the length is 155 km width is up to 55 km. The aquifer is Malm (karstic limestone); the top of the Malm redepth of more than 1,000 m below sea level in the Bavarian part and 2,000 m in the Austrian part. The groundwater recharge is mainly composed of subterranean inflow adjacent Bohemian Massif and infiltration of precipitation in the northern part of the area. The total groundwater recharge was determined to 820 l/s. The GW-body is see basin-wide importance because of its intensive use. An expert group takes care for the permanent bilateral exchange of information and a sustainable transboundary use. 				a purposes and he same km and the lm reaches a the Upper nflow of the of the GWB is selected as of for the
Description of status assessment methodology.	The chemical status analysis data accord for the evaluation of pesticides) are not r As expected, the par cases considerably) conditions. Therefor as that for near-sury measurement and an surface GWBs, it sh and thermal uses), g rises above a certain	ding to a procedure f the qualitative statu relevant for deep GW rameters measured it from site to site. The from site to site. The re the description of face GWBs (on the b nalysis data available ould be considered to good status is not on n level, but also if it	n the GWB extending o is is due to regionally o the qualitative status o pasis of aggregated dat le at every individual n that, due to the utilization ly not achieved if the c	o states. The deci. Bs (such as nitrat over 5900 km ² diff different geo-hydr cannot be made in ca), but made on th neasuring site. Co ion of the waters (oncentration of co	sive parameters e and fer (in some caulic the same way he basis of ontrary to near- balneological ertain contents
	fluctuations relevant Good chemical statu parameters neither measuring site. It is of many years of mar- required. In any case, the GW measuring sites mee The following param the deep GWB: temp Quantitative Status No Changes since 2 There is no interact ecosystems. The quantitative status - the identification	t for individual para us is considered to b exceed nor fall below planned to examine onitoring, (at least ov 'B is considered to b et good status. neters are used as a perature, electrical o 009 ion between deep grutus tus of the deep GWE	e reached if the individua e reached if the thresh w the scope of fluctuate the current selected so wer a period of 10 year e in a good chemical s basis for the determine conductivity, total hard oundwater and surface e can be described by re priod of many years mo	al measuring sites old value (TV) of ions determined fa cope of fluctuation (cope of fluctuation (cope of fluctuation (cope of fluctuation (cope of fluctuation (cope of fluctuation) (cope of fluctua	the decisive or every as on the basis aem, where 5% of the fative status of d chloride.

GWB-1: Deep Groundwater Body – Thermal Water

	•	- a balancing calculation: a comparison between the thermal water supply and thermal water abstractions.							
		Apart from Bad Füssing (records since 1948), no long-term monitoring of pressure potentials that would be significant for a trend analysis is available.							
	course of this balan water abstractions of	As early as in 1998, detailed thermal water balancing was carried out for the deep GWB. In the course of this balancing an exploitation of the available thermal water resources by thermal water abstractions of about 25% was recorded, which corresponds to a good quantitative status (at least 30% of the quantity available).							
	In the meantime, the extent of utilisation has been considerably reduced due to successfully implemented management measures (among other things the obligation to reinject the used thermal water exclusively). Good quantitative status could be even further improved on the basis of the level of hydraulic pressure in the thermal waters of Bad Füssing which has risen again since then.								
	With a view to the re points and abstracte made. For these are	ed water quantities,	a sub-division of th	ne balance area inte	o sub-areas can be				
Groundwater the relationships	reshold value	No changes since 2009							
Verbal description assessment methods		No changes since 2009							
Verbal description reversal assessment	on of the trend nent methodology	No changes since 2009							
Threshold valu	es per GWB			_					
Poll	utant / Indicator	TV (or range) [unit]	NBL (or range) [unit]	Level of TV establishment (national, RBD, GWB)	Related to risk in this GWB [yes/-]				

GWB-2		National share	BG-2, RO-2	Status 2015 for each national GWB?			
				Quality (substance)	Quantity		
List of individua	l GW-bodies	BG-2	BG1G0000J3K051	Good	Good		
	ole national share	RO-2	RODL06	Good	Good		
(national code in	ncl. country code)						
Description/C haracterisation of the ICPDR GW-body	BG1G0000J3K051 additional sub-divis lithological compos strata consists of ma mentioned deposits small cropped out a GWB. The main use There is no significa In Romania the GW	(Upper Jurassic-I sion on the basis of ition of GWB is: 1 arls, clays, sands, is Hauterivian, So treas the GWB is we e of groundwater i ant impact on the B has an interact	tifying the geographical be Lower Cretaceous) is the g of groundwater flow lines of imestones, dolomitic limes limestones, pebbles and lo urmatian, Pliocene and Qu very well protected. There is for drinking water, agrid GWB in either Bulgaria (1 ion with Lake Sintghiol site ant' is for both GWBs the	geological bounda and piezometric he stones and dolomit oess. The age of th uaternary. With thu is no significant in culture and industri BG) or Romania (I uated near the Bla	ries. After that ads.The ees. Overlying e above e exception of npact on the ry supply. RO). ack Sea.		
Description of	Chemical Status				,		
status assessment methodology.	Bulgaria: Assessment of the chemical status of groundwater has been done by: Analysing of the results in individual monitoring points within each of the GWBs; Consideration of degree of water exchange between groundwater and surface waters; Identifying of the pressures - sources of pollution; The background levels have been used for threshold values determinations. Threshold values have been determined according to CIS Guidance No. 18. Contamination limits have been determined for all indicators listed in Annex II Part B of Directive 2006/118/EC and indicators of the report under Art. 5 of Directive 2006/118/EC a) nitrate, manganese, iron						
	b) for all pollutants and indicators of pollution have considered during the characterization of groundwater bodies for risk assessment to not achieve good chemical status.						
	Romania: The criteria for the quality status assessment were: overlying strata for natural protection, present groundwater quality, pressures and their impacts.						
	• for each monitoring point the annual average concentrations for each indicators was calculated; for the metals the concentration of the dissolved form was considered;						
	• For each monitoring point the annual average concentration of the each parameters was compared with the thresholds values (determined for each GWB) or standards value (nitrates and pesticides).						
	• The GWB is of good chemical status when no EQS or TV is exceeded in any monitoring point.						
	• The GWB is of poor chemical status when EQS or TV are exceeded at monitoring points representing more than 20% of the GWB surface.						
	Quantitative Status Bulgaria: applied that considers the impacts of anthropogenically induced long-term alterations in groundwater level and/or flow in accordance with the "CIS Guidance № 18". Each test will assess whether the GWB is meeting the relevant environmental objectives. Not all environmental objectives will apply to every GWB. Therefore only the relevant tests will need to be applied as necessary.						
	Romania: The criterion for risk assessment of the quantity status is based on trend assessment evolution of the groundwater levels. The quantitative status has been assessed taking into account the CIS Guidance no.18. The following criteria have been used:						
	• water bala	nce					
	• the connec	tion with surface	waters				
	• the influen	ce on the terrestri	al ecosystems which depe	nd directly on the	GWB		

GWB-2: Upper Jurassic – Lower Cretaceous GWB

	• the effects of saline or other intrusions
	The quantitative status analysis has been done for the GWB level by comparing the average of the hydrostatic level from 2011 (reference year) with the multiannual average levels (30–40 years)
Groundwater threshold value relationships	Receptors considered: Romania: Drinking Water standards
	<u>Consideration of NBL and EQS (environmental quality standards, drinking water standards) in</u> the TV establishment:
	Romania: The methodology for TV establishment in Romania has been developed according to CIS Guidance No. 18. NBL are the key elements in the process of TV setting. As described above, during the TV establishment, the NBL have been compared with the drinking water standards. The maximum allowable concentrations (MAC) provided by the Law no.458/2002 as amended, were chosen as TV where NBL are smaller than MAC. Where NBL are higher than MAC, a small addition of 0.2 NBL was used, in order to avoid misclassification of the respective GWB (TV = NBL + 0.2 NBL = 1.2 NBL).
	The updated list of TVs established for each GWB was published in the new Order of the Minster no. 621/2014 approving TV for GWBs from Romania.
	Bulgaria: The methodology for TV determination in Bulgaria has been developed according to CIS Guidance No. 18. TVs are determined by comparing NBLs with criterial values (CVs). CVs is the concentration of a pollutant (without taking into account the NBLs), which, if exceeded, could lead to a distortion of the criteria for good status. CVs should take into account the risk assessment and receptors of groundwater. The NBLs were determined for each hydrogeological classes (5 classes) in the 90th percentile and 50th percentile (median) of the statistical sample. As a so called criterial values (CVs) have been used drinking water standards according to the
	Bulgarian Regulation N-9 When we compare BLs and CVs may be two situations : When BL is higher than CVi. In this case, TV is equal to BL. When CV is higher than BL then $TV = BL + Ktv^*$ (CV-BL). $0 < Ktv < 1$
	As recommended and provides reasonable assurance can be assumed value of Ktv in the range
	from 0.5 to 0.75. Lower value (0.5) has a large certainty and should be used for GWBs, which have important economic significance and are the sole source of drinking water supply of settlements. This value should be used for such GWB to which they are attached particularly valuable wetlands
	presence of dependent PA terrestrial ecosystems. The higher value (0.75) should be used in all other cases or GWBs already classified bodies at risk.
Verbal description of the trend assessment methodology	Bulgaria: The trend analysis is based on recognized statistical methods such as regression method. Required information - period with average annual values, semi-annual or quarterly values of the corresponding chemical component – for the first RBMP – period was 1995– 2008; for the second RBMP, the period is 2006–2013. The lengths of the rows of chemical components depend on the frequency of sampling and should be: - In case of 1 value year: not less than 8 years with 8 values; - In case of 2 values per year: at least 5 years with 10 values;
	- In case of 4 values per year: not less than 3 years with 12–15 values. Based on regression analysis is assessed whether there is a break in the trend i.e. after
	sustained upward trend follows sustained downward trend or the opposite case the sustained downward trend is followed by sustained upward trend.
	Initially, the entire curve of the experimental data is approximated by a polynomial curve of degree 2 (quadratic regression curve).
	If there is detected a maximum in the polynomial curve it means that a change of the direction of the trend is available - from ascending to descending.
	If there is detected a minimum in the polynomial curve it means that a change of the direction of the trend is available - from descending to ascending.
	Then, (in case of available maximum) the entire curve is divided into two branches : 1st branch – till the date of the maximum and the second branch - after the peak.

			e with available minin e - after the minimum.	num: 1st branch – till the date of	the minimum and th	e second			
		Data fi by line straigh	rom the first and seco ar trends (straight l at lines corresponds to	ond branch are considered separ ines). The date at which it cro the date at which it changes the ing or from descending to ascend	ssed the two appro direction of the line	ximating			
			By extrapolation of the second (falling) trend can be predicted date at which the starting concentration (75% GWQS in our case 60% TV) will be reached						
	analysis fr		mania: In order to assess the trend in pollutant concentrations, the results of the chemical allysis from the monitoring points have been used. Minimum period of analysis was at least 10 trs (2000–2011).						
		of the data fr		logy for identifying significant upper trends consists in adjustment and aggregation om each monitoring points on groundwater bodies. The trend analysis was done					
		The steps use	ed for trend assessme	nt were:					
		• •	0 01	oints and the associated results o r each year of reference period (2	•	',			
			ishment of baseline co red during the year 2	oncentration for each parameter o 000	is the average conc	entration			
		• Calcule	ation of annual avera	ge for the available data in each	monitoring point				
		• Signific	cant upward trends w	ere identified by Gwstat software	, based on Anova T	est			
description the trend reversal assessmen methodolo	t	the relevant effective way quality. Whe early starting later momen	pollutant. Selected sta y before pollutant cou n we have GWB who g point and vice vers t.	undwater quality standard or 75 arting points should be possible to ncentrations can cause irreversity responds too slowly to changes, a - for responsive GWB should be properimental data is approximate	to reverse trends in ble changes in grou there may be a new be chosen starting p	the most undwater ed for an point at a			
			entire curve of the e adratic regression cu	experimental data is approximate rve).	a by a polynomial	curve of			
				the polynomial curve it means the conding to descending.	eat a change of the	direction			
		of the trend i	is available - from des	the polynomial curve it means the scending to ascending.					
			use of available maximum) the entire curve is divided into two branches: 1 st branch te of the maximum and the second branch - after the peak						
			ith available minimum: 1^{st} branch – till the date of the minimum and the second fter the minimum.						
		linear trends corresponds	Data from the first and second branch are considered separately and are approximated by linear trends (straight lines). The date at which it crossed the two approximating straight lines corresponds to the date at which it changes the direction of the linear trend - from ascending to descending or from descending to ascending						
	By extrapole concentration			lling) trend can be predicted date · case 60% TV) will be reached .F he TV.					
		which, basea		ent methodology consists also in del, and processing the introduce a trend reversal.					
Threshold	l valu	es per GWB							
						Related			
					Level of TV establishment	to risk in this			
	Poll	utant /	TV (or range)		(national, RBD,	GWB			
		cator	[unit]	NBL (or range) [unit]	GWB)	[yes/-]			
RO	Nitre	ates	50 mg/l		National	-			

RO	Benzen	10 µg/l		National	-
RO	Tricloretilena	10 µg/l		National	-
RO	Tetracloretilena	10 µg/l		National	-
RO	Ammonium	0.5 mg/l	0.31mg/l	GWB	-
RO	Chlorides	250 mg/l	73,87 mg/l	GWB	-
RO	Sulphates	250 mg/l	71,44 mg/l	GWB	-
RO	Nitrites	0.5 mg/l	0.039 mg/l	GWB	-
RO	Phosphates	0.5-1.4 mg/l	0.08 mg/l	GWB	-
RO	Cadmium	0.005 mg/l	0.0001mg/l	GWB	-
RO	Mercury	0.001 mg/l	0.000042 mg/l	GWB	-
RO	Lead	0.01 mg/l	0.0011 mg/l	GWB	-
RO	Arsenic	0.01 mg/l	0.00075 mg/l	GWB	-

GWB-3: Middle Sarmatian - Pontian GWB

GWB-3	GWB-3		MD-3 RO-3	Status 2015 for GW	
				Quality (substance)	Quantity
List of individua	ll GW-bodies		MDPR01	Good	Good
forming the whole national share (national code incl. country code)			ROPR05	Good	Good
Description/C haracterisation of the ICPDR GW-body	Buglovian, Volhynia Sarmatian deposits considered that the the Early Buglovian Meotian boundary, Lithologically, the v medium grain-size (350 meters. Hydrogeologically of areal differences, of differences of quant The overlaying strat The groundwater is The criterion for set Moldova: Criteria f and one quantitative consists of four aqu most important for of with interlayers of f aquifer reaches 50 m northern part of the these areas coincide valley of Prut river. Gotesti it was detect Hydraulic propertied with mean values of varies in a range of When water bearing hydrocarbonate-cal	an, Basarabian and C thickness is highly va Sarmatian deposits un is lacking. The uppe is difficult to assign a vater-bearing deposit sands, rarely gravels and hydrochemically, f quantitative and qua itative order are espe- ta are predominantly mainly used for drink lection as "important for delineation are: ga e status; GWB vulner ifers. First is the <u>Bad</u> centralized water sup basin water bearing e with the recharge zo Southwards Baden-S ted by drilling at the so of the aquifer are ra f 5 m/day, transmissiv 0.09–8l/s. g rocks are composed lecium-sodium water w	ierced the following such thersonian. The wells a riable, going from 295 nconformably overlay r boundary of Sarmatic lue to the lack of sure p s are constituted of thi), sometimes with lens the investigation of we ditative order, both how called due to the Sarma represented by detritic king water supply, agrit " consists in its size the eological boundaries; a ability; surface-ground en-Sarmatian aquifer, ply. Water-bearing lay to 90 m, with average a sediments outcrop to the sediments outc	lata have indicated in (Iaşi) to 886 m the Late Badeniar an, respectively th paleontological ela n layers with fine aspect, situated a ells data has revea rizontally and very atian deposits gra e Quaternary depo icultural and indu. at exceeds 4,000 k groundwater flow dwater interaction which is the most ers are represented by gypsum. Thickn thickness of about thickness of about the pre-Quaternar oundwater is disch rs deeper and nea conductivity reach the pre-Subout the pre-Subout the pre-Subout the pre-Subout the pre-Quaternar oundwater is disch rs deeper and nea conductivity reach the pre-Subout the pre-Subout th	d that the (Bârlad). It is a ones, because e Sarmatian- ements. towards t depth of 30– aled important tically. The in size. osits. strial supplies. cm ² . lines; chemical a. The MD GWB productive and ed by limestone ess of the 25 m. In the y surface and harging into the or the village hes 1–12 m/day, acity of wells

per Sarmatian Meotic aquifer system (N1S3-m), which can be included in this GWB is only tially exploited for groundwater abstraction in the southern part of the river basin. Sarmat- otis deposits in the area are represented by fine-grained sands and clay with the lenses of ertz sand with total thickness of the aquifer 60–70 m. This sand is water-bearing and contains and quality water. The thickness of water bearing layers is 4–5 m. Yields of exploitation wells
y between 3 and 7 m ³ /h. Waters from the aquifer system are supplying the needs of several erprises. Near the Prut river valley yields of the wells increase to 10 m ³ /h with the drawdown pt to 30 m. This aquifer contains hydrocarbonate-sodium waters with total mineralization of .5 g/l. In some areas chemical composition changes to sulphate-hydrocarbonate-sodium and teralization increases to 2 g/l. Hydraulic parameters of the aquifer are rather poor: hydraulic ductivity varies between 0.8–5 m/day with mean values of 2.3 m/day and transmissivity nges in a range of 10–25 m ² /day, mean being 5 m ² /day. Dundwater monitoring results over three wells for the period from 2005 to 2009 indicate a rease in the level of groundwater. The rate of decrease is 0.5–1.4 meter per year. This can be ibuted to an increase in the water abstraction from the operating wells located in the vicinity. <i>Idle Sarmatian (Congeriey) aquifer</i> is used for a centralised water supply in the southern part Republic of Moldova. Groundwater is contained in fine-grained sands with interlayers of sw, sandstones and limestones. Thickness of water bearing sediments varies from 5–15 m to 50 m with mean values of 20–30 m. Hydraulic properties of water bearing sands are quite r. Hydraulic conductivity changes from 0.6 to 1.9 m/day average being 1.3 m/day. Insmissivity values are also very low and do not exceed 20–50 m ² /day. Depth to groundwater ifer depends on the landscape and varies from 1.5 to 100 m. Yields of wells vary from 5 to 75 When hydrocarbonate-sulphate-chloride anions dominate in groundwater its mineralization reases up to 2 g/l. Durb the aquifer indicates a slight decrease in groundwater level with the rate of 0.4–5 m/da. The aquifer is spread in the southern part of Republic of Moldova. Water bearing sediments composed of sandy clays with interlayers of sand and shell limestone with the total thickness 0-80 m. vailing hydraulic properties of water bearing sands are taber of 0.4–5 m/day. Thy water supply in the southern to fine heavifer
t of the basin.
 emical Status mania: The criteria for the quality status assessment were: overlying strata for natural tection, present groundwater quality, pressures and their impacts. for each monitoring point the annual average concentrations for each indicator was calculated; for the metals the concentration of the dissolved form was considered; For each monitoring point the annual average concentration of the each parameters was compared with the thresholds values (determined for each GWB) or standards value (nitrates and pesticides). The GWB is of good chemical status when no EQS or TV is exceeded in any monitoring point. The GWB is of poor chemical status when EQS or TV are exceeded at monitoring points representing more than 20% of the GWB surface. antitative Status: mania: The criterion for risk assessment of the quantity status is based on trend assessment lution of the groundwater levels. The quantitative status has been assessed taking into

		-						
				The following criteria have	been used:			
		• wat	er balance					
		• the	connection with surj	face waters				
		• the	influence on the terr	estrial ecosystems which dep	end directly on the GWI	3		
		• the effects of saline or other intrusions						
				has been done for the GWB le (reference year) with the mul				
Groundwa threshold value relationshi			rinking Water stand					
	•	Consideration of NBL and EQS (environmental quality standards, drinking water standards) in the TV establishment:						
		Romania: The methodology for TV establishment in Romania has been developed according to CIS Guidance No. 18. NBL are the key elements in the process of TV setting. As described previously, during the TV establishment, the NBL have been compared with the drinking water standards. The maximum allowable concentrations (MAC) provided by the Law no.458/2002 as amended, were chosen as TV where natural background levels (NBL) are smaller than MAC. Where background levels are higher than MAC, a small addition of 0.2 NBL was used, in order to avoid misclassification of the respective GWB (TV = NBL + 0.2 NBL = 1.2 NBL).						
				ed for each GWB was publis proundwater bodies from Rom		the Minster		
Verbal Romania: In order to assess the trend in pollutant concentrations, the results of analysis from the monitoring points have been used. Minimum period of analysis years (2000-2011).								
assessmen methodolo		of the data fi using the Gw	ology for identifying rom each monitoring ystat program. ed for trend assessm	significant upper trends cons points on groundwater bodi ent were:	ists in adjustment and ag es. The trend analysis wa	ggregation as done		
				ng points and the associated es, for each year of reference		lysis,		
		• Esta	ablishment of baselin	ne concentration for each par d during the year 2000				
			0	verage for the available data	in each monitoring poin	a <i>t</i>		
			Ū.	0.0				
-			· ·	ds were identified by Gwstat	•			
Verbal description the trend reversal assessmen methodolo	t	based on the		nethodology consists also in a nd processing the introduced a trend reversal.				
Threshold	l valu	es per GWB						
	hreshold values per GWB					Related to risk in this		
	Pollutant / Indicator		TV (or range) [unit]	NBL (or range) [unit]	(national, RBD, GWB)	GWB [yes/-]		
RO	Nitr		50 mg/l		National	-		
RO	Benz		10 µg/l		National	-		
RO		loretilena	10 μg/l		National	-		
RO		acloretilena	10 μg/l	5 31 mall	National GWB	-		
RO RO		nonium orides	6.4 mg/l 250 mg/l	5,34 mg/l 78,87 mg/l	GWB	-		
RO			250 mg/l	192 mg/l	GWB	-		
	Sulphates 250 mg/l 192 mg/l GWB -							

RO	Nitrites	0,5 mg/l	0.34 mg/l	GWB	-
RO	Phosphates	1,4 mg/l	1,13 mg/l	GWB	-
RO	Chromium	0,5 mg/l	0.0003033 mg/l	GWB	-
RO	Nickel	0,2 mg/l	0.00053 mg/l	GWB	-
RO	Copper	0,1 mg/l	0.00307 mg/l	GWB	-
RO	Zinc	5 mg/l	0.02425 mg/l	GWB	-
RO	Cadmium	0,005 mg/l	0.0000455 mg/l	GWB	-
RO	Mercury	0,001 mg/l	0.000003385 mg/l	GWB	-
RO	Lead	0,01-0,07 mg/l	0.0001825 mg/l	GWB	-
RO	Arsenic	0,01-0,04 mg/l	0.003175 mg/l	GWB	-

GWB-4: Sarmatian GWB

GWB-4		National share	BG-4, RO-4	Status 2015 for each nationa GWB?	
				Quality (substance)	Quantity
List of individua	ll GW-bodies	BG-4	BG1G00000N049	Good	Good
	le national share	RO-4	RODL04	Good	Good
(national code in	cl. country code)				
Description/C haracterisation of the ICPDR GW-body	 The starting point for identifying the boundaries of the GWB BG1G000000N049 Sarmatian is the geological boundaries. The lithological composition of water-bearing deposits is as follows: in Bulgaria: limestones, sands; in Romania: oollitic limestones and organogenic limestones Overlying strata consists of loess and loesses clays and clays. The age of the above mentioned deposits is Quaternary. The GWB is vulnerable with cropped out regions of limestones and sandstones or covered wit loess. GWB main use is for drinking water supply, agriculture and industry supply. 				
Description of status assessment methodology.	results in individual water exchange betw of pollution; The ba Threshold values ha limits have been det and indicators of the a) nitrate , many b) for all polluta of groundwater Romania: The crite protection, present y for each me calculated, For each me was compared value (nitration) The GWB in point.	 Igaria: Assessment of the chemical status of groundwater has been done by: Analysing of the ults in individual monitoring points within each of the GWBs; Consideration of degree of the exchange between groundwater and surface waters; Identifying of the pressures - sources bollution; The background levels have been used for threshold values determinations. The background levels have been used for threshold values determinations. The background levels have been used for threshold values determination. the pressures - sources for the background levels have been used for threshold values determinations. the background levels have been used for threshold values determinations. the background levels have been used for threshold values determination. the background levels have been used for threshold values determinations. the background levels have been used for threshold values determination. the background levels have been used for threshold values determination. the background levels have been used for threshold values determinations. the background levels have been used for threshold values determination. the background levels have been used for threshold values determination. the background levels have been used for threshold values determination. the background levels have been determined according to CIS Guidance No. 18. Contamination its have been determined for all indicators listed in Annex II Part B of Directive 2006/118/EC a) nitrate , manganese , iron b) for all pollutants and indicators of pollution have considered during the characterization of groundwater bodies for risk assessment to not achieve good chemical status. mania: The criteria for the quality status assessment were: overlying strata for natural tection, present groundwater quality, pressures and their impacts. for each monitoring point the annual average concentrations for each indicator wa			

	Quantitative Status
	Bulgaria: applied that considers the impacts of anthropogenically induced long-term alterations in groundwater level and/or flow in accordance with the "CIS Guidance № 18". Each test will assess whether the GWB is meeting the relevant environmental objectives. Not all environmental objectives will apply to every GWB. Therefore only the relevant tests will need to be applied as necessary.
	Romania: The criterion for risk assessment of the quantity status is based on trend assessment evolution of the groundwater levels. The quantitative status has been assessed taking into account the CIS Guidance no.18. The following criteria have been used:
	water balance
	• the connection with surface waters
	• the influence on the terrestrial ecosystems which depend directly on the GWB
	• the effects of saline or other intrusions
	The quantitative status analysis has been done for the GWB level by comparing the average of the hydrostatic level from 2011 (reference year) with the multiannual average levels (30–40 years)
Groundwater	Receptors considered:
threshold value	Romania: Drinking Water standards
relationships	Consideration of NBL and EQS (environmental quality standards, drinking water standards) in the TV establishment:
	Romania: The methodology for TV establishment in Romania has been developed according to CIS Guidance No. 18. NBL are the key elements in the process of TV setting. As described above, during the TV establishment, the NBL have been compared with the drinking water standards. The maximum allowable concentrations (MAC) provided by the Law no.458/2002 as amended, were chosen as TV where NBL are smaller than MAC. Where NBL are higher than MAC, a small addition of 0.2 NBL was used, in order to avoid misclassification of the respective GWB (TV = NBL + 0.2 NBL = 1.2 NBL).
	The updated list of TVs established for each GWB was published in the new Order of the Minster no. 621/2014 approving TV for GWBs from Romania.
	Bulgaria: The methodology for TV determination in Bulgaria has been developed according to CIS Guidance No. 18. The NBLs were determined for each hydrogeological classes (5 classes) in the 90th percentile and 50th percentile (median) of the statistical sample. As a so called criterial values (CVs) have been used drinking water standards according to the Bulgarian Regulation N-9 When we compare BLs and CVs may be two situations : When BL is higher than CVi. In this case, TV is equal to BL.
	When CV is higher than BL then $TV = BL + Ktv^* (CV-BL)$. $0 < Ktv < 1$
	As recommended and provides reasonable assurance can be assumed value of Ktv in the range from 0.5 to 0.75.
	Lower value (0.5) has a large certainty and should be used for GWBs, which have important economic significance and are the sole source of drinking water supply of settlements. This value should be used for such GWB to which they are attached particularly valuable wetlands presence of dependent PA terrestrial ecosystems. The higher value (0.75) should be used in all other cases or GWBs already classified bodies at risk.
Verbal description of the trend assessment methodology	Bulgaria: The trend analysis is based on recognized statistical methods such as regression method. Required information - period with average annual values, semi-annual or quarterly values of the corresponding chemical component – for the first RBMP – period was 1995– 2008; for the second RBMP, the period is 2006–2013. The lengths of the rows of chemical components depend on the frequency of sampling and should be: - In case of 1 value year: not less than 8 years with 8 values; - In case of 2 values per year: at least 5 years with 10 values
	- In case of 2 values per year: at least 5 years with 10 values - In case of 4 values per year: not less than 3 years with 12–15 values
	Based on regression analysis is assessed whether there is a break in the trend i.e. after sustained upward trend follows sustained downward trend or the opposite case the sustained

	downward trend is followed by sustained upward trend.
	Initially, the entire curve of the experimental data is approximated by a polynomial curve of degree 2 (quadratic regression curve).
	If there is detected a maximum in the polynomial curve it means that a change of the direction of the trend is available - from ascending to descending.
	If there is detected a minimum in the polynomial curve it means that a change of the direction of the trend is available - from descending to ascending.
	Then, (in case of available maximum) the entire curve is divided into two branches : 1st branch – till the date of the maximum and the second branch - after the peak.
	In case with available minimum: 1st branch – till the date of the minimum and the second branch - after the minimum.
	Data from the first and second branch are considered separately and are approximated by linear trends (straight lines). The date at which it crossed the two approximating straight lines corresponds to the date at which it changes the direction of the linear trend - from ascending to descending or from descending to ascending
	By extrapolation of the second (falling) trend can be predicted date at which the starting concentration (75% GWQS in our case 60% TV) will be reached
	Romania: In order to assess the trend in pollutant concentrations, the results of the chemical analysis from the monitoring points have been used. Minimum period of analysis was at least 10 years (2000–2011).
	The methodology for identifying significant upper trends consists in adjustment and aggregation of the data from each monitoring points on groundwater bodies. The trend analysis was done using the Gwstat program.
	The steps used for trend assessment were:
	• Identifying the monitoring points and the associated results of chemical analysis, assessment of data series, for each year of reference period (2000–2011)
	• Establishment of baseline concentration for each parameter as the average concentration registered during the year 2000
	• Calculation of annual average for the available data in each monitoring point
	• Significant upward trends were identified by Gwstat software, based on Anova Test
Verbal description of the trend reversal assessment methodology	Bulgaria: The starting point for trend reversal should be placed where the concentration of the pollutant reaches 75% of the groundwater quality standard or 75% of the threshold value of the relevant pollutant. Selected starting points should be possible to reverse trends in the most effective way before pollutant concentrations can cause irreversible changes in groundwater quality. When we have GWB who responds too slowly to changes, there may be a need for an early starting point and vice versa - for responsive GWB should be chosen starting point at a later moment.
	Initially, the entire curve of the experimental data is approximated by a polynomial curve of degree 2 (quadratic regression curve).
	If there is detected a maximum in the polynomial curve it means that a change of the direction of the trend is available - from ascending to descending.
	If there is detected a minimum in the polynomial curve it means that a change of the direction of the trend is available - from descending to ascending.
	Then, (in case of available maximum) the entire curve is divided into two branches: 1^{st} branch – till the date of the maximum and the second branch - after the peak
	In case with available minimum: 1^{st} branch – till the date of the minimum and the second branch - after the minimum.
	Data from the first and second branch are considered separately and are approximated by linear trends (straight lines). The date at which it crossed the two approximating straight lines corresponds to the date at which it changes the direction of the linear trend - from ascending to descending or from descending to ascending
	By extrapolation of the second (falling) trend can be predicted date at which the starting concentration (75% GWQS in our case 60% TV) will be reached .Practically for the second RBMP we have used 60 % from the TV.
	Romania: Trend reversal assessment methodology consists also in the use of Gwstat software,

		d on the 2 sections r the trend slope, thu	nodel, and processing the intro s a trend reversal.	duced data series, can	indicate an
Threshol	ld values per GWB				
	Pollutant / Indicator	TV (or range) [unit]	NBL (or range) [unit]	Level of TV establishment (national, RBD, GWB)	Related to risk in this GWB [yes/-]
RO	Nitrates	50 mg/l		National	-
RO	Benzen	10 µg/l		National	-
RO	Tricloretilena	10 µg/l		National	-
RO	Tetracloretilena	10 µg/l		National	-
RO	Ammonium	0.7 mg/l	0.504 mg/l	GWB	-
RO	Chlorides	250 mg/l	189 mg/l	GWB	-
RO	Sulphates	250 mg/l	120.5 mg/l	GWB	-
RO	Nitrites	0,5 mg/l	0.069 mg/l	GWB	-
RO	Phosphates	0,5 mg/l	0.21 mg/l	GWB	-
RO	Nickel	0,02 mg/l	0.035 mg/l	GWB	-
RO	Zinc	5 mg/l	0.355 mg/l	GWB	-
RO	Cadmium	0.005 mg/l	0.000202 mg/l	GWB	-
RO	Mercury	0.001 mg/l	0.00012 mg/l	GWB	-
RO	Lead	0.01mg/l	0.001 mg/l	GWB	-
RO	Arsenic	0.01 mg/l	0.0013 mg/l	GWB	-

GWB-5: Mures / Maros

GWB-5		National share	HU-5 RO-5	Status 2015 for GW	
				Quality (substance)	Quantity
List of individua	al GW-bodies	HU	HU_AIQ605	Good	Good
forming the who	ole national share	HU	HU_AIQ604	Good	Good
(national code in	ncl. country code)	HU	HU_AIQ594	Poor (nitrate)	Good
		HU	HU_AIQ593	Good	Good
		RO	ROMU20	Poor	Good
		RO	ROMU22	Good	Good
Description/C haracterisation of the ICPDR GW-body	- Romanian border, an important water abstraction in one of The basin of the SE deposits of different Maros/Mures River GWBs in both count it was possible to se four water bodies of the surface to a dep Underneath them an Quaternary strata, 400-500 m correspondent water bodies have bo On the Romanian si	, to the north of the a resource for drinkin country influences the part of the Great Hu ages, which are pro forms the Pleistocen tries. Despite the difj elect the relevant wat ontaining cold water th of 30 m, namely the re two porous GWBs include some parts of onding to the surface peed selected in Rome ide, two water bodies	River lies along both actual river bed of the g water purposes for b e water availability in ungarian Plain is filled gressively thinning in the part of the strata. The ferences in the delinea for bodies from the tra in Hungary (HU), two the shallow GWBs (HU (GWB HU_AIQ604, HU (GWB HU_AIQ604, HU the Upper- Pannonia e separating cold and the ania. S are included in the tra- cating horizon at the li	Maros/Mures. In p poth countries and the other. I up with more tha Romania. The allu he aquifer is divident tion method of the nsboundary point contain Quaterna (_AIQ605, HU_AI HU_AIQ593), whi un deposits as well thermal waters). T ansboundary eval	particular, it is water n 2000 m thick avial fan of the ed into several two countries, of view. Of the ary strata from Q594). ch, besides (to a depth of Wo Quaternary uation because

	ROMU20) and Lower Pleistocene (GWB ROMU22) age of the strata. Both water bodies can be lithologically characterised by pebbles, sands and clayey inter-layers, but the upper part is significantly coarser with better permeability. Virtually following the same separation line on the Hungarian side, the lower 100 m of the 250–300 m thick Pleistocene strata is silty-sand, sandy-silt, sand and clay, and the upper part is mainly sand with gravel, so that permeability improves towards the surface (the hydraulic conductivity of the aquifers ranges between 5–30 m/day). The covering layer is mainly sandy silt and clay of 3-13 m thickness. On the Romanian side, the upper water body is unconfined and the lower is confined. In Hungary both confined and unconfined conditions occur in the southern water bodies (HU_AIQ604, HU_AIQ605) and mainly confined conditions are characteristic for the water bodies of the upward flow system (HU_AIQ593, HU_AIQ594). The groundwater table is 2–4 m below the surface in Hungary. Recharge in sandy areas has only local importance (15 Mm3/year). At present, because of the considerable amount of water abstracted from the deep layers, there is a permanent recharge from shallow groundwater to the deep groundwater system (app. 15 Mm ³ /year) and large areas with sandy-silty covered layers also contribute to the recharge of the abstracted amount in Hungary. Another important element of the global recharge of the Hungarian part is the lateral flow across the border, estimated at 15–20 Mm ³ /d (uncertain value based on limited available knowledge). The direction of the groundwater flow is from the recharge area to the discharge areas (main river valleys and zones with groundwater level close to the surface) i.e. from SE to N and NW
Description of status assessment methodology.	 <u>Chemical status</u> Romania: The criteria for the chemical status assessment were: overlying strata for natural protection, present groundwater quality, pressures and their impacts. for each monitoring point the annual average concentrations for each indicator was calculated; for the metals the concentration of the dissolved form was considered; For each monitoring point the annual average concentration of the each parameters was compared with the thresholds values (determined for each GWB) or standards value (nitrates and pesticides). The GWB is of good chemical status when no EQS or TV is exceeded in any monitoring point. The GWB is of poor chemical status when EQS or TV are exceeded at monitoring points representing more than 20% of the GWB surface. Quantitative Status Romania: The criterion for risk assessment of the quantity status is based on trend assessment evolution of the groundwater levels. The quantitative status has been assessed taking into account CIS Guidance No.18. The following criteria have been used: water balance the influence on the terrestrial ecosystems which depend directly on the GWB the effects of saline or other intrusions The quantitative status analysis has been done for the GWB level by comparing the average of the hydrostatic level from 2011 (reference year) with the multiannual average levels (30–40
Groundwater threshold value relationships	years).Receptors consideredRomania: Drinking Water standardsConsideration of NBL and EQS (environmental quality standards, drinking water standards) in the TV establishment:Romania: The methodology for TV establishment in Romania has been developed according to CIS Guidance No. 18. NBL are the key elements in the process of TV setting.As described previously, during the TV establishment, the NBL have been compared with the drinking water standards. The maximum allowable concentrations (MAC) provided by the Law no.458/2002 as amended, were chosen as TV where NBL are smaller than MAC. Where background levels are higher than MAC, a small addition of 0.2 NBL was used, in order to avoid misclassification of the respective GWB (TV = NBL + 0.2 NBL = 1.2 NBL). The updated list of TVs established for each GWB was published in the new Order of the

	Minster	no. 621/2	014 approving TV fo	or groundwater bodies from H	Romania.	
Verbal description the trend	n of <i>analysis</i>	Romania: In order to assess the trend in pollutant concentrations, the results of the chemical analysis from the monitoring points have been used. Minimum period of analysis was at least 10 years (2000-2011).				
assessmen methodolo	ogy aggrega	tion of the	e data from each mo	ficant upper trends consists in nitoring points on groundwat	er bodies. The tren	
	analysis	was done	e using the Gwstat pr	rogram. The steps used for tre	end assessment wei	e:
				oints and the associated resul r each year of reference perio		lysis,
			nment of baseline con ation registered dur	ncentration for each paramet ing the year 2000	er as the average	
	•	Calculat	ion of annual averag	ge for the available data in ea	ch monitoring poir	ıt
				ere identified by Gwstat softw		
X7 1 1 1			-	· · ·		
trend rev	scription of the ersal nt methodology	softwar	e, which, based on t	ssessment methodology cons he 2 sections model, and pro- rsion in the trend slope, thus	cessing the introdu	
Threshold	d values per GV					
Threshow		U D			Level of TV establishment	Related to risk
	Pollutant / Ind	licator	TV (or range) [unit]	NBL (or range) [unit]	(national, RBD, GWB)	in this GWB [yes/-]
HU	Nitrates		50 mg/l	0,5-8,8 mg/l	GWB	yes
HU	Ammonium		2-5 mg/l	1,97-3,6 mg/l	GWB	-
HU	Conductivity		2500 µS/cm	1210-2500 µS/cm	GWB	-
HU	Sulfate		250-500 mg/l	10-475 mg/l	GWB	-
HU	Chloride		250 mg/l	32,5-240 mg/l	GWB	-
HU	Arsenic		μgЛ	31,8-120 μg/l	GWB	-
HU	Cadmium		5 μg/l	0,01-0,33 μg/l	GWB	-
HU	Lead		10 μg/l	2,7-5 µg/l	GWB	-
HU	Mercury		<u>1 μg/l</u>	0,39-0,49 μg/l	GWB	-
HU	Trichlorethyle		10 μg/l		GWB	-
HU HU	Tetrachloroeth		10 μg/l 20 μg/l		GWB GWB	-
	Absorbed orga halogens AOX	-	20 µg/l			-
HU	Pesticides by components		0,1 μg/l		GWB	-
HU	Pesticides all		0,5 µg/l		GWB	-
RO	Nitrates		50 mg/l		National	Yes
RO	Benzen		10 μg/l		National	-
RO	Tricloretilena		10 µg/l		National	-
RO	Tetracloretiler		10 µg/l		National	-
RO	Ammonium		0.5–1.9 mg/l	0.216–1.56 mg/l	GWB	-
RO	Chlorides		250 mg/l	66.755–179.57 mg/l	GWB	-
RO	Sulphates		250 mg/l	102.04–193.99 mg/l	GWB	-
RO	Nitrites		0,5 mg/l	0.046–0.2 mg/l	GWB	-
RO RO	Phosphates Chromium		0,5–0.6 mg/l 0,05 mg/l	0.134–0.5 mg/l 0.006296–0.00811mg/l	GWB GWB	-
RO	Nickel		0,02 mg/l	0.009–0.00836 mg/l	GWB	-
RO	Copper		0,02 mg/l 0.1 mg/l	0.009–0.00830 mg/l	GWB	-
RO	Zinc		5 mg/l	0.125–0.0274 mg/l	GWB	-
RO	Cadmium		0.005 mg/l	0.0035 mg/l	GWB	-
RO	Lead		0.01-0.02 mg/l	0.0075–0.01316 mg/l	GWB	-
RO	Arsenic		0.04 mg/l	0.0289 mg/l	GWB	-
RO	Phenols		0.002mg/l	0.0015 mg/l	GWB	-

GWB-6		National shareHU-6RO-6		Status 2015 for each national GWB?	
				Quality (substance)	Quantity
List of individua	l GW-bodies	HU	HU_AIQ649	Good	Good
	ole national share	HU	HU_AIQ648	Good	Good
	ncl. country code)	HU	HU_AIQ600	Good	Good
		HU	HU_AIQ601	Good	Good
		RO	ROSO01	Good	Good
		RO	ROSO13	Good	Good
Description/C haracterisation of the ICPDR GW-body	The alluvial deposit Hungarian-Romani to the borders. The inhabitants in Roma lowland character transpiration from conservation. The resource and the s lateral flow from the body complex are d General description The Somes/Szamos The aquifer is divid delineation method the transboundary p Four water bodies strata from the su HU_AIQ600). Und Quaternary strata i 400–500 m corresp This Holocene-Pleis. the Upper- and L overlapping each of of delineation, the of are vertically unifie thus no further hork km2. In Romania, the sh sands, argillaceous 25–35 m. The silty-of The deeper (Lower- part by a clay layer West. The gravely represent the main of In Hungary (as par are 50 m thick at the below the surface Hungarian part, with The Quaternary and between 10- 30 m/a bearing part of the level, thermal water Depth of the ground between 2 and 5 m	t of the Somes/Szam an border. It is also aquifer system sup ania and 50,000 inf and upward flow groundwater; 7% recharge zone is in tatus of the terres. the neighbouring cou- described below. 1 River has formed a ided into several Co- of the two countries. containing cold was urface to a depth ferneath are the po- include some parts onding to the surface stocene formation i. ower-Pleistocene s ther, covering a sur- cold part of the Up- d. The Hungarian p izontal separation to hallow (Holocene-O- sands, gravels an clayey covering layo Pleistocene) aquife (); its bottom is decl and sandy strata aquifer for water sur- t of the cold water for the Ukrainian borde at the western bo- tha silty clayey cov quifer is sand or l. It should be noted to a temperature g dwater level (main n in Hungary. The	er is confined (it is sepa lining from 30 m to 130 1 (characteristic to w	ifer system lying i o a population of a On the Hungarian rial ecosystems e water body is e, thus the availal e Hungarian side and Hungarian pa el deposit es. Despite the di ect the relevant wa Two of them con e shallow GWBs 648, HU_AIQ601 ian deposits as we thermal waters. Comania by the di ed only by an upw overed by the water ed only by an upw overed by the water utifer is unconfine eastern part, and utated from the Up the below the surfice estwards from Sa (Pleistocene) and declining bottom to increasing from the declining bottom to an creasing from the the hydraulic cond vater body include a depth of 400–50 be found). d area) below the m the ENE to th	in Ukraine close approx. 170,000 side, due to the require surplus s under nature ole groundwater depend on the arts of the water tain Quaternary (HU_AIQ649,), which beside cll, to a depth of rizon separating are considered, garian approach Holocene layers ard flow system, er body is 1,035 d, consisting of d has a depth of per-Pleistocene ace from East to atu-Mare town) Holocene strata is around 200 m characterise the e NE to the SW). ductivity ranges s the cold water 00 m (under this e WSW in both

GWB-6: Somes / Szamos

	anoundwater level close to the surface
	groundwater level close to the surface). The recharge area is in the Romanian part of the water body (and in Ukraine). In Hungary the infiltrated amount from local recharge zones supplies neighbouring discharge zones and cannot be considered as part of the available groundwater resources.
Description of status assessment methodology.	 <u>Chemical status</u> Romania: The criteria for the chemical status assessment were: overlying strata for natural protection, present groundwater quality, pressures and their impacts. for each monitoring point the annual average concentrations for each indicatoris was calculated; for the metals the concentration of the dissolved form was considered; For each monitoring point the annual average concentration of the each parameters was compared with the TVs (determined for each GWB) or standards value (nitrates and pesticides). The GWB is of good chemical status when no EQS or TV is exceeded in any monitoring point. The GWB is of poor chemical status when EQS or TV are exceeded at monitoring points representing more than 20% of the GWB surface. <u>Quantitative Status</u> Romania: The criterion for risk assessment of the quantity status is based on trend assessment evolution of the groundwater levels. The quantitative status has been assessed taking into account the CIS Guidance No.18. The following criteria have been used: water balance the connection with surface waters
	 the influence on the terrestrial ecosystems which depend directly on the GWB the effects of saline or other intrusions The quantitative status analysis has been done for the GWB level by comparing the average of the hydrostatic level from 2011 (reference year) with the multiannual average levels (30–40 years)
Groundwater threshold value relationships	Receptors consideredRomania: Drinking Water standardsConsideration of NBL and EQS (environmental quality standards, drinking water standards) in the TV establishment:Romania: The methodology for TV establishment in Romania has been developed according to CIS Guidance No. 18. NBL are the key elements in the process of TV setting.As described previously, during the TV establishment, the NBL have been compared with the drinking water standards. The maximum allowable concentrations (MAC) provided by the Law no.458/2002 as amended, were chosen as TV where natural background levels (NBL) are smaller than MAC. Where background levels are higher than MAC, a small addition of 0.2 NBL was used, in order to avoid misclassification of the respective GWB (TV = NBL + 0.2 NBL = 1.2 NBL).The updated list of TVs established for each GWB was published in the new Order of the Minster no. 621/2014 approving TV for groundwater bodies from Romania.
Verbal description of the trend assessment methodology	 Romania: In order to assess the trend in pollutant concentrations, the results of the chemical analysis from the monitoring points have been used. Minimum period of analysis was at least 10 years (2000-2011). The methodology for identifying significant upper trends consists in adjustment and aggregation of the data from each monitoring points on groundwater bodies. The trend analysis was done using the Gwstat program. The steps used for trend assessment were: Identifying the monitoring points and the associated results of chemical analysis, assessment of data series, for each year of reference period (2000–2011) Establishment of baseline concentration for each parameter as the average concentration registered during the year 2000 Calculation of annual average for the available data in each monitoring point

	• Sigr	ificant upward trends	were identified by Gwstat soft	ware, based on Ano	va Test	
Verbal description the trend reversal assessment methodolo	n of which, based an inversion t	Romania: Trend reversal assessment methodology consists also in the use of Gwstat software, which, based on the 2 sections model, and processing the introduced data series, can indicate an inversion in the trend slope, thus a trend reversal.				
Threshol	d values per GWB					
	Pollutant / Indicate	TV (or range) or [unit]	NBL (or range) [unit]	Level of TV establishment (national, RBD, GWB)	Related to risk in this GWB [yes/-]	
HU	Nitrates	50 mg/l	0,5-4,2 mg/l	GWB	-	
HU	Ammonium	2-5 mg/l	1,5-3,3 mg/l	GWB	-	
HU	Conductivity	2500 µS/cm	649-1508 μS/cm	GWB	-	
HU	Sulfate	250 mg/l	17,5-184 mg/l	GWB	-	
HU	Chloride	250 mg/l	20,7-62,4 mg/l	GWB	-	
HU	Arsenic	μg/l	1,7-31,4 μg/l	GWB	-	
HU	Cadmium	5 µg/l	0,008-0,16 µg/l	GWB	-	
HU	Lead	10 µg/l	0,38-4,7 μg/l	GWB	-	
HU	Mercury	1 µg/l	0,005-0,21 µg/l	GWB	-	
HU	Trichlorethylene	10 µg/l		GWB	-	
HU	Tetrachloro ethylene	10 µg/l		GWB	-	
HU	Absorbed organic halogens AOX	20 µg/l		GWB	-	
HU	Pesticides by components	0,1 µg/l		GWB	-	
HU	Pesticides all	0,5 μg/l		GWB	-	
RO	Nitrates	50 mg/l		National	-	
RO	Benzen	10 µg/l		National	-	
RO	Tricloretilena	10 µg/l		National	-	
RO	Tetracloretilena	10 µg/l		National	-	
RO	Ammonium	0.5-1.3 mg/l	0.22-1.05 mg/l	GWB	-	
RO	Chlorides	250 mg/l	19.46- 51.5 mg/l	GWB	-	
RO	Sulphates	250 mg/l	19,01- 91.78 mg/l	GWB	-	
RO	Nitrites	0.5 mg/l	0.08- 0.15 mg/l	GWB	-	
RO	Phosphates	0.5 mg/l	0.16-0.41 mg/l	GWB	-	
RO	Chromium	0.5 mg/l	0.0071-0.010 mg/l	GWB	-	
RO	Nickel	0.02 mg/l	0.011-0.005 mg/l	GWB	-	
RO	Copper	0.1 mg/l	0.0153-0.024 mg/l	GWB	-	
RO	Zinc	5 mg/l	0.26-0.262 mg/l	GWB	-	
RO	Cadmium	0,005 mg/l	0.00085-0.0023 mg/l	GWB	-	
RO	Mercury	0,001 mg/l	0.000035-0.00002 mg/l	GWB	-	
RO	Lead	0.03-0.07 mg/l	0.022-0.055 mg/l	GWB	-	
RO	Arsenic	0.01mg/l	0.0021- 0.006 mg/l	GWB	-	
RO	Phenols	0.002mg/l	0.001- 0.0013 mg/l	GWB	-	

GWB-7		National share	HU-7 RO-7		Status 2015 for each national GWB?	
			RS-7	Quality (substance)	Quantity	
List of individus	1 CW hadias	HU	HU_AIQ528	good	good	
List of individua	le national share	HU	HU_AIQ523	good	good	
	icl. country code)	HU	HU_AIQ532	good	good	
(national code n	ici. country couc)	HU	HU_AIQ487	good	good	
		HU	HU_AIQ590	good	poor	
		HU	HU_AIQ529	poor (nitrate)	poor	
		HU	HU_AIQ522	good	good	
		HU	HU_AIQ533	good	poor	
		HU	HU_AIQ486	good	good	
		HU	HU_AIQ591	poor (nitrate)	poor	
		RO	ROBA18	good	good	
		RS	RS_TIS_GW_I_1	good	poor	
		RS	RS_TIS_GW_SI_1			
		RS	RS_TIS_GW_SI_1 RS_TIS_GW_I_2	good good	good	
		RS	RS_TIS_GW_I_2 RS_TIS_GW_SI_2	good	poor	
		RS	RS_TIS_GW_1_3		good	
		RS	RS_TIS_GW_I_3 RS_TIS_GW_SI_3	good good	poor good	
		RS	RS_TIS_GW_I_4		Ũ	
		RS	RS_TIS_GW_I_4 RS_TIS_GW_SI_4	good	poor	
		RS	RS_TIS_GW_SI_4 RS_TIS_GW_I_7	good	good	
				good	poor	
		RS RS	RS_TIS_GW_SI_7	good	good	
		RS	RS_D_GW_I_1 RS_D_GW_SI_1	good good	poor good	
of the ICPDR GW-body	northern mountaind south-east. The west after crossing the Croatia). The east Serbia it includes t Timis Rivers are in boundaries, since the into the river. The porous aquifer of the Pannonian H and Romania. Ser complex because: ((iii) the need to satu a large part of the nature conservation In Serbia, the area Banat). However, the state borders wi RS_TIS_GW_SI_2; RS_TIS_GW_SI_7;	bus region of Hunga stern boundary is the Hungarian border of ern boundary is so the Banat as well, we mportant discharge there is some flow un system between the Basin. It lies mainly bia and Hungary for and Hungary for a areas and nitrate-so of the whole Duna the transboundary if the Hungary (a RS_TIS_GW_SI_3 and with Romania RS_D_GW_SI_1)	nube-Tisza region str ary to the Danube in Se e Danube itself downst it enlarges towards Sla mewhat east from the hose eastern part is in -lines but cannot be c oder the river in the dee e Danube and Tisza Rive in Hungary and Serbi have selected it as an nce in supplying drink and of agriculture and in otection zones for vulnes sensitive areas). v aquifer system is 17, mportance is related of total of 6 GWBs: and 3 deep (RS_ and 3 deep (RS_ dies situated towards H	erbia, where the ri- ream of Budapest avonia (western p Tisza River in H Romania. The Da onsidered as pur- per aquifer that is vers is the biggest a, with a smaller important trans- ing water for the dustry, (iv) protect the dustry, (iv) protect	iver flows to the in Hungary but art of Backa ir Hungary and ir nube, Tisza ana e hydrodynamic s not discharged geological unit part in Croatia boundary GWB population ana cted areas cover vater resources, as of Backa ana adjacent to the _TIS_GW_SI_1, S_TIS_GW_SI_4, S_TIS_GW_I_7,	
	Romania 4,859 km² In Hungary, the c subsurface catchm	2, with a total aggre uquifer system is a ent areas and dov	gated area of 10,506 ki livided into several w vnward-upward flow the aquifer system is co	n2 for the Vojvodi ater bodies acco systems. For the	ina GWB. rding to major transboundary	

CWD 7. Unner Dennonian Lower Distance	/ Voivodino	/ Dung Tigga köga dali n
GWB-7: Upper Pannonian – Lower Pleistocene	/ voivoullia	/ Duna-risza köze den r.

water bodies. Five of them contain Quaternary strata from the surface to a depth of 23–30 m. Beneath these are five porous GWBs. Besides Quaternary strata, these include part of the Upper-Pannonian deposits as well, to a depth of 400-500 m corresponding to the surface and separating cold and thermal water bodies. The Hungarian part can be characterised by both upward and downward flow systems that are the basis for the horizontal separation of the GWBs. The area covered by these water bodies is 7,098 km2. The aquifer can be considered unconfined in the shallow GWBs, despite a considerable area where the water level is in the semi-permeable covering layer, and confined in the deeper ones. The depth of the groundwater level below the surface ranges between 3 and 5 m in Hungary, with a maximum depth of 7–12 m in the main recharge zones (HU_AIQ529, HU_AIQ591 and HU AIQ533). In Romania, the aquifer system covers around 11,408 km2 and is adjacent to the state border with Serbia. The GWB is generally confined, its covering strata being of Quaternary age. The depth of the groundwater level below surface ranges from 3–20 m. The protection degree of the GWB is very good. The main aquifer is the Quaternary alluvial deposit of the Danube lying on the Pannonian strata. Its thickness is a few tens of meters at the northern, western and southern boundary and increases up to 700 m in the middle of the basin (in the lower Tisza-valley). At the eastern boundary, the thick Quaternary deposit is a mixture of the alluvial deposits of the Danube and the Carpathian rivers. In respect to lithology, the aquifer consists of medium and coarse sands and gravely sands with inter-layers and lenses of silty sands and silty clays. Average hydraulic conductivity ranges between 5–30 m/d. The topographically elevated ridge between the Danube and the Tisza is formed of eolian sand with relatively good recharge conditions and phreatic groundwater. In the river valleys and east of the Tisza, mainly confined conditions appear. The depth of the fluvial-swamp silty clays and swamp clays overlying strata varies from 10-20 m in the western and southern part, and up to 100-125 m in the northeastern part of Backa and in Banat. Here, prior to intensive groundwater abstraction, an artesian type of groundwater occurred. The main recharge area is in Hungary, in the eolian sand ridge, and in Romania. In Hungary, the estimated value of the recharge is approx. 220 Mm3/year. In Serbia, only local recharge areas exist (areas of the Deliblat Sands and the Subotica/Horgos Sands), thus the lateral flow crossing the border from the neighbouring country - as a component of the overall recharge - is very important. The groundwater is mainly discharged by the rivers (and drainage canals) and by the surplus of evapotranspiration from vegetation in the areas characterised by groundwater levels close to the surface. Small lakes and marshes in locally deeper areas (i.e. in topographic depressions) must be considered as local discharge areas – they are important from the nature conservation point of view. Besides natural discharge, there is also significant groundwater tapping for various uses (drinking water, agriculture, industry, irrigation etc.). In Vojvodina, the entire public water supply relies exclusively on groundwater from aquifers formed at different depths, from 20 m to more than 200 m. The direction of the groundwater flow in the upper part of the aquifer-system follows the topography and recharge-discharge conditions. At the Hungarian-Serbian border, the flow direction is almost parallel to the border (flowing slightly from Hungary towards Serbia). In the deeper part, the general flow direction is NW to SE i.e. from the Danube to the Tisza in Hungary and in Backa, while in northern Banat, the piezometric surface subsides from the frontier zone towards the Tisza and the Timis, and in southern Banat, from the Deliblat Sands, it dips to the south and towards the Danube. Description of Chemical status status Romania: The criteria for the quality status assessment were: overlying strata for natural assessment protection, present groundwater quality, pressures and their impacts. methodology. for each monitoring point the annual average concentrations for each indicator was calculated; for the metals the concentration of the dissolved form was considered; For each monitoring point the annual average concentration of the each parameters

- For each monitoring point the annual average concentration of the each parameters was compared with the TVs (determined for each GWB) or standards value (nitrates and pesticides).
- The GWB is of good chemical status when no EQS or TV is exceeded in any monitoring point.
- The GWB is of poor chemical status when EQS or TV are exceeded at monitoring

	points representing more than 20% of the GWB surface.
	Serbia: Depending on the available information for different GWBs, chemical status was assessed using chemical monitoring data or (where no monitoring data was available) by using risk assessment. To assess the risk of failure to achieve good chemical status due to diffuse sources of pollution, a risk map was compiled based on natural characteristics and pollution susceptibility (GW Vulnerability Map), and on local facilities and activities which might contribute to pollution (CLC2000 map).
	Quantitative Status
	Romania: The criterion for risk assessment of the quantity status is based on trend assessment evolution of the groundwater levels. The quantitative status has been assessed taking into account CIS Guidance No.18. The following criteria have been used:
	water balance
	• the connection with surface waters
	• the influence on the terrestrial ecosystems which depend directly on the GWB
	• the effects of saline or other intrusions
	The quantitative status analysis has been done for the GWB level by comparing the average of the hydrostatic level from 2011 (reference year) with the multiannual average levels (30–40 years)
	Serbia: Considering the risk of not achieving good quantitative status, groundwater bodies within which there is a registered trend of groundwater level decrease as a consequence of abstraction are considered to be at risk. For this purpose, data time series of registered groundwater levels were used only for shallow GWBs, since no organized monitoring of deep aquifers exists.
	For groundwater bodies where no quantitative monitoring exists, the estimate of groundwater balance is calculated, using available data on precipitation, abstraction etc. Assessment of risk from non-achievement of the good quantitative status until 2015 was carried out based on the criteria that average GW abstraction over several years < 50% of groundwater recharge, no substance intrusion into the body caused by the change of GW streaming direction and associated surface ecosystems are not endangered by GW abstraction.
Groundwater	Receptors considered:
threshold	Romania: Drinking Water standards
value relationships	Consideration of NBL and EQS (environmental quality standards, drinking water standards) in the TV establishment:
	Romania: The methodology for TV establishment in Romania has been developed according to CIS Guidance No. 18. NBL are the key elements in the process of TV setting.
	As described previously, during the TV establishment, the NBL have been compared with the drinking water standards. The maximum allowable concentrations (MAC) provided by the Law no.458/2002 as amended, were chosen as TV where natural background levels (NBL) are smaller than MAC. Where background levels are higher than MAC, a small addition of 0.2 NBL was used, in order to avoid misclassification of the respective GWB (TV = NBL + 0.2 NBL = 1.2 NBL).
	The updated list of TVs established for each GWB was published in the new Order of the Minster no. 621/2014 approving TV for groundwater bodies from Romania.
Verbal description of the trend	Romania: In order to assess the trend in pollutant concentrations, the results of the chemical analysis from the monitoring points have been used. Minimum period of analysis was at least 10 years (2000-2011).
assessment methodology	The methodology for identifying significant upper trends consists in adjustment and aggregation of the data from each monitoring points on groundwater bodies. The trend analysis was done using the Gwstat program. The steps used for trend assessment were:
	• Identifying the monitoring points and the associated results of chemical analysis, assessment of data series, for each year of reference period (2000–2011)
	• Establishment of baseline concentration for each parameter as the average concentration registered during the year 2000
	• Calculation of annual average for the available data in each monitoring point

		•	ere identified by Gwstat softw ssessment has been developed		n Test
Verbal descriptio the trend reversal assessmen methodol	on of Romania: Trend which, based on an inversion in t Serbia: No meth	d reversal assessment the 2 sections mode the trend slope, thus	at methodology consists also l, and processing the introdu	in the use of Gwstat . ced data series, can	
Threshol	d values per GWB				
	Pollutant / Indicator	TV (or range) [unit]	NBL (or range) [unit]	Level of TV establishment (national, RBD, GWB)	Related to risk in this GWB [yes/-]
HU	Nitrates	50 mg/l	0,5-6,1 mg/l	GWB	yes
HU	Ammonium	2-5 mg/l	1,3-3,6 mg/l	GWB	-
HU	Conductivity	2500 µS/cm	565-1710 μS/cm	GWB	-
HU	Sulfate	250-500 mg/l	5,6-333 mg/l	GWB	-
HU	Chloride	250 mg/l	8-159 mg/l	GWB	-
HU	Arsenic	µg/l	10-106 μg/l	GWB	-
HU	Cadmium	5 µg/l	0,01-0,3µg/l	GWB	-
HU	Lead	10 μg/l	1-8,2 μg/l	GWB	-
HU	Mercury	1 µg/l	0,005-0,52 µg/l	GWB	-
HU	Trichlorethylene	10 μg/l		GWB	-
HU	Tetrachloro ethylene	10 µg/l		GWB	-
HU	Absorbed organic halogens AOX	20 µg/l		GWB	-
HU	Pesticides by components	0,1 µg/l		GWB	-
HU	Pesticides all	0,5 μg/l		GWB	-
RO	Nitrates	50 mg/l		National	-
RO	Benzen	10 μg/l		National	-
RO	Tricloretilena	10 µg/l		National	-
RO	Tetracloretilena	10 µg/l		National	-
RO	Ammonium	6.4 mg/l	5.33 mg/l	GWB	-
RO	Chlorides	250 mg/l	51.66 mg/l	GWB	-
RO	Sulphates	250 mg/l	69.47 mg/l	GWB	-
RO	Nitrites	0.5 mg/l	0.137 mg/l	GWB	-
RO	Phosphates	1 mg/l	0.774 mg/l	GWB	-
RO	Chromium	0.05 mg/l	0.00505 mg/l	GWB	-
RO	Nickel	0.02 mg/l	0.009573 mg/l	GWB	-
RO	Copper	0,1 mg/l	0.017913 mg/l	GWB	-
RO	Zinc	5 mg/l	0.350642 mg/l	GWB	-
RO	Cadmium	0.005 mg/l	0.000333 mg/l	GWB	-
RO	Mercury	0.001 mg/l	0.0004 mg/l	GWB	-
RO	Lead	0.01-mg/l	0.00744 mg/l	GWB	-
RO	Phenols	0.004 mg/l	0.003 mg/l	GWB	-

GWB-8		National share HU-8 SK-8		Status 2015 for each national GWB?			
				Quality (substance)	Quantity		
List of individua	al GW-bodies forming	HU	HU_AIQ654	good	good		
the whole national share (national code		HU	HU_AIQ572	good	good		
incl. country coo		HU	HU_AIQ653	poor (nitrate)	good		
		HU	HU_AIQ573	good	poor		
		SK	SK1000300P	good	good		
	1	SK	SK1000200P	good	good		
Description/C	Slovak Republic: The	delineation consists	s of the following step	<i>os:</i>			
haracterisation of the ICPDR GW-body	quaternary st		vided in three flood d waters, thermal ag ification).				
			urther divided horizo sured rocks, karstic r				
	-	nation is due to the anagement units.	borders of the surfac	ce catchment areas	s considered a		
	Hungary: The delinear	tion of groundwater	r bodies in Hungary i	has been carried o	ut by:		
	 Separation of the main geological features: porous aquifers in the basins, karstic aquifers, mixed formations of the mountainous regions, other than karstic aquifers. 						
	2. Thermal water bodies are separated according to the temperature greater than 30 °C. In the case of porous aquifers it is done vertically, while in karstic aquifers horizontally. There are no thermal aquifers in the mountainous regions other than karstic.						
	3. Further division is related to the subsurface catchment areas and vertical flow system (in the case of porous aquifers) and to the structural and hydrological units (in the case of karstic aquifers and mountainous regions).						
	For transboundary water bodies the more detailed further characterisation is carried out (n.b. because of the numerous transboundary water bodies and the expected further 20–30 % due to the risk of failing good status, Hungary decided to apply the methodology of further characterisation for all water bodies).						
	Reasons for selecting as important transboundary GWB						
	The large alluvial deposit of the River Danube downstream Bratislava lies in three countries: Slovakia (Podunajská lowland and its part: Žitný ostrov), Hungary (Northern part of Kisalföld including the Szigetköz) and in Austria. The aquifer system has been considered by Slovakia and Hungary as an important transboundary aquifer because of (i) its size, (ii) the unique amount of available groundwater resource and the important actual use for drinking water and other purposes as well (iii) the groundwater dependent terrestrial ecosystem of the floodplain, (iv) majority of the area is protected (protection zones of drinking water abstraction sites, nitrate sensitive areas, nature conservation areas), (v) the existence of the Gabcikovo Hydropower System.						
	General description						
	The Danube has been playing the decisive role in the formation of the aquifer system. The main aquifer is made up of 15–500 m thick Quaternary alluvia: hydraulically connected mixture of sands, gravels, intercalated with numerous clay and silt lenses. The average hydraulic conductivity is in the range of 100–500 m/day providing extremely high transmissivity, especially in the centre of the basin. Here, the bottom of the underlying Pannonian deposits is at a depth of 3,500 m.						

GWB-8: Podunajska Basin, Zitny Ostrov / Szigetköz, Hanság-Rábca

	been selected i.e. 3.363 km2 in total (see the summary table above)
	been selected, i.e. 3,363 km2 in total (see the summary table above).
	The aquifer can be considered as unconfined, despite the considerable area where the water level is in the semi-permeable covering layer
	level is in the semi-permeable covering layer. Due to the high transmissivity of the aquifer, the groundwater regime and groundwater quality mainly depend on the surface water. The flow system and the type of covering layer provide surplus recharge condition in the majority of the area, but the main source of groundwater recharge is the Danube. Before the construction of the hydropower system (1992), the riverbed had been the infiltration surface, and the Danube's line had been the hydraulic boundary between the countries as well (in upper parts of Danube stream between Devín and Hrušov, approximately since 1970's, river bed started to drain groundwater). In the actual situation, the artificial recharge system is the main source for the vicinity of the Danube, but a remaining part of the aquifers in the Hungarian territory is recharged by the Čunovo reservoir. Where the reservoir is in the neighbourhood of the main channel (between Rajka and Dunakiliti) considerable transboundary groundwater flow appears under the Danube. The Danube's river bed downstream the reservoir – due to the derived flow and the consequently decreased average water level - drains the neighbouring groundwater, causing considerable drop of groundwater level in the imminent vicinity of the river bed. Both the quantity and the quality of
	the recharge from the reservoir highly depend on the continuously increasing deposit in the reservoir and the developing physico-chemical processes. Deposits in the reservoir are extracted. Signs of long-term changes of quantity and quality of recharge caused by continuously increasing deposit in the reservoir were not observed in the Slovak part of the aquifer yet.
	The depth of the groundwater table varies between 2 and 5 m. The wetting conditions of the covering layer has substantially changed along the Danube and in the lower Szigetköz, where prior to the derivation of the Danube the groundwater has fluctuated in the covering layer and the existing artificial recharge system does not compensate sufficiently the former influence of the Danube. On the Slovak territory, annual artificial flooding of the river system in the high water periods seems to efficiently supply groundwater as well as the soil moisture resources.
Description of	Chemical Status
status	Slovak Republic: No changes since 2009
assessment methodology.	Quantitative Status
methodology.	Slovak Republic: Assessment of groundwater quantitative status consists:
	1. determination of usable amounts of groundwater and transformed usable amounts of groundwater to quaternary and prequaternary groundwater bodies, determine the size of groundwater abstractions for quaternary and prequaternary groundwater bodies, calculate the change trends of groundwater abstractions and balance assessment (share of groundwater use) of groundwater bodies by 2012 (set of evaluation periods 2004 - 2012 and 2009–2012)
	2. evaluation of significant subsidence trends of groundwater regime, processed at all monitoring objects SK hydrological network of groundwater (wells and springs). Object selection, input analysis of the representativeness of the data and measurements, data verification by 2011, verification the criteria for checking the length and representativeness of monitoring the statistical test, comprehensive evaluation of the Mann-Kendall method (95% significance level) and the output circuitry results in the quaternary and prequaternary groundwater bodies
	3. assessment of the impacts of groundwater abstractions (determination of water management problem sites) from the perspective of quantitative status of groundwater bodies (based on the results of the assessment points 1 and 2) and in the view of the results provided on the evaluation of flows on the surface streams
	4. linking the results of points 1 to 3 in the quaternary and prequaternary groundwater bodies, identification causes and possible areas causing poor quantitative status (in 2015). Basis for analysis of water use management of groundwater resources and water planning, taking into account geology and hydrogeology territory in connection to groundwater abstractions causing possible poor quantitative status.
Groundwater	Receptors considered
threshold value	Slovak Republic: Drinking water
value	Consideration of NBL and EQS (environmental quality standards, drinking water standards) in

relationships	the TV establishment:						
renarionisimps		Slovak Republic: Threshold value= (NBL + drinking water standards)/2					
Verbal description of the trend assessment methodology	Slovak Republic: Threshold value= (NBL + drinking water standards)/2Slovak Republic: Trend is assessed separately for groundwater quality and quantity at which for trends in quantity the procedure applies for all GW quantity monitoring sites. The assessment follows a stepwise procedure. Consisting of the evaluation of the data sets and the monitoring points (no gaps in time series are allowed and data from 1992–2011 were used), consisting of the performance of the non-parametric Mann-Kendall trend test (95% confidence level) and comprising the parametric SLOPE test (critical value 2%). At the end monitoring points with decreasing trends are checked for significant groundwater abstractions in the area around the well by using GIS. GWBs with decreasing trends but with no evidence of abstraction are excluded from assessment in the 2nd RBMP. For assessing trends in concentrations of pollutants in groundwater the evaluation period was 2000–2011. The results of surveillance and operational monitoring were applied for the assessment. Monitoring frequency depends on the GWB type. In the analysis the values <loq 2.="" are="" assessment<br="" by="" loqmax="" replaced="" trend=""></loq> is only performed if the number of values <loq 50%.="" is="" less="" mann-<br="" non-parametric="" than=""></loq> Kendall test with 5% significance level was applied for trend evaluation.						
Verbal description of the trend Slovak Republic: Not evaluated reversal assessment methodology Slovak Republic: Not evaluated							
Threshold val							
	Pollutant / Indicator	TV (or range) [unit]	NBL (or range) [unit]	Level of TV establishment (national, RBD, GWB)	Related to risk in this GWB [yes/-]		
HU	Nitrates	50 mg/l	2,9-7,5 mg/l	GWB	yes		
HU	Ammonium	0,5-2 mg/l	0,4-0,68 mg/l	GWB	-		
HU	Conductivity	2500 µS/cm	657-895 µS/cm	GWB	-		
HU	Sulfate	250 mg/l	88,8-220 mg/l	GWB	-		
HU	Chloride	250 mg/l	30-49,7 mg/l	GWB	-		
HU	Arsenic	µg/l	2-3,9 µg/l	GWB	-		
HU	Cadmium	5 μg/l	0,17-1,1 μg/l	GWB	-		
HU	Lead	10 µgЛ	1,9-3,1 μg/l	GWB	-		
HU	Mercury	1 μg/l	0,07-0,2 μg/l	GWB	-		
HU	Trichlorethylene	10 µg/l		GWB	-		
HU	Tetrachloro ethylene	10 μg/l		GWB	-		
HU	AOX	20 µg/l		GWB	-		
HU	Pesticides by components	0,1 µg/l		GWB	-		
HU	Pesticides all	0,5 µg/l		GWB	-		
SK1000300P	NH ₄	0,26 mg/l		GWB	yes		
	NO ₃	28,3 mg/l		GWB	-		
	Cl	62,3 mg/l		GWB	-		
	As	0,006 µg/l		GWB	-		
	SO_4	157,6 mg/l		GWB	-		
SK1000200P	NH ₄	0,255 mg/l		GWB	-		
	NO ₃	32,1 mg/l		GWB	-		
	Cl	60,75 mg/l		GWB	-		
	As	0,006 µg/l		GWB	-		
	SO_4	148,9 mg/l		GWB	-		

GWB-9		National share	HU-9 SK-9	Status 2015 for GW		
				Quality (substance)	Quantity	
List of individua	al GW-bodies forming	HU	HU_AIQ495	good	good	
	al share (national code	HU	HU_AIQ496	good	good	
incl. country code)		SK	SK1001500P	good	good	
Description/C	Delineation: see GWB	-8				
haracterisation of the ICPDR GW-body	At the common east corresponding to the I Záhony and Tokaj (cor its significance in mea groundwater in the via water aquifer system is General description The aquifer is the allur lowland area in Hungo silty-clayey layers cove thick in the Slovakian I (50-200 m). The fluvia intercalated silt and cla In the Slovakian part body-complex while in (depth is app. 500 m, c The main recharge are mountains and penetro area surface waters al mainly unconfined or discharge position and	Bodrog River catch afluence with the Ba eting the water den cinity of state bord in Ukraine. vial deposit of the B ary into Bodrogköz er the surface with side and its thickne a sediments (from S ay lenses) can be cli only the Quaterna a Hungary the Upp orresponding to wa ea is in the Slovakia ate into permeable so contribute to the in some places pa	iment area in Slova odrog River) has bee mand of the region, ler between Slovakid Bodrog River and its (northern part) and peaty areas. The Q ess gradually increas sandy gravels in the haracterized by 5 – 3 ry aquifer system is per part of the Pann ater temperature less an territory. The rain deep aquifers. In the secharge. In the Slov urtly confined. In His	kia and the Tisza- en selected as impo- (ii) contamination and Hungary. So tributaries. The Ti Rétköz (Southern p uaternary aquifer ses in Hungary tow North to sands is 80 m/d hydraulic co part of the transb conian formation is than 30°C). n waters infiltrate a e upstream part of ovakian side the wa ungary both water	valley between ortant due to (i) in threat of the ome part of the isza divides the part). Holocene is around 60 m vards the South the South with onductivity. soundary water is also attached at the marginal f the catchment ater bodies are in	
	level lies close to (bet surface, the groundw vegetation, which are a status of the groundwa (canals) collect the a contribute to the disch origin is not exactly kn the transboundary aqui the North of the Tisza D	ween 2 and 4 m b pater can consider adapted to that con ter. The surplus of upward groundwate arged groundwate own (that is why be uifer). The general	elow) the surface. W rably contribute to dition, and conseque evapotranspiration ter flow. From Sou r as well, but the be oth discharge areas direction of the grou	Where it is around the transpiration ently they are very and the artificial d uth, the sandy hi oundary of the wat in Hungary have b undwater flow is N	2 m below the n need of the sensitive to the rainage system lls of Nyírség ers of different een attached to V-S (NE-SW) to	
	The regional hydro-get recharging groundwat low TDS, Ca-Mg-HCO the middle and wester Bodrogköz region. At t migration from the dee	er, the water qualit 3 type waters occu n part of Rétköz, a he centre of the Bo	ty is almost the same r in the recharge are and mixture of these	e as in surface stree eas, Na-HCO3 wate two types in the w	ams. Generally ers dominate in western part of	
	The major water quality problem of natural origin in the Bodrogköz Quaternary aquifer complex is the high iron and manganese content (reducing conditions). In the Rétköz elevated (10–30 μ /l) arsenic-content occurs.					
	The estimated amoun Slovakian part, out of Hungarian part. It is t receives water from a considered available fo	that 10–15 Mm3/y o be mentioned, the the southern recha	ear should be maint at the southern part arge areas as well,	ained as lateral flo of the Hungarian , but no local rea	ow towards the discharge area	
	Major pressures and in	mpacts				
	The groundwater is m agricultural purposes	• •	• • • •			

GWB-9: Bodrog

	%. The development is limited by occurrence of technologically inappropriate substances in water (Mn, Fe) and sometimes also by groundwater pollution from surface waters, industry, agriculture and transport infrastructure (Strážske, Hencovce, Michalovce, Čierna nad Tisou). In Hungary the available groundwater resources of the two water bodies are quite different. In the northern part, which is in close relation to the Slovakian part, the water demand of the groundwater dependent aquatic and terrestrial ecosystems can be estimated at 5–8 Mm3/d, thus the available groundwater resources is in the range of 5–7 Mm3/year. The abstracted amount of groundwater is 3 Mm3/year, so the ratio is around 50 %, but the majority is concentrated to Ronyva/Roňava river valley. In the southern part, the lateral flow from the recharge zone of Nyírség (app. 30 Mm3/year) provides sufficient water for the minimum water demand of ecosystems (8-12 Mm3/year) and for 8 Mm3/year of abstraction. In Hungary 10 significant point sources of pollution have been registered. The shallow groundwater has usually high nitrate under the settlements, because of the inappropriate handling of manure and the totally or partially missing sewer systems. The agriculture contributes to the pollution as well, through use of chemicals. The estimated amunt of surplus Nitrogen is 15 kgN/ha/year originated from the use of 88 kgN/ha/year fertilizer and 13 kgN/year manure.
	close to the waterworks of Sátoraljaújhely shows increasing tendency of Nitrate pollution: the average concentration is around 30 mg/l, and in one production well the Nitrate-concentration exceeds the limit value of 50 mg/l. Information on pollution in arable lands is practically missing in this region. The high vulnerability of groundwater and the expected future development in water demand requires high level of protection in the Slovakian part of the region mainly oriented to measures focused on industrial pollution sources. In Hungary the protection zones of the waterworks (5 %) need special attention.
Description of status assessment methodology.	<u>Chemical Status</u> <i>Slovak Republic:</i> No changes since 2009 Quantitative Status
	<u>Quantitative Status</u> Slovak Republic: Assessment of groundwater quantitative status consists:
	1. determination of usable amounts of groundwater and transformed usable amounts of groundwater to quaternary and prequaternary groundwater bodies, determine the size of groundwater abstractions for quaternary and prequaternary groundwater bodies, calculate the change trends of groundwater abstractions and balance assessment (share of groundwater use) of groundwater bodies by 2012 (set of evaluation periods 2004–2012 and 2009–2012)
	 evaluation of significant subsidence trends of groundwater regime, processed at all monitoring objects SK hydrological network of groundwater (wells and springs). Object selection, input analysis of the representativeness of the data and measurements, data verification by 2011, verification the criteria for checking the length and representativeness of monitoring the statistical test, comprehensive evaluation of the Mann-Kendall method (95% significance level) and the output circuitry results in the quaternary and prequaternary groundwater bodies
	3. assessment of the impacts of groundwater abstractions (determination of water management problem sites) from the perspective of quantitative status of groundwater bodies (based on the results of the assessment points 1 and 2) and in the view of the results provided on the evaluation of flows on the surface streams
	4. linking the results of points 1 to 3 in the quaternary and prequaternary groundwater bodies, identification causes and possible areas causing poor quantitative status (in 2015). Basis for analysis of water use management of groundwater resources and water planning, taking into account geology and hydrogeology territory in connection to groundwater abstractions causing possible poor quantitative status.
Groundwater threshold	Receptors considered Slovak Republic: Drinking water

	Consideration of NBL and EQS (environmental quality standards, drinking water standards) in				
relationships	the TV establishment	• <u>-</u>			
	Slovak Republic: The	eshold value= (NI	3L + drinking water	r standards)/2	
Verbal description of the trend assessment methodology	Slovak Republic: Trend is assessed separately for groundwater quality and quantity at which for trends in quantity the procedure applies for all GW quantity monitoring sites. The assessment follows a stepwise procedure. Consisting of the evaluation of the data sets and the monitoring points (no gaps in time series are allowed and data from 1992–2011 were used), consisting of the performance of the non-parametric Mann-Kendall trend test (95% confidence level) and comprising the parametric SLOPE test (critical value 2%). At the end monitoring points with decreasing trends are checked for significant groundwater abstractions in the area around the well by using GIS. GWBs with decreasing trends but with no evidence of abstraction are excluded from assessment in the 2nd RBMP. For assessing trends in concentrations of pollutants in groundwater the evaluation period was 2000–2011. The results of surveillance and operational monitoring were applied for the assessment. Monitoring frequency depends on the GWB type. In the analysis the values <loq 2.="" are="" assessment<br="" by="" loqmax="" replaced="" trend="">is only performed if the number of values <loq 50%.="" is="" less="" mann-<br="" non-parametric="" than="">Kendall test with 5% significance level was applied for trend evaluation.</loq></loq>				
Verbal description of the trend Slovak Republic: Not evaluated reversal assessment methodology Slovak Republic: Not evaluated					
Threshold va	alues per GWB				
		TV (Level of TV establishment	Related to risk
	Pollutant / Indicator	TV (or range) [unit]	NBL (or range) [unit]	(national, RBD, GWB)	in this GWB [ves/-]
HI	Pollutant / Indicator	[unit]	[unit]	GWB)	in this GWB [yes/-]
HU	Nitrates	[unit] 50 mg/l	[unit] 1,2-11,4 mg/l	GWB) GWB	[yes/-] -
HU HU HU		[unit]	[unit] 1,2-11,4 mg/l 1,79-3,6 mg/l 1243-1394	GWB)	
HU HU	Nitrates Ammonium Conductivity	[unit] 50 mg/l 2-5 mg/l 2500 µS/cm	[unit] 1,2-11,4 mg/l 1,79-3,6 mg/l 1243-1394 µS/cm	GWB) GWB GWB GWB	[yes/-] - -
HU HU HU	Nitrates Ammonium Conductivity Sulfate	[unit] 50 mg/l 2-5 mg/l 2500 µS/cm 250 mg/l	[unit] 1,2-11,4 mg/l 1,79-3,6 mg/l 1243-1394 µS/cm 22,7-112 mg/l	GWB) GWB GWB GWB GWB	[yes/-] - - -
HU HU HU HU	Nitrates Ammonium Conductivity	[unit] 50 mg/l 2-5 mg/l 2500 µS/cm 250 mg/l 250 mg/l	[unit] 1,2-11,4 mg/l 1,79-3,6 mg/l 1243-1394 µS/cm 22,7-112 mg/l 135-214 mg/l	GWB) GWB GWB GWB GWB GWB	[yes/-] - - -
HU HU HU HU HU	Nitrates Ammonium Conductivity Sulfate Chloride Arsenic	[unit] 50 mg/l 2-5 mg/l 2500 µS/cm 250 mg/l 250 mg/l µg/l	[unit] 1,2-11,4 mg/l 1,79-3,6 mg/l 1243-1394 µS/cm 22,7-112 mg/l 135-214 mg/l 6,1-8,1 µg/l	GWB) GWB GWB GWB GWB GWB GWB	[yes/-] - - - - -
HU HU HU HU HU HU	Nitrates Ammonium Conductivity Sulfate Chloride Arsenic Cadmium	[unit] 50 mg/l 2-5 mg/l 2500 µS/cm 250 mg/l 250 mg/l µg/l 5 µg/l	[unit] 1,2-11,4 mg/l 1,79-3,6 mg/l 1243-1394 µS/cm 22,7-112 mg/l 135-214 mg/l 6,1-8,1 µg/l 0,03-1 µg/l	GWB) GWB GWB GWB GWB GWB GWB	[yes/-] - - - - - - - -
HU HU HU HU HU HU HU	Nitrates Ammonium Conductivity Sulfate Chloride Arsenic Cadmium Lead	[unit] 50 mg/l 2-5 mg/l 2500 µS/cm 250 mg/l 250 mg/l 5 µg/l 10 µg/l	[unit] 1,2-11,4 mg/l 1,79-3,6 mg/l 1243-1394 µS/cm 22,7-112 mg/l 135-214 mg/l 6,1-8,1 µg/l 0,03-1 µg/l 3,5-4,1 µg/l	GWB) GWB GWB GWB GWB GWB GWB GWB	[yes/-] - - - - - - - - - - -
HU HU HU HU HU HU HU HU	NitratesAmmoniumConductivitySulfateChlorideArsenicCadmiumLeadMercury	[unit] 50 mg/l 2-5 mg/l 2500 µS/cm 250 mg/l 250 mg/l µg/l 5 µg/l 10 µg/l 1 µg/l	[unit] 1,2-11,4 mg/l 1,79-3,6 mg/l 1243-1394 µS/cm 22,7-112 mg/l 135-214 mg/l 6,1-8,1 µg/l 0,03-1 µg/l	GWB) GWB GWB GWB GWB GWB GWB	[yes/-] - - - - - - - - - - -
HU HU HU HU HU HU HU HU	Nitrates Ammonium Conductivity Sulfate Chloride Arsenic Cadmium Lead Mercury Trichlorethylene	[unit] 50 mg/l 2-5 mg/l 2500 µS/cm 2500 mg/l 250 mg/l 250 mg/l 10 µg/l 1 µg/l 10 µg/l	[unit] 1,2-11,4 mg/l 1,79-3,6 mg/l 1243-1394 µS/cm 22,7-112 mg/l 135-214 mg/l 6,1-8,1 µg/l 0,03-1 µg/l 3,5-4,1 µg/l	GWB)GWBGWBGWBGWBGWBGWBGWBGWBGWBGWBGWBGWBGWBGWBGWB	[yes/-] - - - - - - - - - - -
HU HU HU HU HU HU HU	Nitrates Ammonium Conductivity Sulfate Chloride Arsenic Cadmium Lead Mercury Trichlorethylene Tetrachloro ethylene Absorbed organic	[unit] 50 mg/l 2-5 mg/l 2500 µS/cm 250 mg/l 250 mg/l µg/l 5 µg/l 10 µg/l 1 µg/l	[unit] 1,2-11,4 mg/l 1,79-3,6 mg/l 1243-1394 µS/cm 22,7-112 mg/l 135-214 mg/l 6,1-8,1 µg/l 0,03-1 µg/l 3,5-4,1 µg/l	GWB) GWB GWB GWB GWB GWB GWB GWB GWB GWB	[yes/-] - - - - - - - - - - - - - - - - - -
HU HU HU HU HU HU HU HU HU	Nitrates Ammonium Conductivity Sulfate Chloride Arsenic Cadmium Lead Mercury Trichlorethylene Tetrachloro ethylene	[unit] 50 mg/l 2-5 mg/l 2500 µS/cm 250 mg/l 250 mg/l µg/l 5 µg/l 10 µg/l 10 µg/l 10 µg/l 10 µg/l	[unit] 1,2-11,4 mg/l 1,79-3,6 mg/l 1243-1394 µS/cm 22,7-112 mg/l 135-214 mg/l 6,1-8,1 µg/l 0,03-1 µg/l 3,5-4,1 µg/l	GWB)GWBGWBGWBGWBGWBGWBGWBGWBGWBGWBGWBGWBGWBGWBGWBGWB	[yes/-] - - - - - - - - - - - - - - - - - -
HU HU HU HU HU HU HU HU HU HU	Nitrates Ammonium Conductivity Sulfate Chloride Arsenic Cadmium Lead Mercury Trichlorethylene Tetrachloro ethylene Absorbed organic halogens AOX Pesticides by	[unit] 50 mg/l 2-5 mg/l 2500 µS/cm 2500 mg/l 250 mg/l 250 mg/l 10 µg/l 10 µg/l 10 µg/l 10 µg/l 20 µg/l 20 µg/l	[unit] 1,2-11,4 mg/l 1,79-3,6 mg/l 1243-1394 µS/cm 22,7-112 mg/l 135-214 mg/l 6,1-8,1 µg/l 0,03-1 µg/l 3,5-4,1 µg/l	GWB)GWBGWBGWBGWBGWBGWBGWBGWBGWBGWBGWBGWBGWBGWBGWBGWBGWB	[yes/-] - - - - - - - - - - - - -

GWB-10		National share	HU-10 SK-10	Status 2015 for GW	
				Quality (substance)	Quantity
List of individua	l GW-bodies	HU	HU_AIQ485	good	good
	le national share	SK	SK200480KF	good	good
(national code in	cl. country code)				
Description/C haracterisation of the ICPDR GW-body	the Eastern part of important transbou where the role of the drinking water rese requiring protection General description The GWB is in a Ma like valleys of wa different according of groundwater reg geological point of mainly its Middle The Middle and Upper Similarly important Hasagistya and Gat as a regional imper Groundwater circul rocks, following the structures show the groundwater is draft karstified and also the groundwater usuall carbonate complex ca be defined within conduits, sometime groundwater routes zones are sharp and groundwater level of springs occur after deeper structures we under the Tertiary s from the water man concentrated at the pumping from borel Major pressures an The estimated amon use is 21 % of availa In the Hungarian s from karstic springs data about karst spi	tain and the Slover the countries. It indary water body the groundwater is pource in Slovakia, to sozoic complex w ter courses, separ- to the character of time, and also in t friassic and Uppe Triassic limestone thydrogeological lyaság, which conta meable barrier for lation in these roo the tectonic deve e major influence ined towards big ka less permeable. If ny feeds the Quatern with preferred dra the rock mass. Gris enlarged into the s are unsaturated. If show quick respo- change is from 5 the an intensive rain fithin and outside of change is from 5 the an intensive rain fithin and outside of change is from 5 the an intensive rain fithin and outside of the antural outflows choles and wells. d impacts unt of available re able resources, ma ide only the amound s in Jos vafő, Szögl pring discharge. O cacause of the Natio	nsky kras form a large is selected for presentit : (i) National Park co presented by springs an regionally important with morphologically vi rating different units. permeability, characte he resulting yield of gr uportant tectonic unit is r Triassic part. The me e and dolomites with k units in the Hungaria ain the Aggtelek-Domic the groundwater accum ks is controlled by ex- lopment. These tecto of on the directions of urstic springs. Areas be not drained by cave sys nary coverage. Specific inage structures is that coundwater in many cas e cave systems, while On the other hand, gr nse to the meteorologic of 15 m. In such levels fall events or sudden s of the area the territory navská kotlina Basin) i view. Groundwater ab of springs – relativel sources in Slovenský k inly for drinking water is na of karstic water is u iget, Komjáti, Égerszög Observed discharge da nal Park no important	ng in the Danube- wers the majority and stalactite caves in Hungary (iii) y sible karstic plate Hydrogeological r of groundwater spring in the area is the ost important aque carst-fissure type of n side are Alsóha a cave system. Ter- nulated in Triassic treme heterogenei nically pre-destin f groundwater flo tween such tectoni tems or permeable hydraulic feature no continuous gra segments betwee oundwater level ci- cal situation. Typic above the erosion mowmelts. Hidden (generally of wess s considered to be paras is 40.4 Mm3/ purposes. tilized, which flow g and Aggtelek. The ta are available j	basin report of of its surface (ii) significate pulnerable are au and canyor units are ve circulation, type s. From hydre Silicicum un ifer here is the of permeabilitie gy, Nagyolda tiary basins a limestone. ty of carbona nated drainage w. Majority of faults are le tectonic faults of the karstifie oundwater tab rstic openings n the preferre hanges in the cal amplitude base perennit outflow to the tward direction quite importa- ous purposes s abstracted to year, the actural pere are enoug for a period

GWB-10: Slovensky kras / Aggtelek-hgs.

assessmen methodolo		Quantitative Status:					
	0,	Slovak Republic: A		dwater auantitative	status consists:		
		_		f groundwater and t		amounts of	
		groundwater to groundwater ab the change tren	quaternary and pro ostractions for quate ds of groundwater of e) of groundwater b	equaternary ground ernary and prequate abstractions and ba bodies by 2012 (set	water bodies, deter ernary groundwater lance assessment (s	mine the size of r bodies, calculate chare of	
		monitoring obje selection, input verification by 2 of monitoring th (95% significan	ects SK hydrologica analysis of the rep 2011, verification the statistical test, co	e trends of groundw l network of ground resentativeness of th ne criteria for check omprehensive evalue utput circuitry result	lwater (wells and sp e data and measurd ing the length and ation of the Mann-H	prings). Object ements, data representativeness Kendall method	
		 assessment of the impacts of groundwater abstractions (determination of water management problem sites) from the perspective of quantitative status of groundwater bodies (based on the results of the assessment points 1 and 2) and in the view of the results provided on the evaluation of flows on the surface streams 					
		bodies, identific Basis for analys taking into acco	cation causes and posi- sis of water use man punt geology and hy	n the quaternary an ossible areas causin nagement of ground drogeology territor quantitative status.	ng poor quantitative water resources an y in connection to g	e status (in 2015). d water planning,	
Groundwa	ter	Receptors considered	ed				
threshold		Slovak Republic: D					
value relationshi	ins	Consideration of N		onmental quality st	andards, drinking w	vater standards) in	
Terationsin	ips	the TV establishme					
		Slovak Republic: T	hreshold value= (N	BL + drinking wate	er standards)/2		
Verbal description of the trend assessment methodologySlovak Republic: Trend is assessed separately for groundwater quality and quantity and for trends in quantity the procedure applies for all GW quantity monitoring sites. The assessment follows a stepwise procedure. Consisting of the evaluation of the data sets assessment follows a stepwise procedure. Consisting of the evaluation of the data sets assessment follows a stepwise procedure. Consisting of the evaluation of the data sets assessment follows a stepwise procedure. Consisting of the evaluation of the data sets assessment follows a stepwise procedure. Consisting of the evaluation of the data sets assessment follows a stepwise procedure. Consisting of the evaluation of the data sets assessment is consisting of the performance of the non-parametric Mann-Kendall trend test (95% con level) and comprising the parametric SLOPE test (critical value 2%). At the end monite points with decreasing trends are checked for significant groundwater abstractions in around the well by using GIS. GWBs with decreasing trends but with no evidence of abstraction are excluded from assessment in the 2nd RBMP. For assessing trends in concentrations of pollutants in groundwater the evaluation period was 2000–2011. The of surveillance and operational monitoring were applied for the assessment. Monitoring frequency depends on the GWB type. In the analysis the values <loq are="" by<br="" replaced=""></loq> LOQmax/2. Trend assessment is only performed if the number of values <loq a<br="" is="" less=""></loq> 50%. Non-parametric Mann-Kendall test with 5% significance level was applied for tr				ites. The data sets and the 011 were used), (95% confidence end monitoring ctions in the area lence of ends in 2011. The results Monitoring blaced by Q is less than			
		on of the trend nent methodology	Slovak Republic:	Not evaluated			
Threshold	d valu	es per GWB					
					Level of TV		
	Poll	utant / Indicator	TV (or range) [unit]	NBL (or range) [unit]	establishment (national, RBD, GWB)	Related to risk in this GWB [yes/-]	
HU	Nitr	ates	50 mg/l	8,4 mg/l	GWB	-	
HU		nonium	0,5 mg/l	0,48 mg/l	GWB	-	
HU		ductivity	2500 µS/cm	732 µS/cm	GWB	-	
HU	Sulf	ate	250 mg/l	123 mg/l	GWB	-	

HU	Chloride	250 mg/l	88 mg/l	GWB	-
HU	Arsenic	μg/l	0,5 μg/l	GWB	-
HU	Cadmium	5 μg/l	0,02 µg/l	GWB	-
HU	Lead	10 μg/l	0,7 µg/l	GWB	-
HU	Mercury	1 μg/l	0,49 µg/l	GWB	-
HU	Trichlorethylene	10 μg/l		GWB	-
HU	Tetrachloro ethylene	10 μg/l		GWB	-
HU	Absorbed organic halogens AOX	20 µg/l		GWB	-
HU	Pesticides by components	0,1 µg/l		GWB	-
HU	Pesticides all	0,5 μg/l		GWB	-

GWB-11: Komarnanska Vysoka Kryha / Dunántúli-khgs. északi r.

GWB-11		National share	HU-11 SK-11	Status 2015 for each national GWB?	
				Quality (substance)	Quantity
List of individua	l GW-bodies	HU	HU_AIQ558	good	poor
	ble national share	HU	HU_AIQ552	good	poor
	ncl. country code)	HU	HU_AIQ564	good	poor
`	•	SK	SK300010FK	Unknown	Unknown
		SK	SK300020FK	Unknown	Unknown
					
Description/C	Delineation : see G	WB-8			
haracterisation of the ICPDR	Reasons for selecting	ng as important tran	sboundary GWB		
GW-body	The Middle and Upper-Triassic karstic dolomite and limestone formation of the northern part of the Transdanubian Mountain (Hungary) and the Komarnanská Výsoká Kryha (Slovakia belong to one of the largest karstic aquifer systems in Central Europe. It provides good qualit drinking water for the population of the region in Hungary; it contributes to the characteristic landscape by supplying springs and the deeper part of the aquifer system is very important thermal water resources in both countries. General description			ryha (Slovakia) les good quality e characteristic very important	
	of Upper-Triassic a due to the dense fis the faults. The eleve of the covering lay thickness (in some	lolomite and limesto sure-system, while i ated open karstic zor er is several hundre places it reaches ev	art of the Transdanubid one. The considerable of n the limestone large of nes are separated by so ed meters. Above the of ven 2,500 m) consistin stic formation with bro	matrix porosity of fractures are char unken basins, whe thermal part it ex g of different type	the dolomite is the construction of the sector of the sect
The Slovakian part (the Komarno block) extends between Komarn the Danube River in the South and by the E-W Hurbanovo fault in along the Danube is tectonic as well and therefore the Komarno northern slope of the Gerecse and Pilis Mountains. The Komar Triassic dolomites and limestones up to 1,000 m in thickness. T substratum plunges towards the north from a depth of approxi Danube to as much as 3,000 m near the Hurbanovo fault.				lt in the North. Th rno block is a sur omarno block cor s. The surface of a	te southern limit taken tract of the asists largely of the pre-Tertiary
	appears, two water system. The therma considered as the SK_300010FK and noted, that the miss	r bodies bearing co al water bodies (in rmal, while in Slow SK_300020FK are ing continuation of t	water bodies. In Hu ld waters have been Hungary waters with vakia the limit is 25 in close hydraulic con he cold water bodies in t of temperature. Takin	delineated accora temperature mor °C: HU_K.1.3 nection with the c n the Slovakian pa	ling to the flow e than 30 °C is .2, HU_K1.5.2, old ones. To be ort is mainly due

43

	Slovakian karstic aquifer is divided into the Komarno high block (SK Komarno marginal block (SK300020FK).					
is in strong relati hydraulically conne	is the regional erosion base of the water bodies. The water level fluctuation on with the water level changes in the river. The water bodies are octed. It is valid at the border of the countries as well, i.e. under the Danube Rivers, making the abstractions of water in both countries highly					
Without abstraction	is in the Hungarian side and the total recharge is estimated at 60 Mm^3/y . It this amount of water is discharged by the springs and by the upward flow g layer, and some part is infiltrating to the deeper, thermal part.					
does not exceed 50 characterised by a j and the marginal bl	the water abstracted (captured) from the Hungarian thermal water bodies 0 °C. Heat-flow densities suggest that the Komarno high block can be fairly low (thermal spring at Sturovo and Patince are 39 and 26 °C warm) lock by a medium geothermal activity (40–68 °C). Heat flow given in mW/m^2 árno high block and 60–70 mW/m^2 in Komárno marginal block, both alues.					
block between 4 to 2 is estimated at 12,0	missivity in the high block varies from 13 to 100 m^2/d , while in the marginal 20 m^2/d . Prognostic recoverable amount of thermal water in the high block 000 m^3/d water of 20 to 40°C warm. In the marginal block the abstracted 1d be re-injected after use.					
Major pressures an	d impacts					
the thermal part. I Komárno-Patince-Š for balneology (in H of used geothermal	ual abstractions are apr. 30 M m^3/y from the cold part and 2 M m^3/y from in Slovakia the thermal water abstraction is 0.6 M m^3/y mainly in area iturovo. The cold karstic water is used for drinking water, the thermal water Hungary and in Slovakia) and for energy production (in Slovakia). Disposal water is solved in Slovakia by discharge into surface water (River Danube ion with groundwater on acceptable qualitative parameters.					
Due to the mining a water bodies in th averages and as a c side the regime of g extensive pumping of the mining was stop	activities in the 20 th century, the actual water levels - especially in the cold be Hungarian side - are significantly lower than the long-term natural consequence all cold and lukewarm karstic springs dried out. In the Slovak geothermal water (decreasing discharges of wells) was also affected by the of karstic water from coal mines in Tatabánya and Dorog (Hungary). After pped (in 1993), the water levels have been showing increasing trend and the acc of the springs is forecasted in the coming 5–15 years.					
The abandoned cuts and fields of mine submerged by the rising karstic water represent potential pollution source. Water quality monitoring has been installed, but data are a sufficient for estimating future impacts.						
In extremely vulnerable open karstic area a few settlements should be considered as a source of pollution. Relatively a high number of significant pollution exists in the area (majority is lying above the not vulnerable covered part. The average amount of fertilizer is 86 kgN/ha/year, the use of manure is insignificant (3 kgN/ha/year). The Nitrogen from agriculture is 17 kgN/ha/year, but in the majority of the area the thick layers provide natural protection. (Localities in real danger should be assessed at scale, focusing on open karstic zones).						
Description of status assessment methodology.	Chemical Status					
	Quantitative Status					

Groundwater threshold value relationships	Receptors considered Consideration of NBL and EQS (environmental quality standards, drinking water standards) in the TV establishment:
Verbal description of the trend assessment methodology	
Verbal description of the trend reversal assessment methodology	
Threshold values per GWB	

ICPDR / International Commission for the Protection of the Danube River / www.icpdr.org

	Pollutant / Indicator	TV (or range) [unit]	NBL (or range) [unit]	Level of TV establishment (national, RBD, GWB)	Related to risk in this GWB [yes/-]
HU	Nitrates	50-no TV mg/l	<1-8,2 mg/l	GWB	-
HU	Ammonium	0,5-no TV mg/l	0,48-16,7 mg/l	GWB	-
HU	Conductivity	2500-no TV	884-5097 µS/cm	GWB	-
		µS/cm			
HU	Sulfate	250-no TV mg/l	124-266 mg/l	GWB	-
HU	Chloride	250-no TV mg/l	35-627 mg/l	GWB	-
HU	Arsenic	no TV µg/l	3,7-24 μg/l	GWB	-
HU	Cadmium	5-no TV µg/l	0,08-0,18 µg/l	GWB	-
HU	Lead	10-no TV µg/l	2-3,42 μg/l	GWB	-
HU	Mercury	1-no TV µg/l	0,21-0,5 µg/l	GWB	-
HU	Trichlorethylene	10-no TV µg/l		GWB	-
HU	Tetrachloro ethylene	10-no TV µg/l		GWB	-
HU	Absorbed organic	20-no TV µg/l		GWB	-
	halogens AOX				
HU	Pesticides by	0,1-no TV µg/l		GWB	-
	components				
HU	Pesticides all	0,5-no TV µg/l		GWB	-

*: no TV for karst termal GWB

Significant pressures on the ICPDR GW-bodies

Code of ICPDR GW-body							GWB	-1		
National share of ICPDR GW-body (nationally aggregated part)			AT-				T-1, DE-1			
	Status pressure types 2015			Risk pressure types 2013 → 2021						
Significant Pressures for Groundwater	Chemica Yes/-					Chemical Yes/-		Quantity Yes/-		
	AT		DE	AT		DE	AT	DE	AT	DE
Point sources		-			:			•		
Leakages from contaminated sites										
Leakages from waste disposal sites (landfill and agricultural waste disposal)										
Leakages associated with oil industry infrastructure Mine water discharges										
Discharges to ground such as disposal of contaminated water										
to soak ways										
Other relevant point sources (specify below)										
Diffuse Sources		-						•		
due to agricultural activities										
due to non-sewered population										
Urban land use										
Other significant diffuse pressures (specify below)										
Water abstractions					-					•
Abstractions for agriculture										
Abstractions for public water supply										
Abstractions by industry										
IPPC activities										
Non-IPPC activities										
Abstractions by quarries/open cast coal sites										
Other major abstractions (specify below)										
Artificial recharge					-					-
Discharges to groundwater for artificial recharge purposes										
Returns of groundwater to GWB from which it was abstracted										
(e.g. for sand and gravel washing)										
Mine water rebound										
Other major recharges (specify below)										
Other significant pressures		-			-			-		-
Saltwater intrusion										
Other intrusion (specify below)										
Description of other										
significant pressures than										
those selected above.										

Code of ICPDR GW-body					GWB-	-2			
National share of ICPDR GW-body (nationally aggregated part)			BG-2, RO				-2		
	Status pressure types 2015				Risk pressure types 2013 → 2021				
Significant Pressures for Groundwater		mical es/-	Qua	ntity es/-	ity Chemi		ical Quantit		
	BG	RO	BG	RO	BG	RO	BG	RO	
Point sources		-		1110	20	-		110	
Leakages from contaminated sites									
Leakages from waste disposal sites (landfill and agricultural waste disposal)									
Leakages associated with oil industry infrastructure									
Mine water discharges									
Discharges to ground such as disposal of contaminated water									
to soak ways									
Other relevant point sources (specify below)									
Diffuse Sources		-				-			
due to agricultural activities									
due to non-sewered population									
Urban land use									
Other significant diffuse pressures (specify below)									
Water abstractions				-				-	
Abstractions for agriculture							-		
Abstractions for public water supply									
Abstractions by industry									
IPPC activities									
Non-IPPC activities									
Abstractions by quarries/open cast coal sites									
Other major abstractions (specify below)									
Artificial recharge				-				-	
Discharges to groundwater for artificial recharge purposes									
Returns of groundwater to GWB from which it was abstracted (e.g. for sand and gravel washing)									
Mine water rebound									
Other major recharges (specify below)									
Other significant pressures		-		-		-		-	
Saltwater intrusion									
Other intrusion (specify below)									
Description of other significant pressures than those selected above.	_							_	

Code of ICPDR GW-body					GWB-	-3		
National share of ICPDR GW-body (nationally aggregated part)					MD-3,	, RO-3		
	Stat		essure ty 015	ypes	Risk pressure typ 2013 → 2021			
Significant Pressures for Groundwater		mical es/-	:	ntity s/-		mical es/-	Quantit Yes/-	
	MD	RO	MD	RO	MD risk	RO	MD RO	
Point sources		-		<u> </u>	Yes	-		
Leakages from contaminated sites								
Leakages from waste disposal sites (landfill and agricultural waste disposal)					x			
Leakages associated with oil industry infrastructure					X			
Mine water discharges								
Discharges to ground such as disposal of contaminated water to soak ways								
Other relevant point sources (specify below)								
Diffuse Sources		-			Yes	-		
due to agricultural activities					X			
due to non-sewered population					X			
Urban land use								
Other significant diffuse pressures (specify below)								
Water abstractions				-	Yes	-	-	
Abstractions for agriculture								
Abstractions for public water supply								
Abstractions by industry					X			
IPPC activities								
Non-IPPC activities								
Abstractions by quarries/open cast coal sites								
Other major abstractions (specify below)								
Artificial recharge				-			-	
Discharges to groundwater for artificial recharge purposes								
Returns of groundwater to GWB from which it was abstracted								
(e.g. for sand and gravel washing)								
Mine water rebound								
Other major recharges (specify below)								
Other significant pressures		-		-		-	-	
Saltwater intrusion								
Other intrusion (specify below)								
Description of other								
significant pressures than								
those selected above.								

Code of ICPDR GW-body						GWB	-4		
National share of ICPDR GW-body (nationally aggregated part)						BG-4,	RO-4		
	Status pressure types 2015					Risk pressure types 2013 → 2021			
Significant Pressures for Groundwater		mica es/-	· · ·	Qua	n tity es/-		mical es/-	Qua	ntity es/-
	BG	RC)	BG	RO	BG	RO	BG	RO
Point sources		-					-		
Leakages from contaminated sites									
Leakages from waste disposal sites (landfill and agricultural waste disposal)									
Leakages associated with oil industry infrastructure									
Mine water discharges									
Discharges to ground such as disposal of contaminated water				••••••					
to soak ways									
Other relevant point sources (specify below)									
Diffuse Sources		-					-		
due to agricultural activities									
due to non-sewered population									
Urban land use									
Other significant diffuse pressures (specify below)									
Water abstractions					-				-
Abstractions for agriculture									
Abstractions for public water supply									
Abstractions by industry									
IPPC activities									
Non-IPPC activities									
Abstractions by quarries/open cast coal sites									
Other major abstractions (specify below)									
Artificial recharge					-				-
Discharges to groundwater for artificial recharge purposes									
Returns of groundwater to GWB from which it was abstracted (e.g. for sand and gravel washing)									
Mine water rebound									
Other major recharges (specify below)									
Other significant pressures		-			-		-		-
Saltwater intrusion									
Other intrusion (specify below)									
Description of other significant pressures than those selected above.									

Code of ICPDR GW-body					GWB	-5		
National share of ICPDR GW-body (nationally aggregated part)					HU-5,	RO-5		
	Stat		ssure t 015	ypes	Risk pressure type 2013→2021			
Significant Pressures for Groundwater		mical es/-	:	ntity es/-		mical es/-	Quantity Yes/-	
	HU poor	RO poor	HU	RO	HU risk	RO risk	HU	RO
Point sources	, , , , , , , , , , , , , , , , , , , ,	-		:	non	-		<u> </u>
Leakages from contaminated sites								
Leakages from waste disposal sites (landfill and agricultural waste disposal)								
Leakages associated with oil industry infrastructure								
Mine water discharges								
Discharges to ground such as disposal of contaminated water to soak ways								
Other relevant point sources (specify below)								
Diffuse Sources	Y	es			Y	es		
due to agricultural activities	Х	Х				X		
due to non-sewered population	х	Х				X		
Urban land use	Х							
Other significant diffuse pressures (specify below)								
Water abstractions				-			•	•
Abstractions for agriculture								
Abstractions for public water supply								
Abstractions by industry								
IPPC activities								
Non-IPPC activities								
Abstractions by quarries/open cast coal sites								
Other major abstractions (specify below)								
Artificial recharge				-			•	•
Discharges to groundwater for artificial recharge purposes								
Returns of groundwater to GWB from which it was abstracted								
(e.g. for sand and gravel washing) Mine water rebound								
Other major recharges (specify below) Other significant pressures		-		-		-	<u> </u>	
Saltwater intrusion		-		-		-		-
Other intrusion (specify below)								
	I		1		1		I	
Description of other								
significant pressures than								
those selected above.								

Code of ICPDR GW-body					GWB	-6		
National share of ICPDR GW-body (nationally aggregated part)					HU-6,	RO-6		
	Sta		essure t 2015	ypes	Ris	sk pres 2013-	sure ty > 2021	pes
Significant Pressures for Groundwater		mical es/-	Qua	antity es/-		mical es/-	Quantity Yes/-	
	HU	RO	HU	RO	HU	RO	HU	RO
Point sources		-	110	1110		-		1.00
Leakages from contaminated sites								
Leakages from waste disposal sites (landfill and agricultural waste disposal)								
Leakages associated with oil industry infrastructure								
Mine water discharges								
Discharges to ground such as disposal of contaminated water								
to soak ways								
Other relevant point sources (specify below)								
Diffuse Sources		-				-		
due to agricultural activities								
due to non-sewered population								
Urban land use								
Other significant diffuse pressures (specify below)								
Water abstractions				-				•
Abstractions for agriculture							-	
Abstractions for public water supply								
Abstractions by industry								
IPPC activities								
Non-IPPC activities								
Abstractions by quarries/open cast coal sites								
Other major abstractions (specify below)								
Artificial recharge				-				-
Discharges to groundwater for artificial recharge purposes								
Returns of groundwater to GWB from which it was abstracted (e.g. for sand and gravel washing)								
Mine water rebound								
Other major recharges (specify below)								
Other significant pressures		-		-		-		-
Saltwater intrusion								
Other intrusion (specify below)								
Description of other significant pressures than those selected above.								

Code of ICPDR GW-body							GW	B-7				
National share of ICPDR GW-body (nationally aggregated page	art)						HU-	7, R(D-7, F	RS-7		
	S	itatus	pres 20	sure 1 15	type	5		Risk 2	pres 2013-	sure →202	type 21	S
Significant Pressures for Groundwater	CI	nemio Yes/-	ical Quantity				Chemical Yes/-			Quantity Yes/-		-
	HU	RO	RS	HU	RO	RS	HU	RO	RS	HU	RO	RS
Point sources	poor	-		poor	<u> </u>	poor	risk	•		risk		risk
Leakages from contaminated sites												
Leakages from waste disposal sites (landfill and agricultural waste disposal)												
Leakages associated with oil industry infrastructure												
Mine water discharges												
Discharges to ground such as disposal of contaminated water to soak ways										-		
Other relevant point sources (specify below)										-		
Diffuse Sources	Yes	-					Yes	- 1	-			
due to agricultural activities	Х											
due to non-sewered population	Х											
Urban land use	Х											
Other significant diffuse pressures (specify below)												
Water abstractions				Yes	-	Yes				Yes	-	Yes
Abstractions for agriculture						X						X
Abstractions for public water supply						X						X
Abstractions by industry						X						X
IPPC activities												
Non-IPPC activities												
Abstractions by quarries/open cast coal sites												
Other major abstractions (specify below)												
Artificial recharge					-						-	
Discharges to groundwater for artificial recharge purposes Returns of groundwater to GWB from which it was abstracted (e.g. for sand and gravel washing)												
Mine water rebound												
Other major recharges (specify below)												
Other significant pressures		-			-			-			-	
Saltwater intrusion												
Other intrusion (specify below)												
Description of other significant pressures than those selected above.												

Code of ICPDR GW-body					GWB-	-8		
National share of ICPDR GW-body (nationally aggregated part)					HU-8,	SK-8		
	Stat		ressure t 2015	ypes	Risk pressure typ 2013 → 2021			es
Significant Pressures for Groundwater		mical es/-	1	antity es/-		mical es/-	Qua Ye	-
	HU	SK		SK	HU	SK	HU	SK
Point sources	poor	<u> </u>	poor		risk	risk Yes		
Leakages from contaminated sites						x		
Leakages from waste disposal sites (landfill and agricultural waste disposal)								
Leakages associated with oil industry infrastructure						Х		
Mine water discharges						х		
Discharges to ground such as disposal of contaminated water to soak ways								
Other relevant point sources (specify below)								
Diffuse Sources	Yes				Y	es		
due to agricultural activities	Х					Х		
due to non-sewered population	Х							
Urban land use	X	ļ						
Other significant diffuse pressures (specify below)								
Water abstractions			Yes	-			-	
Abstractions for agriculture								
Abstractions for public water supply								
Abstractions by industry								
IPPC activities								
Non-IPPC activities								
Abstractions by quarries/open cast coal sites								
Other major abstractions (specify below)								
Artificial recharge				-			-	
Discharges to groundwater for artificial recharge purposes								
Returns of groundwater to GWB from which it was abstracted								
(e.g. for sand and gravel washing) Mine water rebound								
Other major recharges (specify below)								
Other significant pressures		-				_		
Saltwater intrusion		-		-		-	-	
Other intrusion (specify below)								
	1		I		1		1	
Description of other								
significant pressures than								
those selected above.								

Code of ICPDR GW-body						GWB	.9			
National share of ICPDR GW-body (nationally aggregated part)						HU-9,	SK-9			
	Status pressure types 2015				ypes	Ris	sk pres 2013-	sure tỵ → 2021	ypes	
Significant Pressures for Groundwater		mica əs/-		Qua	a ntity es/-		mical es/-	Quantity Yes/-		
	HU	S	K	HU	SK	HU	SK	HU	Sł	<
Point sources		-					•			
Leakages from contaminated sites										
Leakages from waste disposal sites (landfill and agricultural waste disposal)										
Leakages associated with oil industry infrastructure										
Mine water discharges										
Discharges to ground such as disposal of contaminated water										
to soak ways										
Other relevant point sources (specify below)										
Diffuse Sources		-					-			
due to agricultural activities										
due to non-sewered population										
Urban land use										
Other significant diffuse pressures (specify below)										
Water abstractions					-				-	
Abstractions for agriculture										
Abstractions for public water supply										
Abstractions by industry										
IPPC activities										
Non-IPPC activities										
Abstractions by quarries/open cast coal sites										
Other major abstractions (specify below)										
Artificial recharge					-				-	
Discharges to groundwater for artificial recharge purposes										
Returns of groundwater to GWB from which it was abstracted (e.g. for sand and gravel washing)										
Mine water rebound										
Other major recharges (specify below)										
Other significant pressures		-			-		-		-	
Saltwater intrusion										
Other intrusion (specify below)										
Description of other significant pressures than those selected above.										

Code of ICPDR GW-body						GWB	-10		
National share of ICPDR GW-body (nationally aggregated part)						HU-1	0, SK-10	0	
	Status pressure types 2015					Ris	sk pres 2013-	sure ty > 2021	pes
Significant Pressures for Groundwater	Che Y	mic es/-	al	Qua	antity es/-		mical es/-	Quantity Yes/-	
	HU	3	SK	HU	SK	HU	SK	HU	SK
Point sources		-					-		
Leakages from contaminated sites									
Leakages from waste disposal sites (landfill and agricultural waste disposal)									
Leakages associated with oil industry infrastructure									
Mine water discharges									
Discharges to ground such as disposal of contaminated water									
to soak ways									
Other relevant point sources (specify below)									
Diffuse Sources		-					-		
due to agricultural activities									
due to non-sewered population									
Urban land use									
Other significant diffuse pressures (specify below)									
Water abstractions					-				-
Abstractions for agriculture									
Abstractions for public water supply									
Abstractions by industry									
IPPC activities									
Non-IPPC activities									
Abstractions by quarries/open cast coal sites									
Other major abstractions (specify below)									
Artificial recharge					-				-
Discharges to groundwater for artificial recharge purposes									
Returns of groundwater to GWB from which it was abstracted (e.g. for sand and gravel washing)									
Mine water rebound									
Other major recharges (specify below)									
Other significant pressures		-			-		-		-
Saltwater intrusion									
Other intrusion (specify below)									
Description of other significant pressures than those selected above.									

Code of ICPDR GW-body					GWB-	-11		
National share of ICPDR GW-body (nationally aggregated part)					HU-1	1, SK-1	1	
	Stat		ressure ty 2015	/pes	Ris	sure types) 2021		
Significant Pressures for Groundwater		mica l es/-		ntity s/-		mical es/-	Quantity Yes/-	
	HU	SK		SK	HU	SK	HU SK risk risk	
Point sources		-	poor			-	115K 115K	
Leakages from contaminated sites								
Leakages from waste disposal sites (landfill and agricultural waste disposal)								
Leakages associated with oil industry infrastructure								
Mine water discharges								
Discharges to ground such as disposal of contaminated water to soak ways								
Other relevant point sources (specify below)								
Diffuse Sources		-				-		
due to agricultural activities								
due to non-sewered population								
Urban land use								
Other significant diffuse pressures (specify below)								
Water abstractions			Yes	-			Yes	
Abstractions for agriculture								
Abstractions for public water supply								
Abstractions by industry								
IPPC activities								
Non-IPPC activities								
Abstractions by quarries/open cast coal sites								
Other major abstractions (specify below)			Х					
Artificial recharge				-			-	
Discharges to groundwater for artificial recharge purposes								
Returns of groundwater to GWB from which it was abstracted								
(e.g. for sand and gravel washing)								
Mine water rebound								
Other major recharges (specify below)								
Other significant pressures		-		•		-	-	
Saltwater intrusion								
Other intrusion (specify below)								
Description of other Pressures have stopped (mini	ng activ	/ities	closed)					
significant pressures than								
those selected above.								

Groundwater measures

The overview table indicates the status of implementation of all key measures in the following way:

MC Measure implementation Completed

Implementation of measure is estimated to be completed by the end of 2012

MO Measure implementation On-going

Implementation of measure is **on-going**.

(Involving administrative acts, diffuse pollution, advisory services, research etc.)

PO Construction Measure - Planning On-going

Planning of construction measure is on-going.

(Involving construction or building works)

CO Construction Measure - Construction On-going

Construction of measure is on-going.

(Involving construction or building works)

MP Measure implementation Planned

Implementation of measure is planned

The listed stages of measure implementation are structured according to the schema, which is annexed to the CIS Concept Paper for 2012 Reporting.

For construction or building works the information about the on-going implementation is divided into 'construction planning' and 'construction'.

The detailed tables provide more details on particular measures in each relevant GWB:

- description of the measure,
- responsible authority,
- quantitative information by appropriate indicators (number of measures/projects and costs).

DRBD-GWB		5-RC)-HU		7-RO-RS-HU		8-SK-HU	11-SK-HU
National par	t / Status	5-RO / Quality	5-HU / Quality	7-HU / Quality	7-RS / Quantity	7-HU / Quantity	8-HU / Quality	11-HU / Quantity
Basic Measu	ıres (BM) – Article 11(3)(a)							
BM-01	BathingWater							
BM-02	Birds							
BM-03	DrinkingWater	CO						
BM-04	Seveso							
BM-05	EnvironmentalImpact							
BM-06	SewageSludge							
BM-07	UrbanWasteWater	MC, CO	MO	MO			MO	
BM-08	PlantProtectionProducts							
BM-09	Nitrates	MC, MO	MO	MO			MO	
BM-10	Habitats							
BM-11	IPPC	MC						
Other Basic	Measures (OBM) – Article 11(3)(b-l)							
OBM-20	CostRecoveryWaterServices							
OBM-21	EfficientWaterUse							
OBM-22	ProtectionWaterAbstractions							
OBM-23	ControlsWaterAbstraction					MO		
OBM-24	RechargeAugmentationGroundwater							
OBM-25	PointSourceDischarge							
OBM-26	PollutantsDiffuse							
OBM-27	AdverseImpact							
OBM-28	PollutantDirectGroundwater							
OBM-29	SurfacePrioritySubstances							
OBM-30	AccidentalPollution							
Supplement 11(4)&(5)	tary Measures (SM) – Article	MP			МО	MO, MC		

GWBs at poor status in 2015 and implemented measures

MC...Measure implementation completed by end of 2012, MO...Measure implementation on-going, PO...Construction planning on-going, CO...Construction on-going, MP...Measure implementation planned

Detailed description of measures

GWB Code	Size	Pres	sures	St	atus	Mea	Exemptions	
GWB Code	[km²]	Quality	Quantity	Quality	Quantity	Quality	Quantity	Exemptions
5-HU-RO	7,212	DS	No	Poor	Good	BM, SM	No	2027

Measure completed = Implementation is estimated to be completed by the end of 2012 (reference to the measures codes in table 1) (MC)

RO - quality:

BM – 07 Construction of collecting system in Periam agglomeration

- description of the measure execution of the new sewage network in Periam locality (Timis county)
- responsible authority: local authority of the Periam agglomeration
- quantitative information by appropriate indicators:
 - number of population equivalent covered by measure 2676 4730 p.e.;
 - total cost of the measure 400,000 Euro;

BM-09 Applying the Code of good agricultural practice in vulnerable zones

In Romania, following the discussions with the EC, whole territory approach is applied according with Decision 221983/GC/12.06.2013 of the Interministerial Commission for the implementation of the Action Plan for the protection of waters against pollution caused by nitrates from agricultural sources.

- description of the measure building of two facilities for the livestock manure storage in Pecica and Macea localities
- responsible authority: county council and local authorities
- quantitative information by appropriate indicators:
 - area of agricultural land covered by measures 313.59 km²;
 - total costs of the two measures 739,000 Euro;

BM-11 Reduction of the pollutant loads in the waste waters

- description of the measure rehabilitation of the collecting system and improvement of the waste water treatment plant performance;
- responsible authority: COMBINATUL AGROINDUSTRIAL Curtici (Arad County);
- quantitative information by appropriate indicators: cost of the measure is 200,000 Euro.

HU – quality:

Measure implementation on-going = Measure implementation is estimated to be on-going (reference to the measures codes in table 1) (MO)

RO – quality:

BM-09 Applying of specific action programmes

In Romania, following the discussions with the EC, whole territory approach is applied according with Decision 221983/GC/12.06.2013 of the Interministerial Commission for the implementation of the Action Plan for the protection of waters against pollution caused by nitrates from agricultural sources.

- description of the measure: programme of measures applied for the agriculture diffuse sources in order to reduce the effects of the agriculture activities
- responsible authority: county agriculture authorities, local authorities and farmers
- quantitative information: This measure is applied in whole Mures Water Basin Administrations territory.

SM Research study for evaluation of the type and quantity of pollutants in soil and groundwaters and the transfer

/ degradation mechanisms (MP - Measure implementation is planned)

- description of the measure: development of the modelling tools for the evaluation of spatial and temporal pollutants migration – the support tool for finalising the evaluation methodology of the groundwater status and of the pollutant trends
- responsible authority: Ministry of Environment and Climatic Changes Department of Water, Forests and Fisheries, National Administration "Romanian Waters" and National Institute for Hydrology and Water Management
- quantitative information:
 - 1 research study;
 - the estimated total cost of the research study 150,000 Euro.

HU – quality:

description of the measure: BM07

responsible authority: local governments

quantitative information by appropriate indicators (number of measures/projects and costs):

HU transposed the Urban Waste Water Directive by Gov. decree 25/2002. (II. 27.) on the National Wastewater Collection and Treatment program. The implementation of UWWD is ongoing.

In the South Great Plain Region 52,4% of the settlements were connected to the sewage system in 2008, and 82,4% are planned to be reached by 2015.

description of the measure: BM09

responsible authority: authorities for soil protection and for environmental protection

quantitative information by appropriate indicators (number of measures/projects and costs):

HU transposed the ND by the Gov. Decree No. 27/2006. (II.7.) on the protection of waters against pollution caused by nitrates of agricultural sources. Designation of nitrate vulnerable zones (NVZ; ~2,5 million ha at present) is under revision. The Code of Good Agricultural Practice (GAP) is obligatory on NVZ's. Outside the NVZ's, the agri environmental measures assist the implementation of GAP on a voluntary basis.

Construction measure planning on-going = Planning of construction measure is estimated to be on-going (reference to the measures codes in table 1)

HU – quality:

Construction of measure on-going = Construction of measure is estimated to be on-going (reference to the measures codes in table 1) (CO)

RO – quality:

BM-03 Ensuring the protection areas for the drinking groundwater abstraction (CO)

- description of the measure: establishment of safeguard zones and buffer zones ensuring the protected area according to the water legislation in force (Water Law 107/1996 modified and completed, HG 930/2005 and Order 1278/2011); banning measures for some activities and restricted use of land, in order to prevent the water contamination risks due to the economic and social activities
- responsible authority: water authorities, local authorities ;
- quantitative information: according with the Water Law 107/1996 as amended and GD 930/2005, for all drinking groundwater abstractions are establishing the safeguard zones and buffer zones, in order to prevent the water resources contamination.

BM-07 Construction of collecting system in 8 agglomerations (CO)

- description of the measure extension of existing collecting system in 8 agglomerations) and execution
 of the new sewage network (Arad and Timis counties);
- **responsible authority:** local authorities of the Arad, Pecica, Sannicolu Mare, Lipova, Nadlac, Curtici, Frumuseni, Macea agglomerations
- quantitative information by appropriate indicators:
 - number of population equivalent covered by 8 agglomerations 104,253 p.e.;

- estimated total cost of the measure - 30,686,939 Euro.

HU – quality:

Measure not started = Implementation is estimated of not being started by end of 2012 (reference to the measures codes in table 1)

RO – quality:

HU – quality:

GWB Code	Size	Pres	sures	St	atus	Меа	sures	Exemptions
GWB Code	[km²]	Quality	Quantity	Quality	Quantity	Quality	Quantity	Exemptions
7-HU-RO-RS	28,997	DS	WA	P/G/G	P/G/P	BM	BM, OBM, SM	2027

Measure completed = Implementation is estimated to be completed by the end of 2012 (reference to the measures codes in table 1)

HU – quality:

RS – quantity:

SM-01

Type of measure : Supplementary measures (Annex VI, Part B), including: research, development and demonstration projects and construction designs for new GW sources

Indicators :

1. Strategy on water supply and protection of AP Vojvodina (Official Journal APV no. 1/2010):

Adopted in the Vojvodinian Assembly in December 2009, providing planning background and guidelines for solving the problems of water supply. Strategy defines responsibilities, time plan and necessary investments for the improvement of public water supply and water protection. (Responsible Authority: Government of AP Vojvodina) Estimated cost : ~200.000 €

2. Research Study and Investigations on locations of regional GW source in the Danube alluvium (2009-2012, on-going)

Research field investigations incl. pumping tests, chemical and microbiolocal analyses for the purpose of GW resource estimation and GW protection. (Responsible Authority: Serbian Directorate for Water)

Estimated cost : ~500.000 €

Environmental Impact Assessment for Underwater Coal Mine Kovin on future regional GW source Kovin-3. Dubovac (2010, not finished)

Estimation of the impact of future underwater coal minning activities on potential regional GW source (incl. field investigations, GW modeling) (Financed by private company, under supervison of Government of AP Vojvodina) Estimated cost : 750.000 €

4. Study on GW resource assessment on the territory of AP Vojvodina (2010, not finished)

Estimation of the GW reserves, identification of potential locations for regional GW sources for DW supply in AP Vojvodina. (Responsible Authority: Government of AP Vojvodina)

Estimated cost : 150.000 €

HU – quantity:

description of the measure: SM construction and rehabilitation project

responsible authority or beneficiary: Lower Tisza Region Environmental and Water Directorate, Szeged in HU

quantitative information by appropriate indicators (number of measures/projects and costs): (INTERREG; Code: HUSER 0602/13): Sustainable development of the use of ground waters in the region along the Hungarian-Serbian border construction and rehabilitation project. Amount of funding: 28 332 352 HUF

description of the measure: SM demand management measures

responsible authority or beneficiary: Ministry of Rural Development and farmers

quantitative information by appropriate indicators (number of measures/projects and costs):

Within the "New Hungary Rural Development Program" (under the European Agricultural Fund for Rural Development - EAFRD) 2007-2013 environmentally friendly investments in the field of agricultural water management can be supported (e. g. water-saving irrigation techniques). The requirements for water-saving (dripping) irrigation are regulated in the 34/2008. (III. 27) FVM Agricultural Ministerial Decree. According to the Decree only the water- and energy-saving micro-irrigation technological improvements are eligible, if water is produced from the deeper layers.

Measure implementation on-going = Measure implementation is estimated to be on-going (reference to the measures codes in table 1)

HU - quality:

description of the measure: BM07

responsible authority: local governments

quantitative information by appropriate indicators (number of measures/projects and costs):

HU transposed the Urban Waste Water Directive by Gov. decree 25/2002. (II. 27.) on the National Wastewater Collection and Treatment program. The implementation of UWWD is ongoing.

In the South Great Plain Region 52,4% of the settlements were connected to the sewage system in 2008, and 82,4% are planned to be reached by 2015.

description of the measure: BM09

responsible authority: authorities for soil protection and for environmental protection

quantitative information by appropriate indicators (number of measures/projects and costs):

HU transposed the ND by the Gov. Decree No. 27/2006. (II.7.) on the protection of waters against pollution caused by nitrates of agricultural sources. Designation of nitrate vulnerable zones (~2,5 million ha at present) is under revision. The Code of Good Agricultural Practice is obligatory on NVZ's. Outside the NVZ's, the agri environmental measures assist the implementation of GAP on a voluntary basis.

RS – quantity:

HU – quantity:

description of the measure: SM Construction and rehabilitation project;

responsible authority or beneficiary: Lower Tisza Region Environment and Water Directorate, Lower Danube Valley Environment and Water Directorate

quantitative information by appropriate indicators (number of measures/projects and costs):

Currently, 4 regional importance water conservation measures are ongoing, which influence the groundwater quantitative status.

Protection of water quantity and quality along the Danube valley - 2 991 019 750 HUF

Artificial recharge (intake) of Algyő main channel catchment area - 685 954 812 HUF

Artificial recharge (intake) in the Danube -Tisza Interfluvial Region - 618 592 500 HUF

Improving Water balance in the Danube -Tisza Interfluvial Region - 444 800 000 HUF

description of the measure: OBM-23

responsible authority or beneficiary: Ministry of Rural Development

quantitative information by appropriate indicators (number of measures/projects and costs):

Gov. decision 1405/2011. (XII. 25.) on the 'Simple State' governmental program implies the transposition of the licensing of domestic wells (i. e. used for domestic water use only) from local governments to environmental authorities where experts ensure that aspects of water management and protection are taken into consideration in the licensing procedure. The relevant legislation will be modified in 2013.

Construction measure planning on-going = Planning of construction measure is estimated to be on-going

(reference to the measures codes in table 1)

HU – quality:

RS – quantity:

HU – quantity:

Construction of measure on-going = Construction of measure is estimated to be on-going (reference to the measures codes in table 1)

HU – quality:

RS – quantity:

HU – quantity:

Measure not started = Implementation is estimated of not being started by end of 2012 (reference to the measures codes in table 1)

HU – quality:

RS – quantity:

HU – quantity:

description of the measure: SM, promotion of adapted agricultural production such as low water requiring crops in areas affected by drought

responsible authority or beneficiary: Ministry of Rural Development and farmers

quantitative information by appropriate indicators (number of measures/projects and costs):

The measures is planned to implement in the frame of EU funds 2014-2020 Multiannual Financial Framework (MFF).

GWB Code	Size	Pres	sures	St	atus	Меа	sures	Exemptions
GWD Code	[km²]	Quality	Quantity	Quality	Quantity	Quality	Quantity	Exemptions
8-HU-SK	3,363	DS	WA	P/G	P/G	BM		Yes

Measure completed = Implementation is estimated to be completed by the end of 2012 (reference to the measures codes in table 1)

HU – quality:

Measure implementation on-going = Measure implementation is estimated to be on-going (reference to the measures codes in table 1)

HU – quality:

description of the measure: BM07

responsible authority: local governments

quantitative information by appropriate indicators (number of measures/projects and costs):

HU transposed the Urban Waste Water Directive by Gov. decree 25/2002. (II. 27.) on the National Wastewater Collection and Treatment program. The implementation of UWWD is ongoing.

In the West Trans-danubian Region 75,8% of the settlements were connected to the sewage system in 2008, and 89,8% are planned to be reached by 2015.

description of the measure: BM09

responsible authority: authorities for soil protection and for environmental protection

quantitative information by appropriate indicators (number of measures/projects and costs):

HU transposed the ND by the Gov. Decree No. 27/2006. (II.7.) on the protection of waters against pollution caused by nitrates of agricultural sources. Designation of nitrate vulnerable zones (~2,5 million ha at present) is under revision. The Code of Good Agricultural Practice is obligatory on NVZ's. Outside the NVZ's, the agri environmental measures assist the implementation of GAP on a voluntary basis.

Construction measure planning on-going = Planning of construction measure is estimated to be on-going (reference to the measures codes in table 1)

HU – quality:

Construction of measure on-going = Construction of measure is estimated to be on-going (reference to the measures codes in table 1)

HU – quality:

Measure not started = Implementation is estimated of not being started by end of 2012 (reference to the measures codes in table 1)

HU – quality:

Code	Size	Pres	sures	St	atus	Mea	sures	Exemptions
Code	[km²]	Quality	Quantity	Quality	Quantity	Quality	Quantity	Exemptions
11-HU-SK	3,811	No	WA	Good	P/G	No	No	2027

Measure completed = Implementation is estimated to be completed by the end of 2012 (reference to the measures codes in table 1)

HU – quantity:

No measures needed as the significant pressures have stopped.

Measure implementation on-going = Measure implementation is estimated to be on-going (reference to the measures codes in table 1)

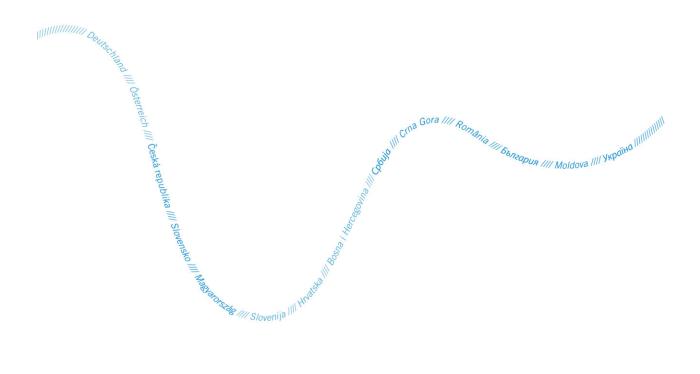
HU – quantity:

Construction measure planning on-going = Planning of construction measure is estimated to be on-going (reference to the measures codes in table 1)

HU – quantity:

Construction of measure on-going = Construction of measure is estimated to be on-going (reference to the measures codes in table 1)

HU – quantity:


Measure not started = Implementation is estimated of not being started by end of 2012 (reference to the measures codes in table 1)

HU – quantity:

Detailed results of classification of all assessed surface water bodies according to particular biological, hydromorphological and chemical quality elements

ANNEX 7 DRAFT DRBM Plan – Update 2015

Explanations

	Labels in the table	Descripton	Possible values
	Water body code with country code		
	Name of river		
	Fish	Status Class for the Water Body	
	Benthic invertebrates	Status Class for the Water Body	
	Phytobenthos and Macrophytes	Status Class for the Water Body	1 = high, 2 = good,
Biological Quality Elements	Phytoplankton	Status Class for the Water Body	3 = moderate, 4 = poor,
	Overall Biological Status	Status Class for the Water Body = worst case of the status classes of all biological quality elements (acc. to one-out- all-out principle)	5 = bad
Hydromorphology	Hydromorphology - High Status	Only if biological quality elements are in high status hydromorphology must also be in high status	Y = Yes, N = No
General Physical and Chemical conditions	General Physical and Chemical conditions supportive to the Ecological Status	Status Class for the Water Body	1 = high, 2 = good, 3 = moderate, 4 = poor, 5 = bad
Specific pollutants	Specific pollutants (good or failing for Ecological Status)	Status Class for the Water Body for specific pollutants based on national quality standards; relevant for the assessment of Ecological Status. Specific pollutants are those pollutants that are regulated at the national level (and not included in the List	G = good, F = failing
OVERALL ECOLOGICAL STATUS	Overall Ecological Status	Worst case of the Biological Quality Class and Specific pollutants Status Class. For High Ecological Status additionally the General Physical and Chemical Parameters and the Hydromorphology have to be in high status.	1 = high, 2 = good, 3 = moderate, 4 = poor, 5 = bad
	Confidence class (Overall Ecol. Status)	Confidence level of assessment (as discussed in the MA EG)	H = high, M = medium, L = low

	Artificial Water Body	Is the water body artificial?	Y = Yes, N = No
Artificial and	НМШВ	Is the water body heavily modified?	Y = Yes, N = No, PN = provisionally no, PY = provisionally yes
Arunciai and HMWB	Ecological Potential Class	If the water body is artificial or heavily modified - please give the information of the Ecological Potential Class	2 = good and above, 3 = moderate, 4 = poor, 5 = bad
	Confidence class (Ecological Potential)	Confidence level of assessment (as discussed in the MA EG)	H = high, M = medium, L = low

CHEMICAL	CHEMICAL STATUS CLASS	Chemical Status Class for all pollutants that are regulated by the EU	G = good, F = failing
STATUS CLASS	Confidence (Chemical Status)	Confidence level of assessment (as discussed in the MA EG)	H = high, M = medium, L = low

	Exemption Art. 4(4)	Y = Yes, N = No
Exemptions	Exemption Art. 4(5)	Y = Yes, N = No

Status assessment of the Danube river

						Biolog E	gical Q lemen		,	itus	itions		STATUS	itatus)			ficial MWB			atus)		
Water Body code with country code	Name of river	Name of water body	from River-km	to River-km	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL ST	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
DEDEBW_6-01	Donau	Donau oberhalb Beuroner Tal (TBG 60)	2717	2780	3	3	3	-	3	N	2	G	3	Н	N	N			F	Н	Y	N
DEDEBW_6-02	Donau	Donau ab Beuroner Tal oberhalb Lauchert (TBG 61)	2676	2717	3	3	2	-	3	N	2	G	3	Н	N	N			F	Н	Y	N
DEDEBW_6-03	Donau	Donau ab Lauchert oberhalb Zwiefalter Ach (TBG 62)	2640	2676	3	2	2	2	3	N	2	G	3	Н	Ν	N			F	Н	Y	Ν
DEDEBW_6-04	Donau	Donau ab Zwiefalter Ach oberhalb Riß (TBG 63)	2603	2640	3	3	2	2	3	N	2	G	3	Н	N	N			F	Н	Y	N
DEDEBW_6-05	Donau	Donau ab Riß oberhalb Iller (TBG 64)	2588	2603	4	3	3	2	4	N	2	G	4	Н	N	N			F	Н	Y	N
DEDEBY_1_F030_BW	Donau	Donau von Einmündung Iller bis Einmündung Landgraben bei Offingen	2551	2583	2	2	2	2	2	N	2	G			N	Y	2	Н	F	-	Y	N
DEDEBY_1_F062	Donau	Donau von Einmündung Landgraben bei Offingen bis Staustufe Donauwörth	2507	2551	3	2	2	2	3	N	2	G			N	Y	3	М	F	-	Y	N
 DEDEBY_1_F074	Donau	Donau von Donauwörth bis Einmündung Lech	2491	2507	2	2	2	3	3	N	2	G	3	Н	N	N			F	-	Y	N
DEDEBY_1_F163	Donau	Donau von Einmündung Lech bis Einmündung Paar	2438	2491	2	2	2	3	3	N	3	G	3	Н	N	N			F	-	Y	N

							gical Q lemen			atus	itions		ATUS	status)		Artif and H	ficial MWB			atus)		
Water Body code with country code	Name of river	Name of water body	from River-km	to River-km	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL STATUS	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
DEDEBY_1_F204	Donau	Donau von Einmündung Paar bis Staubing (Fkm 165)	2418	2438	2	3	3	3	3	N	3	G	3	Н	N	N			F	-	Y	Ν
DEDEBY_1_F205	Donau	Donau von Staubing bis Einmündung Main-Donau- Kanal	2406	2418	2	3	3	3	3	N	3	G	3	Н	N	N			F	-	Y	N
DEDEBY 1 F223	Donau	Donau von Einmündung Main-Donau-Kanal bis Einmündung Naab	2380	2406	3	3	3	3	3	N	3	G			N	Y	3	Н	F	-	Y	N
DEDEBY_1_F348	Donau	Donau von Einmündung Naab bis Einmündung Große Laber	0	2380	3	3	3	3	3	N	3	G			N	Y	3	Н	F	-	Y	N
DEDEBY_1_F361	Donau	Donau von Einmündung Große Laber bis Einmündung Isar	2282	2324	2	2	3	3	3	N	2	G	3	Н	N	N			F	-	Y	N
DEDEBY_1_F477	Donau	Donau von Einmündung Isar bis Einmündung Vils	2249	2282	2	2	3	3	3	N	2	G	3	Н	N	N			F	-	Y	N
DEDEBY_1_F478	Donau	Donau von Einmündung Vils bis Einmündung Inn	2225	2249	2	2	3	3	3	N	2	G			N	Y	3	Н	F	-	Y	N
DEDEBY_1_F633	Donau	Donau von Passau bis Staatsgrenze	2202	2225	3	2	3	2	3	N	2	G			N	Y	3	Н	F	-	Y	N
ATOK303070000	Donau	Donau	2202	2223	5	-	2	-	5	Ν	2	G	-	-	Ν	Y	3	Н	F	Н	Y	Ν
ATOK410360003	Donau	Donau-Aschach	2162	2202	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	3	М	F	Н	Y	Ν
ATOK410360005	Donau	Donau- Ottensheim_Wilhering	2146	2162	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	3	М	G	М	Y	Ν

						Biolog E	gical Q lemen			atus	itions		ATUS	status)			ficial MWB			atus)		
Water Body code with country code	Name of river	Name of water body	from River-km	to River-km	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL STATUS	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
ATOK410360007	Donau	Donau_10, KW Ottensheim_Wilhering bis KW Abwinden_Asten, EP groß	2120	2146	-	-	-	-	-	N	2	G	-	-	N	Y	3	М	G	М	Y	N
ATOK410360009	Donau	Donau_09 KW Abwinden_Asten bis KW Wallsee_Mitterkirchen, EP groß	2094	2120	4	-	2	-	4	N	2	G	-	-	N	Y	3	Н	G	Н	Y	N
ATOK410360012	Donau	Donau_08, KW Wallsee_Mitterkirchen bis KW Ybbs_Persenbeug, EP groß	2060	2094	5	-	-	-	5	N	2	G	-	-	N	Y	3	Н	G	Н	Y	N
ATOK410360002	Donau	Donau_07, KW Ybbs Persenbeug bis KW Melk, EP groß	2038	2060	-	-	-	-	-	N	2	G	-	-	N	Y	3	L	G	М	N	N
ATOK410350000	Donau	Donau_06, KW Melk bis Mautern, EP groß	2005	2038	5	-	-	-	5	Ν	2	G	4	Н	Ν	N	-	-	G	Н	Ν	N
ATOK409040012	Donau	Donau_05, Mautern bis KW Altenwörth, EP groß	1980	2005	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	3	L	G	М	Ν	N
ATOK409040011	Donau	Donau_04, KW Altenwörth bis KW Greifenstein, EP groß	1950	1980	-	-	-	-	-	N	2	G	-	-	N	Y	3	L	G	М	N	N
ATOK409040013	Donau	Donau_03, KW Greifenstein bis KW Freudenau, EP groß	1921	1950	5	-	-	-	5	N	2	G	-	-	N	Y	3	Н	G	М	N	N
ATOK409040008	Donau	Donau_02, KW Freudenau bis Devin, EP groß	1880	1921	-	-	-	-	-	Ν	2	G	2	Н	Ν	Ν	-	-	G	Н	N	Ν

							gical Q Xlemen			atus	litions		ATUS	status)		Artif and H				atus)		
Water Body code with country code	Name of river	Name of water body	from River-km	to River-km	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL STATUS	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
ATOK411340000	Donau	Donau_01, unterhalb Devin, EP groß	1873	1880	-	-	-	-	-	Ν	2	G	2	L	Ν	Ν	-	-	G	Н	N	Ν
SKD0016	Dunaj	Dunaj	1869	1880	-	2	2	1	2	Ν	2	G	2	Н	Ν	Ν	-	-	G	М	Ν	Ν
SKD0019	Dunaj	Dunaj	1852	1869	-	3	2	1	3	Ν	2	G	-	-	Ν	Y	3	Н	F	М	Ν	Ν
SKD0017	Dunaj	Dunaj	1790	1852	-	3	2	1	3	Ν	2	G	-	-	Ν	Y	3	Н	G	М	Ν	Ν
HUAEP443	Duna, Duna- mellékág	Duna Szigetköznél	1786	1850											N	Y						
SKD0018	Dunaj	Dunaj	1708	1790	-	3	3	1	3	Ν	2	G	3	Н	Ν	Ν	-	-	G	М	Ν	Ν
HUAEP446	Duna	Duna Gönyü-Szob között	1708	1786											Ν	Ν						
HUAEP444	Duna, Szentendrei- Duna	Duna Szob-Baja között	1480	1708											N	N						
HUAEP445	Duna	Duna Bajától délre	1433	1480											Ν	Ν						
HRDDRI010002	Dunav	DDRI010002	1382	1433	-	-	-	-	-	Ν	2	-			Ν	Y	3	Μ	G	М	-	-
RSD10	Dunav	Dunav uzvodno od ušća Drave	1382	1433	-	3	3	3	3	Ν	2	G	3	М	Ν	Ν			F	М	-	-
HRDDRI010001	Dunav	DDRI010001	1294	1382	-	-	-	-	-	Ν	2	-			Ν	Y	3	Μ	G	М	-	-
RSD9	Dunav	Dunav od RH-HR granice do ušća Drave	1295	1382	-	3	3	-	3	N	2	G	3	М	Ν	N			F	М	-	-
RORW14.1_B1	Dunarea	PFI	1223	1361	-	2	2	1	2	Ν	2	F			Ν	Y	3	Н	F	М	Y	Ν
RSD8	Dunav	Dunav od Novog Sada do RS-HR granice	1255	1295	-	3	2	-	3	Ν	2	G			Ν	PY	3	М	F	L	-	-

							gical Q llemen		,	atus	litions		ATUS	Status)		Artif and H	ficial MWB			atus)		
Water Body code with country code	Name of river	Name of water body	from River-km	to River-km	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL STATUS	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
RSD7	Dunav	Akumulacija HE Đerdap I od ušća Tise do Novog Sada	1215	1255	-	3	2	-	3	N	2	G			N	Y	3	М	F	L	-	-
RORW14.1_B2	Dunarea	PFII	1021	1223	-	1	1	1	1	Ν	2	F			Ν	Y	3	Н	F	М	Y	Ν
RSD6	Dunav	Akumulacija HE Đerdap I od ušća Save do ušća Tise	1170	1215	-	3	2	-	3	N	2	G			N	Y	3	М	F	L	-	-
RSD5	Dunav	Akumulacija HE Đerdap I od ušća Velike Morave do ušća Save	1105	1170	-	3	3	-	3	N	2	G			N	Y	3	М	F	М	-	-
RSD4	Dunav	Akumulacija HE Đerdap I od ušća Nere do ušća Velike Morave	1075	1105	-	3	2	-	3	N	2	G			N	Y	3	М	F	М	-	-
RSD3	Dunav	Akumulacija HE Đerdap I do ušća Nere	943	1075	-	3	2	-	3	N	2	G			N	Y	3	М	G	М	-	-
RORW14.1_B3	Dunarea	PFII-Chiciu	445	1039	3	2	1	1	3	Ν	3	F			Ν	Y	3	Н	F	М	Ν	Ν
RSD2	Dunav	Akumulacija HE Đerdap II	863	943	-	5	3	-	5	Ν	2	G			Ν	Y	4	L	G	М	-	-
RSD1	Dunav	Dunav nizvodno od HE Đerdap II	846	863	-	4	2	-	4	N	3	G			N	PY	4	М	G	М	-	-
BG1DU000R001	Dunav	DUNAV RWB01	374	846	-	-	-	-	-		2	G			Ν	Y	-	-	G	L	-	-
RORW14.1_B4	Dunarea	Chiciu-Isaccea	124	446	3	2	1	1	3	Ν	2	G			Ν	Y	3	Μ	G	Μ	Ν	Ν
UADB_UA_02	Danube	Danube	75	169	-	-	-	-	-		-	-	-	-	Ν	PY	-	-	-	-	-	-
UADB_UA_01	Danube	Danube	75	169	-	-	-	-	-		-	-	-	-	Ν	PY	-	-	-	-	-	-
RORW14.1_B6	Dunarea	Chilia	0	133	3	1	1	1	3	Ν	2	G	3	М	N	N			G	М	N	N
RORW14.1_B5	Dunarea	Isaccea-Sulina	0	124	-	2	1	1	2	Ν	2	G			Ν	Y	2	М	G	М	Ν	Ν

							gical Q lemen			Status	litions		ATUS	Status)		Artil and H	ficial MWB			Status)		
Water Body code with country code	Name of river	Name of water body	from River-km	to River-km	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High St	General Phys. and Chem. condi	Specific pollutants	OVERALL ECOLOGICAL ST	Confidence class (Overall Ecol.S	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical St	Exemption Art. 4(4)	Exemption Art. 4(5)
RORW14.1_B7	Dunarea	Sf. Gheorghe	0	88	2	2	1	1	2	Ν	2	G	2	М	N	Ν			G	М	Ν	Ν
UADB_UA_03	Danube	Danube	22	32	-	-	-	-	-		-	-	-	-	Ν	PY	-	-	-	-	-	-

9

Status assessment of the tributaries

					gical Q lemen			atus	litions		ATUS	status)		Artif and H				atus)		
Water Body code with country code	Name of river	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL STATUS	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
DEDEBY_1_F509	Inn	Inn von Innstau Passau-Ingling bis Mündung in die Donau	2	2	2	-	2	N	2	G	2	Н	N	N			F	-	Y	N
DEDEBY_1_F556	Inn	Inn von Einmündung Innwerkkanal bis Einmündung Alz	3	2	2	-	3	N	2	G			N	Y	3	Н	F	-	Y	N
DEDEBY_1_F557	Inn	Inn von Ausleitung Innwerkkanal bis Einmündung Innwerkkanal	4	2	2	-	4	N	3	G	4	Н	N	Ν			F	-	Y	N
DEDEBY_1_F558	Inn	Inn von Einmündung der Mangfall bis Jettenbach	2	2	2	-	2	N	2	G			N	Y	2	Н	F	-	Y	N
DEDEBY_1_F583	Inn	Inn von Einmündung Alz bis Einmündung der Salzach	3	2	2	-	3	N	2	G			N	Y	3	М	F	-	Y	N
DEDEBY_1_F654	Inn	Inn von Einmündung Salzach bis unterhalb Stau Neuhaus	3	2	2	-	3	N	2	G			Ν	Y	3	М	F	-	Y	N
DEDEBY_1_F655	Inn	Inn von unterhalb Stau Neuhaus bis Innstau Passau-Ingling	3	2	2	-	3	N	2	G			Ν	Y	3	М	F	-	Y	N
DEDEBY_1_F656	Inn	Inn von unterhalb Kufstein bis unterhalb Erl	4	2	2	-	4	N	2	G			Ν	Y	4	М	F	-	Y	N

					gical Q lemen			ıtus	itions		STATUS	(tatus)		Artii and H	ficial MWB			itus)		
Water Body code with country code	Name of river	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL ST	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
DEDEBY_1_F657	Inn	Inn von unterhalb Erl bis Einmündung der Mangfall; Moosbach; Altwasser; Husarenbach	4	2	2	-	4	N	2	G			N	Y	4	Н	F	-	Y	N
DEDEBY_1_F373	Isar	Isar von Staatsgrenze bis zum Krüner Wehr	2	2	1	-	2	N	2	G	2	Н	N	N			F	-	Y	N
DEDEBY_1_F374	Isar	Isar vom Krüner Wehr bis Sylvensteinspeicher	2	1	1	_	2	Y	2	G	2	Н	N	N			F	-	Y	N
DEDEBY_1_F375	Isar	Isar vom Sylvensteinspeicher bis Bad Tölz (Fkm 202,8)	4	2	2	-	4	N	2	G	4	Н	N	N			F	-	Y	N
DEDEBY_1_F376	Isar	Isar von Fkm 202,8 bis Fkm 195 (Bad Tölz)	3	2	2	-	3	N	2	G			N	Y	3	Н	F	-	Y	N
DEDEBY_1_F377	Isar	Isar von Fkm 195 bis Einmündung der Loisach	2	2	2	_	2	N	2	G	2	Н	N	N			F	-	Y	N
DEDEBY_1_F402	Isar	Isar von Einmündung der Loisach bis Corneliuswehr	3	2	2	-	3	N	2	G	3	Н	N	N			F	-	Y	N
DEDEBY_1_F403	Isar	Isar von Corneliuswehr bis Oberföhringer Wehr	3	2	2	-	3	N	2	G			Ν	Y	3	Н	F	-	Y	N
DEDEBY_1_F404	Isar	Isar von Anfang Mittlerer Isarkanal bis Moosburg	2	2	2	-	2	Ν	2	G	2	Н	N	Ν			F	-	Y	Ν

					gical Q lemen		7	itus	itions		ATUS	itatus)		Artif and H				atus)		
Water Body code with country code	Name of river	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL STATUS	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
DEDEBY_1_F405	Isar	Isar von Einmündung der Amper bis Einmündung des Mittleren-Isar-Kanals	3	2	2	-	3	N	3	G	3	Н	N	N			F	-	Y	N
DEDEBY_1_F406	Isar	Isar von Moosburg bis Einmündung der Amper	3	2	2	-	3	N	3	G	3	М	N	N			F	-	Y	N
DEDEBY_1_F429	Isar	Isar von Einmündung des Mittleren-Isar- Kanals bis Stützkraftstufe Pielweichs bei Plattling; Kl	4	4	3	-	4	N	3	G			N	Y	4	Н	F	-	Y	N
DEDEBY_1_F430	Isar	Isar von Plattling bis Mündung in die Donau	2	3	2	-	3	N	2	G	3	Н	N	N			F	-	Y	N
DEDEBY_1_F121	Lech	Lech mit Lechfall von Staatsgrenze bis Theresienbrücke Füssen (Fkm 168,5 - 166,3)	3	2	2	-	3	Y	2	G	3	М	N	N			F	I	Y	N
DEDEBY_1_F122	Lech	Lech von Einmündung Lechkanal Meitingen bis Mündung in die Donau	4	-	-	-	4	N	2	G			Ν	Y	4	Н	F	-	Y	N
DEDEBY_1_F124	Lech	Lech Mutterbett von Einmündung Wertach bis Einmündung Lechkanal bei Ostendorf	3	2	2	-	3	N	2	G			N	Y	3	Н	F	-	Y	N

					gical Q Xlemen		,	itus	itions		ATUS	(tatus)		Artif and H	ficial MWB			itus)		
Water Body code with country code	Name of river	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL STATUS	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
DEDEBY_1_F125	Lech	Lech von Fkm 139 bis Fkm 133 (Litzauer Schleife)	3	2	2	-	3	N	2	G	3	Н	N	N			F	-	Y	N
DEDEBY_1_F126	Lech	Lech Mutterbett vom Hochablass Augsburg bis Einmündung Wertach	3	3	2	-	3	N	2	G			N	Y	3	Н	F	-	Y	N
DEDEBY_1_F127	Lech	Lech von Staustufe 23 bis zum Hochablass Augsburg	3	2	2	-	3	N	2	G			N	Y	3	Н	F	-	Y	N
DEDEBY_1_F128	Lech	Lech von Staustufe 1 bis Staustufe 4 (Kraftwerk Roßhaupten bis Fkm 139)	4	2	2	-	4	N	2	G			N	Y	4	Н	F	-	Y	N
DEDEBY_1_F129	Lech	Lech von Theresienbrücke Füssen bis Staustufe 1 (Kraftwerk Roßhaupten)	-	2	2	-	2	N	2	G			N	Y	2	Н	F	-	Y	N
DEDEBY_1_F130	Lech	Lech von Staustufe 15 bis Eisenbahnbrücke in Kaufering	2	2	2	-	2	N	2	G	2	Н	Ν	Ν			F	-	Y	N
DEDEBY_1_F131	Lech	Lech von Eisenbahnbrücke in Kaufering bis Staustufe 23	3	2	2	-	3	N	2	G			N	Y	3	М	F	-	Y	N
DEDEBY_1_F132	Lech	Lech von Mündung in Schongauer Lechsee bis Staustufe 15	3	2	2	-	3	N	2	G			N	Y	3	М	F	-	Y	N

				Biolo; E	gical Q Xlemen	uality ts		itus	itions		ATUS	tatus)		Artii and H	ficial MWB			ttus)		
Water Body code with country code	Name of river	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL STATUS	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
DEDEBY_1_F226	Main-Donau-Kanal	Main-Donau-Kanal (Altmühl) von Dietfurt bis Mündung in die Donau	2	4	3	3	4	N	3	G			N	Y	4	Н	F	-	Y	N
DEDEBY_1_F243	Main-Donau-Kanal	Main-Donau-Kanal von Pierheim bis Dietfurt	-	2	3	3	3	Y	3	G			Y	N	3	Н	F	-	Y	N
DEDEBY_1_F251	Naab	Tirschenreuther Waldnaab unterhalb Tirschenreuth (Fkm 168,8), Waldnaab bis Zusammenfluss mit der Hai	3	2	3	-	3	N	3	G	3	Н	N	N			F	-	Y	N
DEDEBY_1_F252	Naab	Tirschenreuther Waldnaab oh. WSP Liebenstein; Heiligenbach	4	3	3	-	4	N	3	G	4	Н	N	N			F	-	Y	N
DEDEBY_1_F253	Naab	Tir. Waldnaab ab Einmündung in Liebensteinspeicher bis Tirschenreuth (Fkm 168,8); Geisbach von Kr	4	3	2	-	4	N	3	G	4	Н	N	N			F	-	Y	N
DEDEBY_1_F273	Naab	Naab von Zusammenfluss Haidenaab und Waldnaab bis Mündung in die Donau	2	2	3	3	3	N	3	G	3	н	N	N			F	-	Y	N
DEDEBY_1_F640	Salzach	Salzach von Einmündung Alzkanal bis Mündung in den Inn	3	2	2	-	3	N	2	G			N	Y	3	L	F	-	Y	N

					gical Q lemen			itus	itions		STATUS	(tatus)			ficial MWB			itus)		
Water Body code with country code	Name of river	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL ST	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
DEDEBY_1_F641	Salzach	Salzach von Einmündung Saalach bis Einmündung Alzkanal	3	1	2	-	3	N	2	G	3	Н	N	N			F	-	Y	N
ATOK900470001	Drau	Drau	-	2	-	-	2	Ν	2	G	2	М	Ν	Ν	-	-	G	М	Ν	Ν
ATOK900470003	Drau	DRAU (von 515,7 bis 549,9)	-	-	-	-	-	Ν	1	G	-	-	Ν	Y	3	М	G	М	Ν	Ν
ATOK900470021	Drau	DRAU (von 571,5 bis 611,0)	-	-	-	-	-	Ν	2	G	2	М	Ν	Ν	-	-	G	М	Ν	Ν
ATOK900470022	Drau	DRAU (von 549,9 bis 571,5)	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	3	Н	G	Μ	Y	Ν
ATOK900470055	Drau	DRAU (von 453,7 bis 498,5)	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	3	Μ	G	М	Ν	Ν
ATOK900470056	Drau	DRAU (von 498,5 bis 505,5)	2	-	-	-	2	Ν	2	G	2	Μ	Ν	Ν	-	-	G	Μ	Ν	Ν
ATOK900470057	Drau	DRAU (von 505,5 bis 515,7)	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	3	Μ	G	М	Ν	Ν
ATOK900470058	Drau	DRAU (von 411,2 bis 435,8)	4	3	2	-	4	Ν	2	G	-	-	Ν	Y	2	Η	G	М	Ν	Ν
ATOK900470059	Drau	DRAU (von 435,8 bis 453,7)	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	3	Н	G	Μ	Ν	Ν
ATOK903540001	Drau	Drau	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	3	Μ	G	Μ	Ν	Ν
ATOK903540002	Drau	Drau_1	2	-	-	-	2	Ν	2	G	2	М	Ν	Ν	-	-	G	Μ	Ν	Ν
ATOK903540003	Drau	Drau_2	-	-	-	-	-	Ν	2	G	4	Μ	Ν	Ν	-	-	G	Μ	Y	Ν
ATOK903770000	Drau	DRAU (von 407,1 bis 411,2)	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	2	Η	G	М	Ν	Ν
ATOK400240027	Enns	Gewässer: Enns, Abschnitt: Landesgrenze bis Radstadt	-	-	-	-	-	N	2	G	4	М	N	N	-	-	G	М	Y	Y
ATOK400240089	Enns	Enns	-	-	-	-	-	Ν	2	G	2	Μ	Ν	Ν	-	-	G	М	Ν	Ν
ATOK400240090	Enns	Enns	-	-	-	-	-	Ν	2	G	2	М	Ν	Ν	-	-	G	Μ	Ν	Ν
ATOK400240092	Enns	Enns	-	-	-	-	-	Ν	2	G	4	Μ	Ν	Ν	-	-	G	Μ	Ν	Ν

					gical Q lemen			itus	itions		ATUS	tatus)		Artif and H	ficial MWB			ttus)		
Water Body code with country code	Name of river	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL STATUS	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
ATOK400240103	Enns	Gewässer: Enns, Abschnitt: Ende Fischlebensraum bis Labgeggbach	-	-	-	-	-	N	2	G	2	М	N	N	-	-	G	М	N	Y
ATOK400240104	Enns	Gewässer: Enns, Abschnitt: Langeggbach bis Ursprung	-	-	-	-	-	Y	1	G	1	М	N	N	-	-	G	М	N	Y
ATOK400240105	Enns	Gewässer: Enns, Abschnitt: Radstadt bis Altenmarkt	-	-	-	-	-	N	2	G	-	-	N	Y	3	Н	G	М	Y	Y
ATOK400240106	Enns	Gewässer: Enns, Abschnitt: Altenmarkt bis Ende Fischlebensraum	-	-	-	-	-	N	2	G	4	Н	N	N	-	-	G	М	Y	Y
ATOK400240163	Enns	Oberhalb Flachau bis Grenze Fischlebensraum	-	-	-	-	-	N	2	G	4	Н	N	Ν	-	-	G	М	Y	Y
ATOK409970000	Enns	Enns	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	3	Н	G	М	Ν	Ν
ATOK411250006	Enns	Enns_Hafen Donaurückstau	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	3	М	G	М	Y	Ν
ATOK411250008	Enns	Enns	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	3	L	G	М	Y	Ν
ATOK411250009	Enns	Enns Gesäuse	-	-	2	-	2	Ν	2	G	2	М	Ν	Ν	-	I	G	Н	Ν	Ν
ATOK411250010	Enns	Enns	5	-	-	-	5	Ν	2	G	5	Н	Ν	Ν	-	-	G	М	Ν	Ν
ATOK411250012	Enns	Enns, Enns-Seitenarm	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	3	М	G	М	Ν	Ν
ATOK411250014	Enns	Enns_Thurnsdorf-Stau	5	-	-	-	5	Ν	2	G	-	-	Ν	Y	3	Н	G	М	Y	Ν
ATOK411250016	Enns	Enns_Mühlrading-Stau	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	3	М	G	М	Y	Ν
ATOK411250018	Enns	Enns_Staning	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	3	М	G	М	Y	Ν
ATOK411250020	Enns	Enns_Steyr-Fließstrecke	4	-	-	-	4	Ν	2	G	-	-	Ν	Y	3	Н	G	М	Y	Ν

16

					gical Q lemen			atus	itions		STATUS	itatus)		Arti and H	ficial MWB			atus)		
Water Body code with country code	Name of river	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL ST	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
ATOK411250021	Enns	Enns_Garsten	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	3	М	G	М	Y	Ν
ATOK411250023	Enns	Enns_Rosenau	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	3	Μ	G	Μ	Y	Ν
ATOK411250025	Enns	Enns_Ternberg	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	3	Μ	G	Μ	Y	Ν
ATOK411250027	Enns	Enns_Losenstein	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	3	Μ	G	Μ	Y	Ν
ATOK411250029	Enns	Enns_Großraming	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	3	М	G	Μ	Y	Ν
ATOK411250031	Enns	Enns_Weyer	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	3	М	G	Μ	Y	Ν
ATOK411250035	Enns	Enns_Altennmarkt_1	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	3	М	G	М	Y	Ν
ATOK411250036	Enns	Enns_Hilfswehr-Enns	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	3	М	G	Μ	Y	Ν
ATOK411250037	Enns	Enns_Thurnsdorf RWStrecke	-	-	-	-	-	Ν	2	G	4	Н	Ν	Ν	-	-	G	Μ	Y	Ν
ATOK304980003	Inn	Inn	5	-	-	-	5	Ν	2	G	-	-	Ν	Y	3	Н	G	М	Y	Ν
ATOK304980005	Inn	Inn_1	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	3	М	G	Μ	Ν	Ν
ATOK304980006	Inn	Inn_2	5	3	-	-	5	Ν	2	G	-	-	Ν	Y	3	Н	G	Μ	Ν	Ν
ATOK304980007	Inn	Inn_1	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	3	Μ	G	Μ	Y	Ν
ATOK304980008	Inn	Inn_2	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	3	М	G	Μ	Y	Ν
ATOK304980009	Inn	Inn_3	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	3	М	G	Μ	Ν	Ν
ATOK304980010	Inn	Inn_4	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	3	М	G	Μ	Ν	Ν
ATOK305340005	Inn	Inn_Schärding_Neuhaus	5	-	-	-	5	Ν	2	G	-	-	Ν	Y	3	Н	G	М	Y	Ν
ATOK305340007	Inn	Inn_Egglfing_Obernberg	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	3	М	G	Μ	Y	Ν
ATOK305340009	Inn	Inn_Ering_Frauenstein	4	4	3	-	4	Ν	3	G	-	-	Ν	Y	3	Н	G	Η	Y	Ν
ATOK305340010	Inn	Inn_Braunau_Simbach	-	-	-	-	-	Ν	3	G	-	-	Ν	Y	3	Н	G	L	Y	Ν
ATOK305340011	Inn	Inn_Ingling Unterwasser-Fließstrecke	5	-	-	-	5	Ν	2	G	2	Н	N	Ν	-	-	G	М	Ν	Ν

					gical Q lemen			ıtus	itions		STATUS	(tatus)		Artif and H				itus)		
Water Body code with country code	Name of river	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL ST	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
ATOK305340012	Inn	Inn_Ingling Stauraum	-	-	-	-	-	Ν	3	G	-	-	N	Y	3	Н	G	М	Y	Ν
ATOK305850006	Inn	Inn_1	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	3	Н	G	М	Y	Ν
ATOK305850010	Inn	Inn_6	4	-	-	-	4	Ν	2	G	-	-	Ν	Y	3	Н	G	М	Ν	Ν
ATOK305850011	Inn	Inn_5	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	3	Μ	G	М	Ν	Ν
ATOK307030000	Inn	Inn	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	3	М	G	М	Ν	Ν
ATOK307210001	Inn	Inn_1	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	3	Μ	G	М	Ν	Ν
ATOK307210002	Inn	Inn_2	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	3	М	G	М	Ν	Ν
ATOK301860007	Isar	Isar_10	-	-	-	-	-	Y	1	G	1	Μ	Ν	Ν	-	-	G	Μ	Ν	Ν
ATOK301860008	Isar	Isar_11	-	-	-	-	-	Ν	2	G	4	Μ	Ν	Ν	-	-	G	М	Ν	Ν
ATOK302340001	Isar	Isar_1	-	1	-	-	1	Ν	2	G	3	L	Ν	Ν	-	-	G	М	Y	Ν
ATOK302340002	Isar	Isar_2	-	-	-	-	-	Y	1	G	1	Μ	Ν	Ν	-	-	G	М	Ν	Ν
ATOK301500002	Lech	Lech, Formarinbach	-	-	-	-	-	Y	1	G	1	Μ	Ν	Ν	-	-	G	М	Ν	Ν
ATOK301500003	Lech	Lech_1_obh Zug	-	-	-	-	-	Y	1	G	1	L	Ν	Ν	-	-	G	М	Ν	Ν
ATOK301500004	Lech	Lech_2_Ort	-	-	-	-	-	Ν	2	G	2	Μ	Ν	Ν	-	-	G	М	Ν	Ν
ATOK302370006	Lech	Lech	-	-	-	-	-	Ν	2	G	2	Μ	Ν	Ν	-	-	G	М	Ν	Ν
ATOK302370007	Lech	Lech	2	-	-	-	2	Ν	2	G	2	Μ	Ν	Ν	-	-	G	М	Ν	Ν
ATOK302370009	Lech	Lech_1	4	-	-	-	4	Ν	2	G	-	-	Ν	Y	3	Н	G	М	Ν	Ν
ATOK302370010	Lech	Lech_2	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	3	Μ	G	М	Y	Ν
ATOK302370011	Lech	Lech_1	-	-	-	-	-	Ν	2	G	2	М	Ν	Ν	-	-	G	М	Ν	Ν
ATOK302370013	Lech	Lech_2_1	-	-	-	-	-	Ν	2	G	2	М	Ν	Ν	-	-	G	М	Ν	Ν
ATOK302370014	Lech	Lech_2_2	-	-	-	-	-	Y	2	G	2	Н	Ν	Ν	-	-	G	Μ	Ν	Ν
ATOK307080000	Lech	Lech	2	2	-	-	2	Ν	2	G	2	Н	Ν	Ν	-	-	G	Μ	Ν	Ν

					gical Q llemen			ıtus	itions		STATUS	itatus)		Artii and H	ficial MWB			atus)		
Water Body code with country code	Name of river	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL ST	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
ATOK500020001	March	March, MP	2	-	3	-	3	Ν	3	G	3	Н	Ν	Ν	-	-	G	Н	Y	Ν
ATOK801180001	Mur	Gewässer: Mur, Abschnitt: Landesgrenze bis Kendlbruck; 8011802	2	2	2	-	2	N	2	G	2	Н	N	N	-	-	G	М	N	Y
ATOK801180002	Mur	Gewässer: Mur, Abschnitt: Kendlbruck bis Madling/Thomertalerbach Taurachmündung; 8011801	-	-	-	-	-	N	2	G	2	Н	N	N	-	-	G	М	N	Y
ATOK801180003	Mur	Gewässer: Mur, Abschnitt: Madling/Thomertalerbach bis Taurachmündung	-	-	-	-	-	N	2	G	3	Н	N	N	-	-	G	М	Y	Y
ATOK801180004	Mur	Gewässer: Mur, Abschnitt: Taurachmündung bis Zederhausbachmündung; 8011805	3	-	-	-	3	N	2	G	3	Н	N	N	-	-	G	М	Y	Y
ATOK801180005	Mur	Gewässer: Mur, Abschnitt: Zederhausbach bis Untere Au; 8011806	-	-	-	-	-	N	2	G	2	М	N	N	-	-	G	М	N	Y
ATOK801180006	Mur	Gewässer: Mur, Abschnitt: Untere Au bis Murfall	-	-	-	-	-	N	2	G	2	М	N	N	-	-	G	М	Ν	Y
ATOK801180007	Mur	Gewässer: Mur, Abschnitt: Murfall bis Rotgüldenbach	-	-	-	-	-	N	2	G	-	-	N	Y	2	Н	G	М	N	Y

					gical Q lemen			itus	itions		STATUS	itatus)		Artif and H	ficial MWB			atus)		
Water Body code with country code	Name of river	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL ST	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
ATOK801180008	Mur	Gewässer: Mur, Abschnitt: Rotgüldenbach bis Dreischuppen; 8011807	-	-	-	-	-	N	2	G	-	-	N	Y	3	Н	G	М	Y	Y
ATOK801180009	Mur	Gewässer: Mur, Abschnitt: Drei Schuppen bis Nähe Zalußenalm	-	-	-	-	-	N	2	G	2	М	N	N	-	-	G	М	Ν	Y
ATOK801180028	Mur	Mur, Mur-Seitenarm St. Georgen	-	-	-	-	-	N	2	G	2	М	N	N	-	-	G	М	Ν	Ν
ATOK801180029	Mur	Mur	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	3	М	G	М	Ν	Ν
ATOK801180055	Mur	Mur	-	-	-	-	-	Ν	2	G	2	М	Ν	Ν	-	-	G	М	Ν	Ν
ATOK802710002	Mur	Mur	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	2	Н	G	Н	Ν	Ν
ATOK802710008	Mur	Mur	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	2	М	G	М	Ν	Ν
ATOK802710009	Mur	Mur	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	3	М	G	М	Ν	Ν
ATOK802710010	Mur	Mur	-	-	-	-	-	Ν	2	G	3	Η	Ν	Ν	-	1	G	М	Ν	Ν
ATOK802710012	Mur	Mur Graz	-	-	-	-	-	Ν	2	G	2	М	Ν	Ν	-	-	G	Μ	Ν	Ν
ATOK802710014	Mur	Mur	-	-	2	-	2	Ν	2	G	-	-	Ν	Y	3	Μ	G	Н	Ν	Ν
ATOK802710015	Mur	Mur	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	2	Μ	G	Н	Ν	Ν
ATOK802720001	Mur	Mur	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	2	Μ	G	М	Ν	Ν
ATOK802720002	Mur	Mur	2	-	-	-	2	Ν	2	G	2	Н	Ν	Ν	-	-	G	М	Ν	Ν
ATOK802720003	Mur	Mur	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	3	М	G	М	Ν	Ν
ATOK802720004	Mur	Mur	-	-	-	-	-	Ν	2	G	2	М	Ν	Ν	-	-	G	М	Ν	Ν
ATOK802720005	Mur	Mur	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	3	Μ	G	М	Y	Ν
ATOK802720006	Mur	Mur	-	-	-	-	-	Ν	2	G	2	Μ	Ν	Ν	-	-	G	Μ	Ν	Ν

					gical Q lemen		7	atus	itions		STATUS	tatus)		Artii and H				atus)		
Water Body code with country code	Name of river	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL ST	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
ATOK803280000	Mur	Gewässer: Mur, Abschnitt: Nähe Zalußenalm bis Sticklerhütte	-	-	-	-	-	N	2	G	2	М	N	N	-	-	G	М	Ν	Y
ATOK803280001	Mur	Gewässer: Mur, Abschnitt: Sticklerhütte bis Ursprung	-	-	-	-	-	Y	1	G	1	М	N	N	-	-	G	М	N	Y
ATOK804000000	Mur	Mur (Mura)	-	-	-	-	-	Ν	2	G	2	Н	Ν	Ν	-	-	G	Н	Ν	Ν
ATOK1000960015	Raab	Raab	-	-	-	-	-	Ν	2	G	4	М	Ν	N	-	-	G	М	Y	Ν
ATOK1000960017	Raab	Raab	-	-	-	-	-	Ν	2	G	2	М	Ν	Ν	-	-	G	М	Ν	Ν
ATOK1000960019	Raab	Raab	-	-	-	-	-	Ν	2	G	4	М	Ν	Ν	-	-	G	М	Y	Ν
ATOK1000960020	Raab	Raab	3	-	-	-	3	Ν	2	G	3	Н	Ν	Ν	-	-	G	М	Y	Ν
ATOK1001040041	Raab	Raab_Neumarkt	2	-	-	-	2	Ν	3	G	3	Н	Ν	Ν	-	-	G	Н	Ν	Ν
ATOK1001040042	Raab	Raab_St. Martin	-	-	-	-	-	Ν	3	G	3	Н	Ν	Ν	-	-	G	Н	Y	Ν
ATOK1001040098	Raab	Raab	-	-	3	1	3	Ν	3	G	-	-	Ν	Y	3	М	G	М	Y	Ν
ATOK1001040102	Raab	Raab	2	-	-	I	2	Ν	2	G	2	М	Ν	Ν	-	-	G	М	Ν	Ν
ATOK1001040105	Raab	Raab	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	3	Μ	G	М	Y	Ν
ATOK1001040108	Raab	Raab	-	-	-	-	-	Ν	2	G	3	L	Ν	Ν	-	-	G	Н	Ν	Ν
ATOK1001040109	Raab	Raab	-	-	-	-	-	Ν	2	G	3	L	Ν	Ν	-	-	G	М	Y	Ν
ATOK1002140000	Raab	Raab_Grenzstrecke	-	-	-	-	-	Y	3	G	3	L	Ν	Ν	-	-	G	М	Y	Ν
ATOK1002160000	Raab	Raab	4	-	-	-	4	Ν	2	G	4	Η	Ν	Ν	-	-	G	М	Y	Ν
ATOK1001790012	Rabnitz	Rabnitz_Piringsdorf	4	-	-	-	4	Ν	3	G	4	Н	Ν	Ν	-	-	G	М	Ν	Ν
ATOK1001790013	Rabnitz	Rabnitz_Oberrabnitz	-	-	-	-	-	Ν	3	G	3	L	Ν	Ν	-	-	G	М	Y	Ν
ATOK1001790035	Rabnitz	Rabnitz_Unterloisdorf	-	-	-	-	-	Ν	3	G	3	Н	Ν	Ν	-	-	G	М	Ν	Ν

					gical Q llemen			ıtus	itions		ATUS	(tatus)		Artif and H	ficial MWB			itus)		
Water Body code with country code	Name of river	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL STATUS	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
ATOK1001790039	Rabnitz	Rabnitz_Frankenau	4	-	-	-	4	Ν	3	G	4	Н	Ν	Ν	-	-	G	М	Y	Ν
ATOK1002370000	Rabnitz	Rabnitz_01, MR	-	-	-	-	-	Ν	2	G	2	М	Ν	Ν	-	-	G	М	Ν	Ν
ATOK304690001	Salzach	Gewässer: Salzach, Abschnitt: Gasteinerachenmündung bis KW Ausleitung in Högmoos	4	-	-	-	4	N	2	G	4	Н	N	N	-	-	G	М	N	Y
ATOK304690002	Salzach	Gewässer: Salzach, Abschnitt: KW Ausleitung in Högmoos bis Fuscherachenmündung	5	2	2	-	5	N	2	G	-	-	N	Y	3	Н	G	М	Y	Y
ATOK304690003	Salzach	Gewässer: Salzach, Abschnitt: Fuscherachenmündung bis Mündung Felber Ache	-	-	-	-	-	N	2	G	5	Н	N	N	-	-	G	М	N	Y
ATOK304690004	Salzach	Gewässer: Salzach, Abschnitt: Mündung Felber Ache bis Trattenbachmündung	4	-	-	-	4	N	2	G	3	Н	N	N	-	-	G	М	Y	Y
ATOK304690005	Salzach	Gewässer: Salzach, Abschnitt: Trattenbachmündung bis Mündung Krimmlerache	2	-	-	-	2	N	2	G	2	М	N	N	-	-	G	М	N	Y
ATOK304690006	Salzach	Gewässer: Salzach, Abschnitt: Ende Fischlebensraum bis Überleitung Durlassboden	-	-	-	-	-	N	2	G	-	-	N	Y	3	М	G	М	Y	Y

					gical Q lemen			ıtus	itions		ATUS	(tatus)		Artif and H	ficial MWB			itus)		
Water Body code with country code	Name of river	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL STATUS	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
ATOK304690007	Salzach	Gewässer: Salzach, Abschnitt: Überleitung Durlassboden bis Nähe Salzachjochütte	-	-	-	-	-	Y	1	G	1	М	N	N	-	-	G	М	Ν	Y
ATOK304690078	Salzach	Gewässer: Salzach, Abschnitt: Krimmlerachenmündung bis Ende Fischlebensraum	-	-	-	-	-	N	2	G	2	М	N	N	-	-	G	М	N	Y
ATOK305000000	Salzach	Gewässer: Salzach, Abschnitt: Nähe Salzachjochhütte bis Ursprung	-	-	-	-	-	Y	1	G	1	М	N	N	-	-	G	М	N	Y
ATOK305350001	Salzach	Gewässer: Salzach, Abschnitt: Blühnbachmündung bis Mündung Kleinarlerache	5	-	-	-	5	N	2	G	-	-	N	Y	3	Н	G	М	Y	Y
ATOK305350002	Salzach	Gewässer: Salzach, Abschnitt: Tauglmündung bis Blühnbachmündung	5	-	-	-	5	N	2	G	4	М	N	Ν	-	-	G	М	Y	Y
ATOK305350003	Salzach	Gewässer: Salzach, Abschnitt: Mündung der Oberalm bis zur Tauglmündung	-	-	-	-	-	N	2	G	-	-	N	Y	3	М	G	М	Y	Y
ATOK305350004	Salzach	Gewässer: Salzach, Abschnitt: von der Saalachmündung bis KW Urstein	5	2	1	-	5	N	2	G	-	-	N	Y	3	Н	G	М	Y	Y

					gical Q lemen			atus	itions		STATUS	itatus)		Artii and H	ficial MWB			atus)		
Water Body code with country code	Name of river	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL ST	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
ATOK305350006	Salzach	Gewässer: Salzach, Abschnitt: KW Urstein bis Mündung der Oberalm	-	-	-	-	-	N	2	G	-	-	N	Y	3	М	G	М	Y	Y
ATOK305360001	Salzach	Gewässer: Salzach, Abschnitt: Stauraum KW Wallnerau bis zur Mündung Gasteinerache	3	-	-	-	3	N	2	G	3	Н	N	N	-	-	G	М	N	Y
ATOK305360002	Salzach	Gewässer: Salzach, Abschnitt: Kleinarlerachenmündung bis zum Stauraum KW Wallerau	5	-	-	-	5	N	2	G	-	-	N	Y	3	Н	G	М	Y	Y
ATOK307200001	Salzach	Salzach_Mündung	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	3	М	G	М	Y	Ν
ATOK307200002	Salzach	Salzach	5	-	-	-	5	Ν	2	G	5	Н	Ν	Ν	-	-	G	М	Y	Ν
ATOK307200003	Salzach	Gewässer: Salzach, Abschnitt: Landesgrenze bis Saalachmündung	-	2	2	-	2	N	2	G	3	М	N	N	-	-	G	М	N	Y
ATOK1001760000	Spratzbach	Spratzbach_02, ER	-	-	-	-	-	Ν	2	G	3	L	Ν	Ν	-	-	G	М	Y	Ν
ATOK1002370003	Spratzbach	Spratzbach_01	-	-	1	-	-	Ν	2	G	2	М	Ν	Ν	-	-	G	М	Ν	Ν
ATOK500010030	Thaya	Thaya_07, EP mittel	-	-	-	-	-	Ν	3	G	-	-	Ν	Y	3	М	G	М	Y	Ν
ATOK500010031	Thaya	Thaya_08, EP klein	-	-	-	-	-	Ν	3	G	-	-	Ν	Y	3	М	G	М	Y	Ν
ATOK500010036	Thaya	Thaya_06, EP mittel	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	3	М	G	М	Ν	Ν
ATOK500010038	Thaya	Thaya_09, EP klein	-	-	-	-	-	Ν	3	G	3	М	Ν	Ν	-	-	G	Μ	Y	Ν
ATOK500010043	Thaya	Thaya_07, EP mittel	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	3	М	G	М	Ν	Ν
ATOK500040002	Thaya	Thaya_10, MR	-	-	-	-	-	Ν	2	G	3	М	Ν	Ν	-	-	G	М	Y	Ν

				Biolog E	gical Q lemen	uality ts		itus	itions		STATUS	itatus)			ficial MWB			atus)		
Water Body code with country code	Name of river	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL ST	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
ATOK500040003	Thaya	Thaya_11, ER	-	-	-	-	-	Ν	2	G	3	L	Ν	Ν	-	-	G	М	Y	Ν
ATOK501710003	Thaya	Thaya_04, EP mittel 2	4	-	3	-	4	Ν	3	G	-	-	Ν	Y	3	Н	G	Н	Y	Ν
ATOK501790000	Thaya	Thaya_01, MP	-	-	-	I	-	Ν	3	G	3	Н	Ν	Ν	-	1	G	М	Y	Ν
ATOK501870001	Thaya	Thaya_05, EP mittel	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	3	М	G	Н	Y	Ν
ATOK501930000	Thaya	Thaya_03, EP mittel 2	3	-	3	-	3	Ν	3	G	-	-	Ν	Y	3	Н	G	Н	Y	Ν
ATOK501940000	Thaya	Thaya_02, MP	-	-	3	-	3	Ν	3	G	3	Н	Ν	Ν	-	-	G	Н	Y	Ν
ATOK400780000	Traun	Toplitzbach	-	-	-	-	-	Y	1	G	1	М	Ν	Ν	-	-	G	М	Ν	Ν
ATOK400780002	Traun	Traun-Ursprung	-	-	-	-	-	Y	1	G	1	М	Ν	Ν	-	-	G	М	Ν	Ν
ATOK401220004	Traun	Traun	-	-	-	-	-	Ν	2	G	2	М	Ν	Ν	-	-	G	М	Ν	Ν
ATOK401220012	Traun	Traun	-	2	2	-	2	Ν	2	G	3	L	Ν	Ν	-	-	G	М	Y	Ν
ATOK401220014	Traun	Traun_Obertaun	-	3	2	-	3	Ν	2	G	3	Н	Ν	Ν	-	-	G	М	Ν	Ν
ATOK401220015	Traun	Traun_Koppenschlucht_HMSG	1	-	-	-	1	Y	2	G	2	М	Ν	Ν	-	-	G	Μ	Ν	Ν
ATOK409920001	Traun	Traun	-	2	2	-	2	Ν	2	G	4	Μ	Ν	Ν	-	-	G	М	Y	Ν
ATOK411130001	Traun	Traun	5	2	2	-	5	Ν	2	G	5	Н	Ν	Ν	-	-	G	Μ	Y	Ν
ATOK411970000	Traun	Grundlseer-Traun, Traun, Vereinigte Traun	-	-	-	-	-	N	2	G	3	L	N	N	-	-	G	М	Y	N
ATOK411980001	Traun	Grundlseer-Traun, Vereinigte Traun	-	-	-	-	-	N	2	G	4	М	N	N	-	-	G	М	Y	N
ATOK411980002	Traun	Grundlseer-Traun	-	-	-	-	-	Ν	2	G	3	L	N	Ν	-	-	G	М	Y	N
ATOK412090005	Traun	Traun	-	-	-	-	-	Y	2	G	2	М	Ν	Ν	-	-	G	М	Ν	Ν
ATOK412090013	Traun	Traun_Traun	-	2	2	-	2	Ν	2	G	-	-	Ν	Y	3	М	G	М	Y	Ν
ATOK412090014	Traun	Traun_Pucking	5	4	2	-	5	Ν	2	G	-	-	Ν	Y	3	Н	G	М	Y	Ν

					gical Q lemen			ıtus	itions		ATUS	itatus)		Artii and H				itus)		
Water Body code with country code	Name of river	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL STATUS	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
ATOK412090016	Traun	Traun_Marchtrenk	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	3	М	G	М	Y	Ν
ATOK412090018	Traun	Traun_Wels	-	2	2	-	2	Ν	2	G	3	L	Ν	Ν	-	-	G	М	Y	Ν
ATOK412090020	Traun	Traun_Welser_Wehr	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	3	М	G	М	Y	Ν
ATOK412090024	Traun	Traun_Saag	-	2	2	-	2	Ν	2	G	4	М	Ν	Ν	-	-	G	М	Y	Ν
ATOK412090027	Traun	Traun_Ebelsberg-Rückstau Donau	-	-	-	-	-	N	2	G	-	-	N	Y	3	М	G	М	Y	N
ATOK412090028	Traun	Traun_Ebelsberg-RWStrecke	3	-	-	-	3	Ν	2	G	3	Н	Ν	Ν	-	-	G	Μ	Ν	Ν
ATOK412090030	Traun	Traun_Stadl	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	3	М	G	Μ	Y	Ν
ATOK412090031	Traun	Traun_Lambach	-	3	1	-	3	Ν	1	G	-	-	Ν	Y	3	Μ	G	Μ	Y	Ν
ATOK412090032	Traun	Traun_Kemating	-	-	-	-	-	Ν	2	G	-	-	Ν	Y	3	Μ	G	Μ	Y	Ν
ATOK412090036	Traun	Traun	-	2	1	-	2	Ν	2	G	3	L	Ν	Ν	-	-	G	М	Y	Ν
ATOK412090037	Traun	Traun_Roitham_HMSG	-	2	1	-	2	Y	2	G	2	Μ	Ν	Ν	-	-	G	Μ	Ν	Ν
ATOK412090040	Traun	Traun_HMSG_Fischerinsel	-	-	-	-	-	Y	2	G	2	Μ	Ν	Ν	-	-	G	М	Ν	Ν
ATOK412090042	Traun	Traun_Laakirchen	-	2	2	-	2	Ν	2	G	-	-	Ν	Y	3	Н	G	М	Y	Ν
ATOK412100001	Traun	Traun_UW_Gmunden	-	-	-	-	-	Ν	2	G	3	L	Ν	Ν	-	-	G	Μ	Y	Ν
ATOK412100002	Traun	Traun_KW_Gmunden	5	1	1	-	5	Ν	2	G	-	-	Ν	Y	3	Н	G	М	Y	Ν
CZDYJ_0100	Dyje	Dyje od státní hranice po vzdutí nádrže Vranov, vcetne toku Kreslický potok	5	3	3	-	5		3	G	5	н	N	N			F	М	-	N
CZDYJ_0160	Dyje	Dyje od hráze nádrže Vranov po státní hranici	-	2	-	-	2		2	G	2	М	Ν	Ν			G	Н	-	N

					gical Q Xlemen			itus	itions		ATUS	tatus)			ficial MWB	ł		ttus)		
Water Body code with country code	Name of river	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL STATUS	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
CZDYJ_0170	Dyje	Dyje od státní hranice po vzdutí nádrže Znojmo	-	2	2	-	2		2	G	2	Н	N	N			F	М	-	N
CZDYJ_0180	Dyje	Dyje od vzdutí nádrže Znojmo po státní hranici	-	2	2	-	2		2	G	2	Н	Ν	N			G	Н	-	Ν
CZDYJ_0190	Dyje	Dyje od státní hranice po státní hranici	-	2	3	-	3		3	F	3	М	N	N			F	Н	-	Ν
CZDYJ_0200	Dyje	Dyje od státní hranice po vzdutí nádrže Nové Mlýny I. – horní	3	2	3	-	3		3	F			Ν	Y	3	М	G	М	-	N
CZDYJ_1240	Dyje	Dyje od hráze nádrže Nové Mlýny III dolní po tok Odlehcovací rameno Dyje, Poštorná	-	2	-	-	2		3	G			N	Y	3	М	F	Н	-	N
CZDYJ_1260	Dyje	Dyje od toku Odlehcovací rameno Dyje, Poštorná po tok Kyjovka (Stupava)	5	2	4	3	5		3	G	5	М	N	N			F	М	-	N
CZDYJ_1300	Dyje	Dyje od toku Kyjovka (Stupava) po tok Morava	5	2	4	3	5		3	G	5	L	Ν	N			F	L	-	Ν
CZMOV_0010	Morava	Morava od pramene po tok Krupá	-	1	-	-	1		2	G	2	М	N	N			G	Н	-	N
CZMOV_0080	Morava	Morava od toku Krupá po tok Desná	-	1	-	-	1	N	1	G	2	М	Ν	N			F	М	-	Ν

					gical Q lemen			itus	itions		ATUS	tatus)		Artif and H	ficial MWB			ttus)		
Water Body code with country code	Name of river	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL STATUS	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
CZMOV_0180	Morava	Morava od toku Desná po soutok s tokem Moravská Sázava	-	2	2	-	2		2	G	2	Н	N	N			G	Н	-	N
CZMOV_0310	Morava	Morava od toku Moravská Sázava po tok Trebuvka	-	1	1	-	1		2	G	2	М	N	N			F	Н	-	N
CZMOV_0950	Morava	Morava od toku Becva po tok Haná	-	-	-	-	-		2	G	2	L	N	N			G	Н	-	N
CZMOV_1170	Morava	Morava od toku Haná po tok Drevnice	-	4	-	-	4		2	G			N	Y	4	М	F	М	-	N
CZMOV_1290	Morava	Morava od toku Drevnice po tok Olšava	-	3	3	2	3		2	G			N	Y	3	L	F	М	-	N
CZMOV_1390	Morava	Morava od toku Olšava po tok Radejovka	-	3	-	-	3		2	G	3	М	N	N			F	Н	-	N
CZMOV_1430	Morava	Morava od toku Radejovka po státní hranici	4	2	3	2	4		2	G			N	Y	4	Н	F	М	-	N
CZMOV_2530	Morava	Morava od toku Trebuvka po tok Becva	4	3	2	2	4		2	G	4	Н	N	N			F	Н	-	N
CZDYJ_0300	Svratka	Svratka od pramene po Bílý potok	-	2	-	-	2		2	G	2	М	N	N			G	Н	-	N
CZDYJ_0330	Svratka	Svratka od toku Bílý potok po vzdutí nádrže Vír I.	-	2	-	-	2		2	G	2	М	Ν	Ν			F	Н	-	Ν

					gical Q llemen			ıtus	itions		STATUS	(tatus)		Artii and H	ficial MWB			itus)		
Water Body code with country code	Name of river	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL ST	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
CZDYJ 0380	Svratka	Svratka od hráze nádrže Vír I. po tok Bobruvka (Loucka)	-	2	-	-	2		2	G	2	М	N	N			G	Н	-	N
CZDYJ_0450	Svratka	Svratka od toku Bobruvka (Loucka) po vzdutí nádrže Brno	3	2	3	-	3		2	G	3	М	N	N			F	Н	-	N
CZDYJ_0490	Svratka	Svratka od hráze nádrže Brno po tok Svitava	-	2	-	-	2		2	G			N	Y	2	М	G	Н	-	N
CZDYJ_0670	Svratka	Svratka od toku Svitava po tok Litava (Cézava)	2	2	3	2	3		3	G			N	Y	3	L	F	L	-	N
CZDYJ_0800	Svratka	Svratka od toku Litava (Cézava) po vzdutí nádrže Nové Mlýny II strední	5	3	3	1	5		3	F	5	Н	N	N			F	L	-	N
SKB0001	Bodrog	Bodrog	2	3	3	1	3	Ν	2	F	3	Н	Ν	Ν	-	-	G	М	Ν	Ν
SKV0003	Čierny Váh	Čierny Váh	-	1	2	-	2	Ν	2	G	2	М	Ν	Ν	-	-	G	М	Ν	Ν
SKV0004	Čierny Váh	Čierny Váh	1	2	2	-	2	Y	2	G	2	Н	Ν	Ν	-	-	G	М	Ν	Ν
SKH0001	Hornád	Hornád	2	3	2	-	3	Ν	2	G	3	Н	Ν	Ν	-	-	G	М	Ν	Ν
SKH0002	Hornád	Hornád	1	1	2	-	2	Ν	2	G	2	Н	Ν	Ν	-	-	G	М	Ν	Ν
SKH0003	Hornád	Hornád	3	3	3	-	3	Ν	3	F	3	Н	Ν	Ν	-	-	G	М	Ν	Ν
SKH0004	Hornád	Hornád	2	3	3	1	3	Ν	2	G	3	Н	Ν	Ν	-	-	G	М	Ν	Ν
SKR0001	Hron	Hron	1	2	2	-	2	Ν	1	G	2	Н	Ν	Ν	-	-	G	М	Ν	Ν
SKR0002	Hron	Hron	-	-	-	-	-	Ν	-	-	3	L	Ν	Ν	-	-	G	L	Ν	Ν
SKR0003	Hron	Hron	2	3	1	-	3	Ν	2	G	3	Н	Ν	Ν	-	-	G	М	Ν	Ν
SKR0004	Hron	Hron	2	3	3	-	3	Y	2	G	3	Н	Ν	Ν	-	-	G	Μ	Ν	Ν

					gical Q lemen			atus	itions		STATUS	itatus)		Artii and H	ficial MWB			atus)		
Water Body code with country code	Name of river	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL ST	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
SKR0005	Hron	Hron	2	3	3	3	3	Ν	2	G	3	Н	Ν	Ν	-	-	G	М	Ν	Ν
SKI0001	Ipeľ	Ipeľ	1	2	2	-	2	Y	2	F	3	Н	Ν	Ν	-	-	G	М	Ν	Ν
SKI0003	Ipeľ	Ipeľ	-	-	-	-	-	Ν	2	G	2	L	Ν	Ν	-	-	G	М	Ν	Ν
SKI0004	Ipeľ	Ipeľ	3	3	3	3	3	Ν	3	G	3	Н	Ν	Ν	-	-	G	М	Ν	Ν
SKB0141	Laborec	Laborec	-	-	-	-	-	Ν	-	-	2	L	Ν	Ν	-	-	G	L	Ν	Ν
SKB0142	Laborec	Laborec	1	3	2	-	3	Ν	2	G	3	Н	Ν	Ν	-	-	G	М	Ν	Ν
SKB0144	Laborec	Laborec	4	4	2	2	4	Ν	2	G	4	Н	Ν	Ν	-	-	G	М	Ν	Ν
SKB0140	Latorica	Latorica	2	3	2	1	3	Ν	2	F	3	Н	Ν	Ν	-	-	G	М	Ν	Ν
SKM0001	Morava	Morava	3	2	3	3	3	Ν	3	G	-	-	Ν	Y	3	Н	G	М	Ν	Ν
SKM0002	Morava	Morava	2	3	3	3	3	Ν	2	G	3	Н	Ν	Ν	-	-	G	Μ	Ν	Ν
SKN0001	Nitra	Nitra	-	1	1	-	1	Ν	2	G	1	М	Ν	Ν	-	-	G	М	Ν	Ν
SKN0002	Nitra	Nitra	2	3	2	-	3	Ν	3	G	3	Н	Ν	Ν	-	-	G	М	Ν	Ν
SKN0003	Nitra	Nitra	3	3	2	-	3	Ν	3	F	3	Н	Ν	Ν	-	-	F	М	Y	Ν
SKN0004	Nitra	Nitra	4	3	3	4	4	Ν	3	F	-	-	Ν	Y	4	Н	G	М	Y	Ν
SKD0015	Prívodný kanál (VN Gabčíkovo) - Odpadový kanál	Prívodný kanál (VN Gabčíkovo) - Odpadový kanál	-	-	-	2	2	N	2	G	-	-	Y	Ν	2	М	G	М	Ν	N
SKS0001	Slaná	Slaná	-	-	-	-	-	Ν	-	-	2	L	Ν	Ν	-	-	G	L	Ν	Ν
SKS0002	Slaná	Slaná	2	2	2	-	2	Ν	2	F	3	Н	Ν	Ν	-	-	F	М	Y	Ν
SKS0003	Slaná	Slaná	2	3	3	2	3	Ν	3	G	3	Н	Ν	Ν	-	-	G	М	Ν	Ν

				Bioloş E	gical Q llemen	uality ts		itus	itions		ATUS	itatus)		Artif and H	ficial MWB			itus)		
Water Body code with country code	Name of river	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL STATUS	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
SKT0001	Tisa	Tisa	2	3	-	3	3	Y	2	F	3	Н	Ν	Ν	-	-	G	М	Ν	Ν
SKV0005	Váh	Váh	1	3	1	-	3	Y	2	G	3	Η	Ν	Ν	-	-	G	М	Ν	Ν
SKV0006	Váh	Váh	3	3	3	I	3	Ν	2	G	3	Н	Ν	Ν	-	-	G	М	Ν	Ν
SKV0007	Váh	Váh	4	3	3	2	4	Ν	2	G	-	-	Ν	Y	4	Н	G	М	Ν	Ν
SKV0008	Váh	Váh	2	3	3	2	3	Ν	2	G	-	-	Ν	Y	3	Η	G	М	Ν	Ν
SKV0019	Váh	Váh	-	3	2	2	3	Ν	2	G	-	-	Ν	Y	3	Н	G	М	Ν	Ν
SKV0027	Váh	Váh	4	4	3	2	4	Ν	3	F	-	-	Ν	Y	4	Н	G	Μ	Ν	Ν
HUAEP322	Berettyó	Berettyó											Ν	Y						
HUAEP334	Bodrog	Bodrog											Ν	Y						
HUAEP438	Dráva	Dráva alsó											Ν	Y						
HUAEP439	Dráva	Dráva felső											Ν	Ν						
HUAEP471	Fehér-Körös	Fehér-Körös											Ν	Y						
HUAEP475	Fekete-Körös	Fekete-Körös											Ν	Y						
HUAEP567	Hármas-Körös	Hármas-Körös											Ν	Y						
HUAEP579	Hernád	Hernád alsó											Ν	Ν						
HUAEP580	Hernád	Hernád felső											Ν	Ν						
HUAEP594	Hortobágy-Berettyó	Hortobágy-Berettyó											N N	Y Y						
HUAEP595 HUAEP596	Hortobágy-főcsatorna Hortobágy-főcsatorna	Hortobágy-főcsatorna Hortobágy-főcsatorna dél											N	Y						

					gical Q llemen			atus	itions		ATUS	itatus)		Artif and H				atus)		
Water Body code with country code	Name of river	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL STATUS	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
HUAEP597	Hortobágy-főcsatorna	Hortobágy-főcsatorna észak											N	Y						
HUAEP614		Ipoly											Ν	N						
HUAEP668	Ipoly Kettős-Körös	Kettős-Körös											N	Y						
HUAEP783	Maros	Maros torkolat											N	Y						
HUAEP784	Maros	Maros kelet											Ν	Y						
HUAEP810	Mosoni-Duna	Mosoni-Duna alsó											Ν	Y						
HUAEP811	Mosoni-Duna	Mosoni-Duna felső											Ν	Y						
HUAEP812	Mosoni-Duna	Mosoni-Duna középső											Ν	Y						
HUAEP816	Mura	Mura											Ν	Ν						
HUAEP898	Rába	Rába (Kis-Rábától)											Ν	Y						
HUAEP899	Rába	Rába (Csörnöc-Herpenyőtől)											Ν	Y						
HUAEP900	Rába	Rába (Lapincstól)											Ν	Ν						
HUAEP901	Rába	Rába (ÉDÁSZ-üzemvízcsatornától)											N	Y						
HUAEP902	Rába	Rába torkolati szakasz											Ν	Y						
HUAEP903	Rába	Rába (határtól)											Ν	Ν						
HUAEP904	Rábca	Rábca											Ν	Y						
HUAEP919	Répce	Répce felső											Ν	Ν						
HUAEP920	Répce	Répce alsó	<u> </u>	<u> </u>					<u> </u>	<u> </u>			Ν	Y						
HUAEP921	Répce	Répce középső											Ν	Ν						
HUAEP931	Sajó	Sajó felső											Ν	Ν						1

					gical Q lemen			ıtus	itions		ATUS	(tatus)		Artif and H	iicial MWB			itus)		
Water Body code with country code	Name of river	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL STATUS	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
HUAEP932	Sajó	Sajó alsó											Ν	Ν						
HUAEP953	Sebes-Körös	Sebes-Körös felső											Ν	Y						
HUAEP954	Sebes-Körös	Sebes-Körös alsó											Ν	Y						
HUAEP958	Sió	Sió felső											Y	Ν						
HUAEP959	Sió	Sió alsó											Y	Ν						
HUAEP971	Szamos	Szamos											Ν	Ν						
HUAEQ054	Tisza	Tisza Túrtól Szipa-főcsatornáig											Ν	Ν						
HUAEQ055	Tisza	Tisza országhatártól Túrig											Ν	Ν						
HUAEQ056	Tisza	Tisza Hármas-Köröstől déli országhatárig											Ν	Y						
HUAEQ057	Tisza	Tisza Szipa-főcsatornától Belfő- csatornáig											Ν	Ν						
HUAEQ058	Tisza	Tisza Belfő-csatornától Keleti- főcsatornáig											N	Y						
HUAEQ059	Tisza	Tisza Keleti-főcsatornától Tiszabábolnáig											N	Y						
HUAEQ060	Tisza	Tisza Kiskörétől Hármas-Körösig											N	Ν						
HUAIW389	Tisza	Tisza Tiszabábolnától Kisköréig								<u> </u>			Ν	Y						\mid
HUAEQ139	Zagyva	Zagyva felső											Ν	Y						
HUAEQ140	Zagyva	Zagyva alsó											Ν	Y						
HUAEQ137	Zagyva-patak	Zagyva-patak-alsó											Ν	Ν						

					gical Q Xlemen			atus	itions		ATUS	tatus)		Artii and H				atus)		
Water Body code with country code	Name of river	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL STATUS	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
HUAEQ138	Zagyva-patak	Zagyva-patak felső és Bárna-patak											N	N						
HUAEQ138	Zala	Zala forrásvidék											N	N						
HUAEQ144 HUAEQ146	Zala	Zala (Széplaki-patakig)											N	N						
HUAEQ147	Zala	Zala (Bárándi-patakig)											N	N						
SISI3VT197	Drava	MPVT Drava mejni odsek z Avstrijo	-	-	2	-	2		1	G	-	-	N	Y	-	-	G	М	-	-
SISI3VT359	Drava	MPVT Drava Dravograd - Maribor	-	-	2	-	2		1	G	-	-	N	Y	-	-	G	Н	-	-
SISI3VT5171	Drava	VT Drava Maribor - Ptuj	-	2	3	-	3		1	G	3	М	Ν	Ν	-	-	G	Н	-	-
SISI3VT930	Drava	VT Drava Ptuj - Ormož	-	2	3	-	3		2	G	3	L	Ν	Ν	-	-	G	Н	1	-
SISI3VT970	Drava	VT Drava zadrževalnik Ormoško jezero - Središče ob Dravi	-	2	1	-	2		1	G	2	Н	N	N	-	-	G	Н	-	-
SISI378VT	Kanal Hidroelektrarne Formin	UVT Kanal HE Formin	-	-	-	-	-		-	G	-	-	Y	N	-	-	G	Н	-	-
SISI35172VT	Kanal Hidroelektrarne Zlatoličje	UVT Kanal HE Zlatoličje	-	-	-	-	-		-	G	-	-	Y	N	-	-	G	Н	-	-
SISI21VT13	Kolpa	VT Kolpa Osilnica - Petrina	-	1	1	-	1		1	G	1	М	Ν	Ν	-	-	G	Н	-	-
SISI21VT50	Kolpa	VT Kolpa Petrina - Primostek	-	2	2	-	2		1	G	2	М	Ν	Ν	-	-	G	Н	-	-
SISI21VT70	Kolpa	VT Kolpa Primostek - Kamanje	-	2	2	-	2		1	G	2	Н	Ν	Ν	-	-	G	Н	-	-

					gical Q lemen			ıtus	itions		STATUS	itatus)		Artii and H	ficial MWB			atus)		
Water Body code with country code	Name of river	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL ST	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
SISI43VT10	Mura	VT Mura Ceršak - Petanjci	-	2	3	-	3		2	G	3	М	Ν	Ν	-	-	G	М	-	-
SISI43VT30	Mura	VT Kučnica Mura Petanjci - Gibina	-	3	3	-	3		2	G	3	Н	Ν	Ν	-	-	G	М	-	-
SISI43VT50	Mura	VT Mura Gibina - Podturen	-	2	2	-	2		2	G	3	Н	Ν	Ν	-	-	G	Н	-	-
SISI111VT5	Sava	VT Sava izvir - Hrušica	-	2	2	-	2		1	G	2	Н	Ν	Ν	-	-	G	Н	-	-
SISI111VT7	Sava	MPVT zadrževalnik HE Moste	-	-	2	-	2		2	G	I	-	Ν	Y	-	1	G	Н	-	-
SISI1VT137	Sava	VT Sava HE Moste - Podbrezje	-	3	1	-	3		1	G	3	М	Ν	Ν	-	-	G	Н	-	-
SISI1VT150	Sava	VT Sava Podbrezje - Kranj	-	2	2	-	2		1	G	2	Н	Ν	Ν	-	-	G	Н	-	-
SISI1VT170	Sava	MPVT Sava Mavčiče - Medvode	-	-	2	-	2		1	G	-	-	Ν	Y	-	-	G	М	-	-
SISI1VT310	Sava	VT Sava Medvode - Podgrad	-	2	2	-	2		1	G	2	Н	Ν	Ν	-	-	G	Н	-	-
SISI1VT519	Sava	VT Sava Podgrad - Litija	-	2	3	-	3		2	G	3	Μ	Ν	Ν	-	-	G	Н	-	-
SISI1VT557	Sava	VT Sava Litija - Zidani Most	-	2	2	-	2		2	G	2	Н	Ν	Ν	-	-	G	Н	-	-
SISI1VT713	Sava	MPVT Sava Vrhovo - Boštanj	-	-	2	-	2		2	G	-	-	Ν	Y	-	-	G	Μ	-	-
SISI1VT739	Sava	VT Sava Boštanj - Krško	-	3	3	-	3		2	G	3	Н	Ν	Ν	-	-	G	Н	-	-
SISI1VT913	Sava	VT Sava Krško - Vrbina	-	2	2	-	2		1	G	2	Н	Ν	Ν	-	-	G	Н	-	-
SISI1VT930	Sava	VT Sava mejni odsek	-	2	3	-	3		2	G	3	М	Ν	Ν	-	-	G	Н	-	-
HRDSRN165011	Česma	DSRN165011	-	-	-	-	-	Ν	3	-			Ν	Y	3	М	G	М	-	-
HRDSRN165034	Česma	DSRN165034	-	-	-	-	-	Ν	3	-			Ν	Y	3	М	G	Μ	-	-
HRDSRN165051	Česma	DSRN165051	-	-	-	-	-	Ν	3	-	3	М	Ν	Ν			G	М	-	-
HRDSRN165101	Česma	DSRN165101	-	-	-	-	-	Y	1	-	1	М	Ν	Ν			G	М	-	-
HRDSRN020001	Dobra, Kupa	DSRN020001	-	-	-	-	-	Y	1	-	1	Μ	Ν	Ν			F	М	-	-
HRDDRI020003	Drava	DDRI020003	-	-	-	-	-	Ν	2	-			Ν	Y	3	Μ	G	Μ	-	-

				Bioloş E	gical Q lemen	uality is		atus	itions		STATUS	itatus)		Artif and H				atus)		
Water Body code with country code	Name of river	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL ST	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
HRDDRI020005	Drava	DDRI020005	-	-	-	-	-	Ν	1	-	4	М	Ν	Ν			G	М	-	-
HRDDRI020006	Drava	DDRI020006	-	-	-	-	-	Y	1	-	1	Μ	Ν	Ν			G	Μ	-	-
HRDDRI020007	Drava	DDRI020007	-	-	-	-	-	Ν	2	-	3	М	Ν	Ν			G	М	-	-
HRDDRI945039	Drava	DDRI945039	-	-	-	-	-	Ν	1	-			Y	Ν	5	М	G	Μ	-	-
HRDDRN020001	Drava	DDRN020001	-	-	-	-	-	Ν	2	-			Ν	Y	4	Μ	F	Μ	-	-
HRDDRN020002	Drava	DDRN020002	-	-	-	-	-	Ν	2	-			Ν	Y	3	М	G	М	-	-
HRDDRI020004	Drava, Mura	DDRI020004	-	-	-	-	-	Ν	2	-			Ν	Y	3	Μ	G	Μ	-	-
HRDSRI020003	Kupa	DSRI020003	-	-	-	-	-	Y	1	-	1	Μ	Ν	Ν			F	Μ	-	-
HRDSRI020004	Kupa	DSRI020004	-	-	-	-	-	Ν	1	-	2	Μ	Ν	Ν			G	Μ	-	-
HRDSRN020002	Kupa	DSRN020002	-	-	-	-	-	Y	1	-	1	Μ	Ν	Ν			F	Μ	-	-
HRDSRN935009	Kupa	DSRN935009	-	-	-	-	-	Ν	1	-	2	Μ	Ν	Ν			G	Μ	-	-
HRDSRN160001	Lonja	DSRN160001	-	-	-	-	-	Ν	3	-	3	Μ	Ν	Ν			G	Μ	-	-
HRDSRN165010	Lonja	DSRN165010	-	-	-	-	-	Ν	3	-			Y	Ν	3	М	G	Μ	-	-
HRDDRI030001	Mura	DDRI030001	-	-	-	-	-	Ν	2	-			Ν	Y	3	Μ	G	Μ	-	-
HRDDRN035001	Mura	DDRN035001	-	-	-	-	-	Ν	3	-			Ν	Y	3	М	G	М	-	-
HRDSRI010001	Sava	DSRI010001	-	-	-	-	-	Ν	2	-			Ν	Y	4	Μ	G	М	-	-
HRDSRI010002	Sava	DSRI010002	-	-	-	-	-	Ν	2	-			Ν	Y	4	Μ	G	М	-	-
HRDSRI010003	Sava	DSRI010003	-	-	-	-	-	Ν	2	-			Ν	Y	4	М	G	М	-	-
HRDSRI010004	Sava	DSRI010004	-	-	-	-	-	Ν	2	-			Ν	Y	3	Μ	G	М	-	-
HRDSRI010010	Sava	DSRI010010	-	-	-	-	-	Y	3	-	3	М	Ν	Ν			G	М	-	-
HRDSRN010005	Sava	DSRN010005	-	-	-	-	1	Ν	2	-			Ν	Y	3	Μ	F	М	-	-
HRDSRN010006	Sava	DSRN010006	-	-	-	-	-	Ν	2	-			Ν	Y	3	М	G	М	-	-

				Biolog E	gical Q lemen	uality ts		ıtus	itions		ATUS	(tatus)		Artif and H				itus)		
Water Body code with country code	Name of river	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL STATUS	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
HRDSRN010007	Sava	DSRN010007	-	-	-	-	-	Ν	2	-			Ν	Y	4	М	G	М	-	-
HRDSRN010008	Sava	DSRN010008	-	-	-	-	-	Ν	2	-			Ν	Y	3	М	G	Μ	-	-
HRDSRN010009	Sava	DSRN010009	-	-	-	-	-	Ν	2	-	2	М	Ν	Ν			G	Μ	-	-
HRDSRI030001	Una	DSRI030001	-	-	-	-	-	Ν	1	-	2	М	Ν	Ν			G	М	-	-
HRDSRI030002	Una	DSRI030002	-	-	-	-	-	Y	2	-	2	М	Ν	Ν			G	М	-	-
HRDSRI030003	Una	DSRI030003	-	-	-	-	-	Y	1	-	1	М	Ν	Ν			G	Μ	-	-
HRDSRI030004	Una	DSRI030004	-	-	-	-	-	Y	1	-	1	М	Ν	Ν			G	Μ	-	-
BABOS_1	Bosna	BA_BOS_1	-	4	-	2			-	-	4	М	Ν	Ν	-	-	G	L		
BABOS_2	Bosna	BA_BOS_2	-	-	-	-			-	-	-	-	Ν	PN	-	-	-	-		
BABOS_3	Bosna	BA_BOS_3	-	-	-	-			-	-	-	-	Ν	PN	-	-	-	-		
BABOS_4	Bosna	BA_BOS_4	-	-	-	-			-	-	-	-	Ν	PN	-	-	-	-		
BABOS_5	Bosna	BA_BOS_5	-	-	-	-			-	-	-	-	Ν	PN	-	-	-	-		
BABOS_6	Bosna	BA_BOS_6	-	-	-	-			-	-	-	-	Ν	PN	-	-	-	-		
BABOS_7	Bosna	BA_BOS_7	-	-	-	-			-	-	-	-	Ν	PN	-	-	-	-		
BADR_1	Drina	BA_DR_1	-	2	-	2			-	-	3	М	Ν	Ν	-	-	G	L		
BADR_3	Drina	BA_DR_3	-	-	-	-			-	-	-	-	Ν	PY	-	-	-	-	 	
BADR_5	Drina	BA_DR_5	-	-	-	-			-	-	-	-	Ν	PY	-	-	-	-		
BADR_6	Drina	BA_DR_6	-	-	-	-			-	-	-	-	Ν	PY	-	-	-	-		
BADR_7	Drina	BA_DR_7	-	-	3	2			-	-	3	Μ	Ν	Ν	-	-	G	L		
BALIM_1	Lim	BA_LIM_1	-	3	-	2			-	-	3	Μ	Ν	Y	-	-	F	L		
BAUNA_SAN_1	Sana	BA_UNA_SAN_1	-	2	-	2			-	-	3	Μ	Ν	Ν	-	-	G	L		
BAUNA_SAN_2	Sana	BA_UNA_SAN_2	-	-	-	-			-	-	-	-	Ν	PN	-	-	-	-		

					gical Q llemen			ıtus	itions		STATUS	tatus)		Artif and H				itus)		
Water Body code with country code	Name of river	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL ST	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
BAUNA_SAN_3	Sana	BA_UNA_SAN_3	-	-	-	-			-	-	-	-	Ν	PY	-	-	-	-		
BAUNA_SAN_4	Sana	BA_UNA_SAN_4	-	-	-	-			-	-	-	-	Ν	PN	-	-	-	-		
BAUNA_SAN_5	Sana	BA_UNA_SAN_5	-	-	-	-			1	-	-	-	Ν	PN	-	1	-	-		
BASA_1	Sava	BA_SA_1	-	3	-	2			-	-	3	М	Ν	Y	-	-	G	L		
BASA_2	Sava	BA_SA_2	-	-	-	-			-	-	-	-	Ν	PY	-	-	-	-		
BASA_3	Sava	BA_SA_3	-	2	-	2			-	-	3	М	Ν	Y	-	-	G	L		
BAUNA_1	Una	BA_UNA_1	-	2	-	2			-	-	3	М	N	Ν	-	-	G	L		
BAUNA_2	Una	BA_UNA_2	-	2	-	2			-	-	2	М	Ν	Ν	-	-	G	L		
BAUNA_3	Una	BA_UNA_3	-	-	-	-			-	-	I	-	Ν	PN	-	-	-	-		
BAUNA_4	Una	BA_UNA_4	-	-	-	-			-	-	-	-	Ν	PN	-	-	-	-		
BAVRB_1	Vrbas	BA_VRB_1	-	3	-	2			-	-	3	М	Ν	Ν	-	-	G	L		
BAVRB_2	Vrbas	BA_VRB_2	-	3	-	2			-	-	3	М	Ν	Y	-	-	G	L		
BAVRB_3	Vrbas	BA_VRB_3	-	-	-	-			-	-	-	-	Ν	PY	-	-	-	-		
BAVRB_4	Vrbas	BA_VRB_4	-	-	-	-			-	-	-	-	Ν	PY	-	-	-	-		
BAVRB_5	Vrbas	BA_VRB_5	-	-	-	-			-	-	-	-	Ν	PY	-	-	-	-		
BAVRB_6	Vrbas	BA_VRB_6	-	-	-	-			I	-	I	-	Ν	PN	-	I	-	-		
BAVRB_7	Vrbas	BA_VRB_7	-	-	-	-			-	-	-	-	Ν	PN	-	-	-	-		
BAVRB_8	Vrbas	BA_VRB_8	-	-	-	-			-	-	1	-	Ν	PN	-	-	-	-		
RSCAN_BAJ	Bajski kanal	Bajski kanal	-	3	2	4	4	Ν	3	F			Y	Ν	4	Μ	G	L	-	-
RSBEG	Begej	Begej	-	4	3	-	4	Ν	4	F			Ν	Y	4	Μ	F	М	-	-
RSDR_1	Drina	Drina od ušća u Savu do brane HE Zvornik	-	4	2	-	4	Ν	2	G			N	PY	4	М	G	М	-	-

					gical Q lemen			itus	itions		ATUS	tatus)		Artif and H	ficial MWB			ıtus)		
Water Body code with country code	Name of river	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL STATUS	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
RSDR_3	Drina	Drina od ušća Velike reke do brane HE Bajina Bašta	-	3	2	-	3	Ν	2	G	3	М	Ν	PN			G	М	-	-
RSCAN_BP-KAR	DTD Bački Petrovac- Karavukovo	DTD B.Petrovac-Karavukovo	-	3	3	4	4	N	3	G			Y	N	4	М	G	L	-	-
RSCAN_BP-NB_1	DTD Banatska Palanka-Novi Bečej	DTD Ban. Palanka-Novi Bečej	-	3	2	2	3	N	3	G			Y	N	3	М	G	L	-	-
RSCAN_BP-NB_2	DTD Banatska Palanka-Novi Bečej	DTD Ban. Palanka-Novi Bečej	-	-	-	-	-	N	2	G			Y	N	3	L	G	L	-	-
RSCAN_BEC-BOG	DTD Bečej-Bogojevo	DTD Bečej-Bogojevo	-	3	3	4	4	N	4	F			Y	N	4	М	G	L	-	-
RSCAN_KOS-MS	DTD Kosančić-Mali Stapar	DTD Kosančić-Mali Stapar	-	-	-	-	-	N	2	G			Y	N	3	L	G	L	-	-
RSCAN_NS-SS	DTD Novi Sad- Savino selo	DTD Novi Sad-Savino selo	-	4	2	4	4	N	2	G			Y	N	4	М	F	L	-	-
RSCAN_OD-SO	DTD Odzaci-Sombor	DTD Odzaci-Sombor	-	-	-	-	-	N	3	F			Y	Ν	3	L	G	L	-	-
RSCAN_PR-BEZ	DTD Prigrevica- Bezdan	DTD Prigrevica-Bezdan	-	-	2	-	2	Ν	3	F			Y	Ν	3	М	G	L	-	-

					gical Q lemen		τ	itus	itions		ATUS	(tatus)		Artif and H				itus)		
Water Body code with country code	Name of river	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL STATUS	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
RSCAN_VR-BEZ	DTD Vrbas-Bezdan	DTD Vrbas-Bezdan	-	3	2	2	3	N	4	F			Y	N	3	L	F	М	-	-
RSIB_1	Ibar	Ibar od ušća u Z. Moravu do Mataruške banje	-	5	4	-	5	N	3	G	5	М	Ν	Ν			G	L	-	-
RSIB_2	Ibar	Ibar od Mataruške banje do ušća Jošanice	-	-	-	-	-	N	3	G	3	L	Ν	Ν			G	L	-	-
RSIB_3	Ibar	Ibar od ušća Jošanice do ušća Sitnice	-	4	4	-	4	N	3	G	4	М	Ν	Ν			G	L	-	-
RSIB_4	Ibar	Ibar od ušća Sitnice do brane HE Gazivode	-	-	-	-	-	N	3	G	3	L	Ν	Ν			G	L	-	-
RSIB_6	Ibar	Ibar uzvodno od ušća Paljevske reke	-	1	2	-	2	N	3	G	2	М	N	N			G	-	-	-
RSJMOR_1	Južna Morava	Južna Morava od sastava sa Z. Moravom do ušća Ribarske (Stalacka klisura)	-	4	4	-	4	N	3	F	4	М	N	N			G	L	-	-
RSJMOR_2	Južna Morava	Južna Morava od ušća Ribarske reke do ušća Nišave	-	-	-	-	-	N	3	G	3	L	N	PN			G	М	-	-
RSJMOR_3	Južna Morava	Južna Morava od ušća Nišave do ušća Toplice	-	4	5	-	5	N	3	F	5	М	N	PN			G	L	-	-
RSJMOR_4	Južna Morava	Južna Morava od ušća Toplice do ušća Kopašničke (Leskovačka dolina)	-	-	-	I	-	N	3	F	3	L	N	PN			G	L	-	-

					gical Q lemen		7	itus	itions		ATUS	itatus)		Artii and H	ficial MWB	i		itus)		
Water Body code with country code	Name of river	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL STATUS	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
RSJMOR_5	Južna Morava	Južna Morava od ušća Kopašničke do ušća Vrle (Grdelička klisura)	-	-	-	-	-	N	3	G	3	L	N	N			G	М	-	-
RSJMOR_6	Južna Morava	Južna Morava od ušća Vrle do sastava Moravice i Binačke Morave	-	4	5	-	5	N	3	G	5	М	N	PN			G	М	-	-
RSCAN_KIK	Kikindski kanal	Kikindski kanal	-	3	-	-	3	N	4	F			Y	N	3	L	G	L	-	-
RSLIM_1	Lim	Lim od RS-BA granice do ušća Uvca	-	-	-	-	-	N	2	G	3	L	N	N			F	М	-	-
RSLIM_2	Lim	Lim od ušća Uvca do brane HE Potpeć	-	-	-	-	-	N	2	G	3	L	N	N			F	М	-	-
RSLIM_4	Lim	Lim uzvodno od akumulacije HE Potpeć do RS-ME granice	-	2	2	-	2	N	2	G	2	М	N	Ν			G	L	-	-
RSNIS_1	Nišava	Nišava od ušća u J. Moravu do ušća Studene	-	5	4	-	5	N	3	F			N	PY	5	М	G	L	-	-
RSNIS_2	Nišava	Sićevačka klisura	-	-	-	-	-	Ν	2	G			Ν	PY	3	L	G	L	-	-
RSNIS_3	Nišava	Nišava uzvodno od Sićevačke klisure do RS-BG granice	-	3	3	-	3	N	3	G	3	М	N	N			G	L	-	-
RSPLBEG	Plovni Begej	Plovni Begej	-	4	2	-	4	Ν	4	F			Y	Ν	4	М	F	М	-	-
RSSA_1	Sava	Sava od Beograda do Šapca	-	3	-	3	3	Ν	2	F			Ν	Y	3	М	F	М	-	-
RSSA_2	Sava	Sava od Šapca do ušća Drine	-	4	-	5	5	Ν	2	F	4	Μ	Ν	Ν			F	Μ	-	-

					gical Q lemen			itus	itions		ATUS	tatus)		Artii and H	ficial MWB			ıtus)		
Water Body code with country code	Name of river	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL STATUS	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
RSSA_3	Sava	Sava uzvodno od ušća Drine do RS-HR granice	-	4	-	4	4	N	2	F	4	М	N	N			F	М	-	-
RSTAM_1	Tamiš	Donji Tamiš	-	4	2	-	4	Ν	3	F			Ν	PY	4	М	F	М	-	-
RSTAM_2	Tamiš	Tamiš uzvodno od ustave Tomaševac do RS-RO granice	-	4	3	-	4	N	2	G			N	PY	4	М	F	L	-	-
RSTIM_1	Timok	Timok od ušća u Dunav do Bregova (RS- BG granica)	-	4	4	-	4	N	2	F	4	М	N	N			F	L	-	-
RSTIM_2	Timok	Timok od Bregova do Tabakovačke klisure	-	-	-	-	-	N	2	F	3	L	Ν	N			F	L	-	-
RSTIM_3	Timok	Tabakovačka klisura do ušća Borske reke	-	-	-	-	-	N	3	F	4	L	Ν	N			F	М	-	-
RSTIM_4	Timok	Timok od ušća Borske reke do sastava Belog i Crnog Timoka	-	4	4	-	4	N	3	F	4	М	Ν	N			F	L	-	-
RSTIS_1	Tisa	Tisa od ušća u Dunav do brane Novi Bečej	-	3	2	-	3	N	3	F			Ν	Y	3	М	F	М	-	-
RSTIS_2	Tisa	Tisa uzvodno od brane Novi Bečej	-	2	2	3	3	N	3	G			Ν	Y	3	М	F	М	-	-
RSVMOR_1	Velika Morava	Velika Morava od ušća u Dunav do Ljubičevskog mosta	-	4	-	-	4	N	3	G			Ν	Y	4	М	F	L	-	-
RSVMOR_2	Velika Morava	Velika Morava od Ljubičevskog mosta do ušća Resave	-	3	-	4	4	N	3	G			Ν	PY	4	М	F	L	-	-

					gical Q Xlemen			ıtus	itions		ATUS	itatus)		Artii and H				itus)		
Water Body code with country code	Name of river	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL STATUS	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
RSVMOR_3	Velika Morava	Velika Morava od ušća Resave do sastava Južne i Zapadne Morave	-	3	-	4	4	N	3	G			N	PY	4	М	F	L	-	-
RSZMOR_1	Zapadna Morava	Zapadna Morava od sastava sa Južnom Moravom do ušća Ibra	-	-	-	-	-	N	3	G	3	L	N	N			F	L	-	-
RSZMOR_2	Zapadna Morava	Zapadna Morava od ušća Ibra do brane Parmenac	-	4	4	-	4	N	2	G	4	М	N	N			F	L	-	-
RORW10.1_B1	Arges	Arges: sector izvor - intrare Ac. Vidraru si afluentii	-	1	1		1	N	2	G	2	Н	N	N			G	М	N	N
RORW10.1_B2	Arges	Arges: sector aval Ac. Vidraru - intrare Ac. Oesti	-	3	-		3		2	G			Ν	Y	3	М	G	-	Ν	Y
RORW10.1_B3	Arges	Arges: sector aval Ac. Golesti - intrare Ac. Zavoiul Orbului	1	1		1	1		2	G	2	Н	Ν	Ν			G	-	Ν	Ν
RORW10.1_B4	Arges	Arges: sector aval Ac. Zavoiul Orbului - intrare Ac. Frontala Ogrezeni	1	1		1	1		3	G	3	Н	N	N			G	-	N	N
RORW10.1_B5	Arges	Arges: sector aval Ac. Frontala Ogrezeni - intrare Ac. Mihailesti	-	1		2	2		2	G	2	Н	N	N			G	М	N	N
RORW10.1_B6	Arges	Arges: sector aval Ac. Mihailesti - amonte confluenta Dambovita	1	2		1	2		3	G			N	Y	3	Н	G	-	N	N

					gical Q lemen			itus	itions		STATUS	(tatus)			ficial MWB			itus)		
Water Body code with country code	Name of river	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL ST	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
RORW10.1_B7	Arges	Arges: sector amonte confluenta Dambovita - confluenta Dunare	-	2	1	1	2		3	F			N	Y	3	Н	F	L	N	N
RORW3.1.44.33_B1	Barcau	Barcau - izvor - cnf. Toplita + Afluenti	-	1	1		1	Y	2	G	2	Н	N	N			G	L	N	N
RORW3.1.44.33_B2	Barcau	Barcau - cnf. Toplita - cnf. Groapa	-	2	2	2	2	N	2	G			N	Y	2	L	G	М	N	Ν
RORW3.1.44.33_B3	Barcau	Barcau - cnf. Groapa - am Ac.Suplacu de Barcau	2	2	2	-	2	N	2	G	2	L	N	N			G	М	N	N
RORW3.1.44.33_B5	Barcau	Barcau - av Ac.Suplacu de Barcau - cnf. Bistra	2	2		2	2	N	3	G	3	Н	N	N			G	М	N	N
RORW3.1.44.33_B6	Barcau	Barcau - cnf. Bistra - frontiera	3	1	1	1	3	Ν	3	G	3	Н	Ν	Ν			G	Μ	Ν	Ν
RORW5.1_B1	Bega	Bega - izvor-cf. bega poienilor + afluenti	1	1	1		1	Y	2	G	2	Н	N	N			F	М	Ν	N
RORW5.1_B2	Bega	Bega - cf. bega poienilor-cf. chizdia	1	1		1	1	N	2	G	2	Н	N	N			F	М	N	N
RORW5.1_B3	Bega	Bega - cf. chizdia-cf. behela	-	1		1	1		2	G			Ν	Y	2	Н	F	М	Ν	Ν
RORW5.1_B4	Bega	Bega - cf. behela-frontiera	2	2		1	2		3	F			Y	Ν	3	Н	F	М	Ν	Ν
RORW12.1.78_B1	Birlad	Barlad - izvoare - confl. Garboveta	2	2	2		2		2	G	2	Н	N	N			G	L	N	N
RORW12.1.78_B2	Birlad	Barlad - confl. Garboveta - confl. Crasna	-	3	2		3		3	F			Ν	Y	3	Н	F	М	N	N

					gical Q lemen			itus	itions		STATUS	(tatus)		Artif and H	ficial MWB			atus)		
Water Body code with country code	Name of river	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL ST	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
RORW12.1.78_B3	Birlad	Barlad - confl. Crasna - confl. Siret (include si derivatia Munteni - Tecucel)	-	2	2	2	2		3	G			N	Y	3	Н	G	L	N	N
RORW12.1.53_B1	Bistrita	Bistrita (izv - cf Neagra)	1	2	2		2	Ν	2	G	2	Н	Ν	Ν			G	Μ	Ν	Ν
RORW12.1.53_B2	Bistrita	Bistrita (cf Neagra - ac Izvorul Muntelui)	-	2	1		2	N	2	G	2	Н	Ν	N			G	М	Ν	N
RORW12.1.53_B4	Bistrita	Bistrita (baraj Izv Muntelui - ac Pangarati	1	1	1		1	N	2	G	2	Н	Ν	Ν			G	М	Ν	N
RORW12.1.53_B6	Bistrita	Bistrita (baraj Batca Doamnei - ac Racova)	-	1	1		1	N	3	G	3	Н	Ν	Ν			G	М	Ν	N
RORW12.1.82_B1	Buzau	Buzau Izv Ac. Siriu si afluentii	1	1	1		1	Y	2	G	2	М	Ν	Ν			G	L	Ν	Ν
RORW12.1.82_B2	Buzau	Buzau Ac. Siriu - Cf. Basca	-	1	1		1		2	G	2	М	Ν	Ν			G	L	Ν	Ν
RORW12.1.82_B3	Buzau	Buzau Cf. Basca - Ac. Candesti	-	1	1		1	Ν	2	G	2	М	Ν	Ν			G	Μ	Ν	Ν
RORW12.1.82_B4	Buzau	Buzau Ac. Candesti - Buzau	2	2		1	2		3	G	3	М	Ν	Ν			G	L	Ν	Ν
RORW12.1.82_B5	Buzau	Buzau Buzau - Cf. Costei	2	2		1	2	Ν	3	G	3	М	Ν	Ν			G	L	Ν	Ν
RORW12.1.82_B6	Buzau	Buzau Cf. Costei - Cf. Siret	2	1		1	2	Ν	3	G	3	М	Ν	Ν			G	L	Ν	Ν
RORW15.1.10B_B1	Canal Dunare Marea Neagra 1	Canalul Dunarea Marea Neagra 1	-	2	1	1	2	N	2	G			Y	N	2	М	G	М	N	N

					gical Q lemen			ıtus	itions		ATUS	tatus)		Artii and H	ficial MWB			itus)		
Water Body code with country code	Name of river	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL STATUS	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
RORW15.1.10B_B2	Canal Dunare Marea Neagra 2 - Canal Poarta Alba - Marea Neagra	Canalul Dunare Marea Neagra 2 - CPAMN	-	2	1	1	2	N	2	G			Y	N	2	М	G	М	N	Ν
RORW3.1_B1	Crisul Alb	Crisul Alb> izvor - am Ac.Mihaileni + Afluenti	-	1	1		1	Y	2	G	2	Н	N	N			G	М	N	N
RORW3.1_B2	Crisul Alb	Crisul AlbAc.Mihaileni + Afluent	-	1	1		1	N	2	G	2	М	Ν	N			G	М	N	N
RORW3.1_B3	Crisul Alb	Crisul Alb> av Ac.Mihaileni - cnf. Tebea	1	2	1		2	N	2	G	2	Н	Ν	Ν			G	М	N	N
RORW3.1_B4	Crisul Alb	Crisul Alb> cnf. Tebea - cnf. Zimbru	-	1	1		1	N	2	G	2	Н	Ν	N			G	М	N	N
RORW3.1_B5	Crisul Alb	Crisul Alb> cnf. Zimbru - cnf. Chisindia	2	2	2	2	2	N	2	G	2	L	N	N			G	L	N	N
RORW3.1_B6	Crisul Alb	Crisul Alb> cnf. Chisindia - cnf. Cigher	-	1		1	1	N	2	G	2	Н	Ν	N			G	М	N	N
RORW3.1_B7	Crisul Alb	Crisul Alb> cnf. Cigher - frontiera	-	1	1	1	1	N	2	G	2	Н	Ν	N			G	М	N	N
RORW3.1.42_B1	Crisul Negru	Crisul Negru> izvor - cnf. Valea Mare + Afluent	-	2	1		2	N	2	G			Ν	Y	2	Н	G	L	N	Ν

					gical Q lemen			itus	itions		STATUS	tatus)		Artif and H	ficial MWB			ttus)		
Water Body code with country code	Name of river	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL ST	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
RORW3.1.42_B2	Crisul Negru	Crisul Negru> cnf. Valea Mare - cnf. Nimaiesti	2	1	2		2	N	2	G	2	Н	Ν	Ν			G	М	N	N
RORW3.1.42_B3	Crisul Negru	Crisul Negru> cnf. Nimaiesti - cnf. Soimul	2	2	2	2	2	N	2	G	2	L	Ν	Ν			G	L	N	N
RORW3.1.42_B4	Crisul Negru	Crisul Negru> cnf. Soimul - cnf. Valea Noua	-	1		1	1	Ν	2	G	2	Н	Ν	Ν			G	М	N	Ν
RORW3.1.42_B5	Crisul Negru	Crisul Negru> cnf. Valea Noua - frontiera	-	1	1	1	1	N	2	G	2	Н	Ν	Ν			G	М	Ν	Ν
RORW3.1.44_B1	Crisul Repede	Crisul Repede> izvor - cnf. Sacuieu	-	3	2		3	Ν	3	G	3	Н	Ν	Ν			G	L	Ν	Ν
RORW3.1.44_B2	Crisul Repede	Crisul Repede> cnf. Sacuieu - cnf. Iad	2	1	1		2	N	2	G	2	М	Ν	Ν			G	М	N	Ν
RORW3.1.44_B3	Crisul Repede	Crisul RepedeDef.Crisu Repede> cnf. Iad - out Def.Crisu Repede + Afluent	2	1	1		2	N	2	G	2	Н	N	N			G	М	N	N
RORW3.1.44_B4	Crisul Repede	Crisul Repede> av Def.Crisu Repede - am Ac.Lugasu	2	1	1	1	2	N	2	G	2	Н	Ν	Ν			G	М	N	Ν
RORW3.1.44_B6	Crisul Repede	Crisul Repede> av Ac.Tileagd - cnf. Bonor	2	2	2	2	2	N	2	G	2	L	Ν	Ν			G	L	N	Ν
RORW3.1.44_B7	Crisul Repede	Crisul Repede> cnf. Bonor - frontiera	-	1	1	1	1	N	2	G			Ν	Y	2	Н	G	М	N	N
RORW11.1_B1	Ialomita	Ialomita Izv Ac. Bolboci	-	1	1		1	Y	2	G	2	М	Ν	Ν			G	L	Ν	Ν

					gical Q lemen			atus	itions		STATUS	itatus)		Artif and H	iicial MWB			atus)		
Water Body code with country code	Name of river	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL ST	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
RORW11.1_B2	Ialomita	Ialomita Ac Bolboci - Cf. Ialomicioara I	1	1	1		1	N	2	G	2	М	N	N			G	L	N	N
RORW11.1_B3	Ialomita	Ialomita Cf. Ialomicioara I - Ac. Pucioasa	1	2	1		2	N	3	G	2	М	N	N			G	L	N	N
RORW11.1_B4	Ialomita	Ialomita Ac. Pucioasa - Priboiu	-	2	1		2	Ν	2	G	2	М	Ν	Ν			G	L	Ν	Ν
RORW11.1 B5	Ialomita	Ialomita Priboiu - Cf. Izvoru	-	2	1		2	Ν	3	G	3	М	Ν	Ν			G	L	Ν	Ν
 RORW11.1_B6	Ialomita	Ialomita Cf. Izvoru - AC. Dridu	-	2		1	2	Ν	2	G	2	М	Ν	Ν			G	L	Ν	Ν
RORW11.1_B7	Ialomita	Ialomita Ac. Dridu - Ion Roata	-	2		1	2	Ν	3	G	3	L	Ν	Ν			G	L	Ν	Ν
RORW11.1_B8	Ialomita	Ialomita Ion Roata - Slobozia	-	2		1	2	Ν	3	G	3	М	Ν	Ν			G	L	Ν	Ν
RORW11.1_B9	Ialomita	Ialomita Slobozia - Cf. Dunare	-	2		2	2	Ν	3	G	3	М	Ν	Ν			G	М	Ν	Ν
RORW13.1.15_B1	Jijia	Jijia - sector izvor - ac. Ezer	-	1	1		1	Y	2	G	2	L	Ν	Ν			G	М	Ν	Ν
RORW13.1.15_B3	Jijia	Jijia - sector aval ac. Ezer - confl. Sitna	-	2	1	1	2	N	3	G	3	Н	N	N			G	М	N	N
RORW13.1.15_B4	Jijia	Jijia - sector confl. Sitna - confl. Prut	-	2	1	2	2	N	3	G			Y	N	3	Н	G	М	Ν	N
RORW13.1.15_B5	Jijia	Jijia Veche	-	3	3		3		3	G			Ν	Y	3	L	G	М	Ν	Ν
RORW7.1_B1	Jiu	Jiu de Vest - izvor- loc. Paroseni si afl.	1	1	1		1	N	2	G	2	Н	N	N			G	М	Ν	N
RORW7.1_B121	Jiu	Jiu Acum. Isalnita- Bratovoiesti	1	1	-	1	1		3	G	3	Н	Ν	Ν			G	Μ	Ν	Ν
RORW7.1_B14	Jiu	Jiu confl. Jiu de Est-Acum. Vadeni	1	1	1		1		2	G	2	Н	N	N			G	М	Ν	N
RORW7.1_B148	Jiu	Jiu Bratovoiesti-confl. Dunarea	2	1	-	1	2		3	G	3	Н	Ν	Ν			G	М	Ν	Ν

				Bioloş E	gical Q llemen	uality ts		itus	itions		STATUS	itatus)			ficial MWB			itus)		
Water Body code with country code	Name of river	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL ST	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
RORW7.1_B28	Jiu	Jiu Tg. Jiu-Rovinari	1	2	1		2		2	G	2	Η	Ν	Ν			G	М	Ν	Ν
RORW7.1_B4	Jiu	Jiu de Vest - loc. Paroseni-confl. Jiul de Est	1	2	1		2		2	G	2	Н	N	N			G	М	N	Ν
RORW7.1_B51	Jiu	Jiu Rovinari-Ac. Turceni	1	1	-	1	1	Ν	2	G	2	Н	Ν	Ν			G	М	Ν	Ν
RORW7.1_B57	Jiu	Jiu Acum. Turceni-Acum. Isalnita	1	1	-	1	1	N	2	G	2	Н	N	N			G	М	Ν	Ν
RORW12.1.40_B1	Moldova	Moldova (izv - cf Sadova)	2	1	2		2	Ν	2	G	2	Η	Ν	Ν			G	М	Ν	Ν
RORW12.1.40_B2	Moldova	Moldova (cf Sadova - cf Suha)	1	1	2		2	Ν	2	G	2	Н	Ν	Ν			G	L	Ν	Ν
RORW12.1.40_B3	Moldova	Moldova (cf Suha - cf Vier)	-	1	1		1	Ν	2	G	2	Η	Ν	Ν			G	Μ	Ν	Ν
RORW12.1.40_B4	Moldova	Moldova (cf Vier - cf Siret)	1	1	1		1	Ν	2	G	2	Н	Ν	Ν			G	М	Ν	Ν
RORW4.1_B1	Mures	Mures, izvor - conf. Carbunele Negru	2	2	1		2	N	2	G	2	L	N	N			G	L	N	Ν
RORW4.1_B10	Mures	Mures, conf. Soimos - conf. Zadarlac	2	1	1	2	2	Ν	2	G			Ν	Y	2	М	G	М	Ν	Ν
RORW4.1_B11	Mures	Mures, conf. Zadarlac - Romanian/Hungarian border	2	2	1	2	2	N	2	G			N	Y	2	М	G	М	Ν	Ν
RORW4.1_B2	Mures	Mures, conf. Carbunele Negru - conf. Lazarea	-	1	1		1	N	2	G			N	Y	2	М	G	М	N	N
RORW4.1_B3	Mures	Mures, conf. Lazarea - conf.Toplita	-	1	1		1	N	2	G	2	М	N	N			G	М	Ν	N
RORW4.1_B4	Mures	Mures, conf. Toplita - conf. Pietris	-	1	1		1	N	2	G	2	М	N	N			G	М	Ν	N

				Biolog E	gical Q lemen		,	itus	itions		ATUS	(tatus)		Artif and H				itus)		
Water Body code with country code	Name of river	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL STATUS	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
RORW4.1_B5	Mures	Mures, conf. Pietris - conf. Petrilaca	-	1	1	1	1	N	2	G	2	М	N	N			G	М	N	N
RORW4.1_B6	Mures	Mures, conf. Petrilaca - conf. Aries	-	2	-	3	3	N	3	G			Ν	Y	3	М	G	М	Ν	N
RORW4.1_B7	Mures	Mures, conf. Aries - conf. Cerna	2	2	1	2	2	Ν	2	G			Ν	Y	2	М	G	М	Ν	Ν
RORW4.1_B8	Mures	Mures, conf. Cerna - conf. Dobra	2	2	-	3	3	N	2	G			N	Y	3	М	G	М	Y	N
RORW4.1_B9	Mures	Mures, conf. Dobra - conf. Soimos	1	2	1	-	2	N	2	G	2	М	Ν	N			G	М	Ν	N
ROLW8.1_B10	Olt	Olt - ac.Ionesti, Zavideni, Dragasani, Strejesti, ArcestiDraganesti si av Frunzaru	-		1	1	1		2	G			N	Y	2	Н	F	М	N	N
ROLW8.1_B11	Olt	Olt - acumulare Rusanesti si Izbiceni	-		1	2	2		2	G			N	Y	2	Н	G	М	N	N
ROLW8.1_B7	Olt	Olt - am. Ac. Voila, Vistea, Arpas, Scorei Arig si aval ac. Racovita	-		1	2	2		3	-			N	Y	3	Н	G	L	N	Y
ROLW8.1_B9	Olt	Olt - am.ac.Robesti, Cornet, Gura Lotrului, TurnuRm Valcea, Raureni, Govora si av Babeni	-		1	2	2		3	G			N	Y	3	Н	G	L	N	Y

					gical Q Xlemen		,	itus	itions		ATUS	itatus)			ficial IMWB			itus)		
Water Body code with country code	Name of river	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL STATUS	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
RORW8.1_B1	Olt	Olt - izv aval confl.Sipos si afluentii (Medias si Sipos)	-	1	1		1	N	2	G	2	Н	N	Ν			G	L	N	Ν
RORW8.1_B12	Olt	Olt - aval acumulare Izbiceni – confluenta Dunare	2	2		1	2	N	2	G	2	Н	N	N			F	М	N	N
RORW8.1_B2	Olt	Olt - aval confluenta Sipos - aval confluenta Cad	-	1	1		1		3	G	3	Н	N	N			G	Н	N	Ν
RORW8.1_B3	Olt	Olt - aval confluenta Cad –aval confluenta Mitaci	-	2	1		2		3	G	3	Н	N	N			G	М	N	Ν
RORW8.1_B4	Olt	Olt - aval confluenta Mitaci – aval confluenta Talomir	-	2	1		2	N	3	G	3	Н	N	N			G	L	N	N
RORW8.1_B5	Olt	Olt - aval confluenta Talomir – aval confluenta Raul Negru	2	2	1		2		3	G	3	Н	N	N			G	М	N	N
RORW8.1_B6	Olt	Olt - aval confluenta Raul Negru – amonte acumulare Voila	-	2	1	2	2		3	G	3	Н	N	N			G	М	N	N
RORW8.1_B8	Olt	Olt - aval acumulare Racovita -amonte acumulare Robesti	-	2	1	2	2	N	3	G	3	Н	N	N			G	L	N	N
	Prut	Prut - sector am. ac. Stanca	1	1	1	1	1	Y	2	G	2	Н	Ν	Ν			G	М	Ν	Ν
RORW13.1_B3	Prut	Prut - sector av. ac. Stanca - conf. Solonet	-	1	1	1	1	N	2	G	2	Н	N	Ν			G	М	N	N
RORW13.1_B4	Prut	Prut - sector conf. Solonet - confl. Jijia	-	1	1	1	1	N	3	G			Ν	Y	3	Н	G	М	N	Ν

					gical Q lemen			itus	itions		ATUS	itatus)			ficial MWB			itus)		
Water Body code with country code	Name of river	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL STATUS	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
RORW13.1_B5	Prut	Prut - sector confl. Jijia - confl. Dunarea	-	2	1	1	2	N	3	G			N	Y	3	Н	G	М	N	Ν
RORW12.1_B0	Siret	Siret (granita - lac Rogojesti)	-	-	-		-	N	2	-	2	Н	N	N			G	L	N	N
RORW12.1_B2	Siret	Siret (ac Rogojesti - ac Bucecea)	_	-	-		-	N	2	-	2	L	N	N			G	L	N	N
RORW12.1_B4	Siret	Siret (baraj Bucecea - cf Moldova)	1	1	2		2	N	3	G	3	Н	N	N			G	М	Ν	Ν
RORW12.1_B5	Siret	Siret (cf Moldova - ac Galbeni)	-	2	-	1	2	Ν	3	G	3	Н	Ν	Ν			G	Μ	Ν	Ν
RORW12.1_B7	Siret	Siret (baraj Beresti - ac Calimanesti)	1	1	-	1	1	N	3	G	3	Н	N	N			G	L	Ν	N
RORW12.1_B9	Siret	Siret (baraj Calimanesti - cf Dunare)	-	2	1	1	2	N	3	G	3	Н	N	Ν			G	М	Ν	Ν
RORW2.1_B1	Somes	Somesul Mare-izvoare-cf.Feldrisel si afluenti	1	1	2		2	N	2	G	2	Н	N	N			G	Н	Ν	N
RORW2.1_B2	Somes	Somesul Mare-cf.Feldrisel-cf.Sieu	1	2	2		2	N	2	G	2	Н	N	N			G	М	N	Ν
RORW2.1_B3	Somes	Somesul Mare-cf.Sieu-Dej	3	2	1		3		3	G			Ν	Y	3	Н	G	Н	Ν	Ν
RORW2.1_B4	Somes	Somes-Dej-cf.Apa Sarata	1	3	1		3	Ν	3	G	3	Η	Ν	Ν			G	М	Ν	Ν
RORW2.1_B5	Somes	Somes-cf.Apa Sarata-cf.Lapus	1	1	-	1	1	Ν	2	G	2	Η	Ν	Ν			G	L	Ν	Ν
RORW2.1_B6	Somes	Somes-cf.Lapus-cf.Homorodul Nou	1	1	-	2	2	N	2	G	2	Н	Ν	Ν			F	М	Ν	Ν

				Biolog E	gical Q Xlemen	uality ts		ıtus	itions		STATUS	(tatus)		Artif and H				atus)		
Water Body code with country code	Name of river	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL ST	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
RORW2.1_B7	Somes	Somes-cf.Homorodul Nou-granita HU	1	2	1	2	2	N	3	G	3	Н	N	N			G	Н	Ν	Ν
RORW4.1.96_B1	Tarnava Mare	Tarnava Mare, izvor - ac. Zetea si afluentii	2	1	2		2	N	2	G	2	М	N	N			G	М	N	N
RORW4.1.96_B3	Tarnava Mare	Tarnava Mare, ac. Zetea - conf. Bradesti si DESAG	2	1	2		2	N	2	G	2	М	N	N			G	М	Ν	N
RORW4.1.96_B4	Tarnava Mare	Tarnava Mare, conf. Bradesti - conf. Cris	-	1	1	-	1	N	2	G			Ν	Y	2	М	G	М	Ν	N
RORW4.1.96_B5	Tarnava Mare	Tarnava Mare, conf. Cris - conf. Paucea	2	2	-	3	3	N	2	G	3	М	Ν	N			G	М	Ν	N
RORW4.1.96_B6	Tarnava Mare	Tarnava Mare, conf. Paucea - conf. Vorumloc	2	2	-	2	2	N	2	G			N	Y	2	L	G	L	Ν	N
RORW4.1.96_B7	Tarnava Mare	Tarnava Mare, conf. Vorumloc - conf. Mures	2	2	-	3	3	Ν	2	G			Ν	Y	3	М	G	М	Ν	N
RORW5.2_B1	Timis	Timis - izvoare-ac. trei ape	1	1	1		1	Y	2	G	2	М	Ν	Ν			F	L	Ν	Ν
RORW5.2_B2	Timis	Timis - ac. trei ape-cf. fenes	2	1	2		2		2	G			Ν	Y	2	Н	F	М	Ν	Ν
RORW5.2_B3	Timis	Timis - cf. fenes-cf. sebes	1	1	1		1	Ν	2	G	2	Н	Ν	Ν			G	М	Ν	Ν
RORW5.2_B4	Timis	Timis - cf. sebes-cf. tapia	1	1		1	1	Ν	2	G	2	Н	Ν	Ν			F	М	Ν	Ν
RORW5.2_B5	Timis	Timis - cf. tapia-evacuare gc lugoj	-	1		1	1		2	G			Ν	Y	2	Н	F	М	Ν	N
RORW5.2_B6	Timis	Timis - evacuare gc lugoj-cf. timisana	-	1		1	1		2	G			N	Y	2	Н	G	М	Ν	Ν

					gical Q Xlemen			itus	itions		ATUS	tatus)			ficial MWB			ttus)		
Water Body code with country code	Name of river	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL STATUS	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
RORW5.2_B7	Timis	Timis - cf. timisana-frontiera	-	1		1	1	Ν	2	G	2	Н	Ν	N			F	М	Ν	Ν
RORW1.1_B1	Tisa	Tisa	1	1	-		1	Ν	2	G	2	Н	Ν	Ν			G	М	Ν	Ν
RORW12.1.69_B1	Trotus	Trotus (izvor - cf Valea Rece)	-	-	-		-	Y	2	-	2	L	Ν	Ν			G	М	Ν	Ν
RORW12.1.69_B2	Trotus	Trotus (cf Valea Rece - cf Urmenis)	-	1	1		1	N	3	G	3	Н	Ν	N			G	М	N	N
RORW12.1.69_B3	Trotus	Trotus (cf Urmenis - cf Tazlau)	2	2	1		2	Ν	3	G	3	Н	Ν	Ν			G	М	Ν	Ν
RORW12.1.69_B4	Trotus	Trotus (cf Tazlau - cf Siret)	-	1	-	1	1	Ν	3	G	3	Н	Ν	Ν			G	М	Ν	Ν
RORW9.1_B2	Vedea	Vedea : confluenta Vedita - amonte confluenta Cotmeana	1	1		1	1	N	2	G	2	Н	N	N			G	-	N	N
RORW9.1_B3	Vedea	Vedea : confluenta Cotmeana - amonte evacuare Rosiori de Vede	1	1		1	1	N	2	G	2	Н	N	N			G	-	N	N
RORW9.1_B4	Vedea	Vedea : amonte evacuare Rosiori de Vede - confluenta Paraul Cainelui	-	1		1	1		3	G	3	Н	N	N			F	L	N	N
RORW9.1_B5	Vedea	Vedea : confluenta Paraul Cainelui - amonte evacuare Alexandria	-	1		1	1		3	G	3	Н	N	N			F	L	N	N
RORW9.1_B6	Vedea	Vedea : amonte evacuare Alexandria - amonte confluenta Teleorman	-	1	2	2	2		3	G	3	Н	N	N			G	-	N	N

					gical Q llemen			atus	itions		STATUS	itatus)		Artif and H	ficial MWB			atus)		
Water Body code with country code	Name of river	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL ST	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
RORW9.1_B7	Vedea	Vedea : confluenta Teleorman - localitate Bujoru	-	1		1	1		3	G			Ν	Y	3	Н	G	М	Ν	Ν
RORW9.1_B8	Vedea	Vedea : localitate Bujoru - confluenta Dunare	3	1		2	3		3	G			Y	N	3	Н	G	L	Ν	Ν
BG1IS100R1027	Iskar	ISKAR RWB1027	-	2	2	-	2		3	F			Ν	Y	2	М	G	L	Ν	Ν
BG1IS135R1026	Iskar	ISKAR RWB1026	-	3	4	-	4		3	F	4	L	Ν	Ν			G	L	-	-
BG1IS135R1126	Iskar	ISKAR RWB1126	-	-	-	-	-		3	G	-	-	Ν	Ν			G	L	-	-
BG1IS135R1226	Iskar	ISKAR RWB1226	-	3	4	-	4		3	G	4	М	Ν	Ν			G	М	Y	Ν
BG1IS135R1326	Iskar	ISKAR RWB1326	-	3	4	-	4		3	G			Ν	Y	4	L	G	L	Y	-
BG1IS135R1426	Iskar	ISKAR RWB1426	-	5	4	-	5		3	F	5	М	Ν	Ν			F	М	Y	Ν
BG1IS135R1726	Iskar	ISKAR RWB1726	-	-	-	-	-		3	F	-	-	Ν	Ν			G	Μ	-	-
BG1IS700R1006	Iskar	ISKAR RWB1006	-	3	3	-	3		2	F	3	Μ	Ν	Ν			G	L	Ν	Ν
BG1IS700R1206	Iskar	ISKAR RWB1206	-	-	-	-	-		3	F	-	-	Ν	Ν			G	Μ	-	-
BG1IS789R1104	Iskar	ISKAR RWB1104	-	-	-	-	-		3	F	-	-	Ν	Ν			G	М	-	-
BG1IS900R1003	Iskar	ISKAR RWB1003	-	-	-	-	-		3	F	-	-	Ν	Ν			-	-	-	-
BG1NV200R1001	Nishava	NISHAVA RWB1001	-	2	2	-	2		3	G	2	М	Ν	Ν			G	L	Ν	Ν
BG10G100R014	Ogosta	OGOSTA RWB14	-	3	3	-	3		3	F			Ν	Y	3	L	G	L	Ν	-
BG10G307R1013	Ogosta	OGOSTA RWB1013	-	-	-	-	-		3	F	-	-	Ν	Ν			-	-	-	-
BG10G307R1213	Ogosta	OGOSTA RWB1213	-	3	2	-	3		2	F	3	М	Ν	Ν			G	L	-	-
BG10G307R1313	Ogosta	OGOSTA RWB1313	-	2	2	-	2	<u> </u>	2	F	2	М	Ν	Ν			G	L	Ν	Ν
BG10G789R1001	Ogosta	OGOSTA RWB1001	2	2	2	-	2		2	F	2	Μ	Ν	Ν			G	L	Ν	Ν
BG10G789R1401	Ogosta	OGOSTA RWB1401	-	-	-	-	-		2	F	-	-	Ν	Ν			-	-	-	-

				Bioloş E	gical Q llemen	puality ts	,	atus	itions		STATUS	status)		Artii and H	ficial MWB			atus)		
Water Body code with country code	Name of river	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL ST	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
BG10G789R1501	Ogosta	OGOSTA RWB1501	-	-	-	-	-		2	F	-	-	Ν	Ν			-	-	-	-
BG10G789R1601	Ogosta	OGOSTA RWB1601	5	2	2	-	5		2	F	2	М	Ν	Ν			G	L	Ν	Ν
BG1WO100R001	Timok	TIMOK WORWB01	-	5	3	-	5		3	F	5	Μ	Ν	Ν			F	L	Y	Ν
BG1YN130R1029	Yantra	YANTRA RWB1029	-	3	-	-	3		2	F			Ν	Y	3	Μ	G	L	-	-
BG1YN307R1027	Yantra	YANTRA RWB1027	-	2	2	-	2		2	F	2	Μ	Ν	Ν			G	М	Ν	Ν
BG1YN307R1127	Yantra	YANTRA RWB1127	-	-	-	-	-		2	F	-	-	Ν	Ν			G	М	-	-
BG1YN700R1017	Yantra	YANTRA RWB1017	-	3	3	-	3		3	G	3	М	Ν	Ν			G	М	Ν	-
BG1YN900R1015	Yantra	YANTRA RWB1015	-	4	4	-	4		3	G	4	М	Ν	Ν			G	М	Y	-
BG1YN900R1215	Yantra	YANTRA RWB1215	-	5	2	-	5		3	G	2	Μ	Ν	Ν			G	Μ	Ν	Ν
BG1YN900R1415	Yantra	YANTRA RWB1415	-	-	-	-	-		2	G	-	-	Ν	Ν			G	Μ	-	-
MD0201/01	Prut	Prut	-	-	-	-	-	Ν	2	G	-	-	Ν	Ν	-	-	G	L	-	-
MD0201/02	Prut	Prut	-	3	-	2	3	Ν	4	G	2	L	Ν	Ν	-	-	F	L	-	-
MD0201/03	Prut	Prut	-	-	-	-	-	Ν	4	G	2	L	Ν	Ν	-	-	F	L	-	-
MD0201/04	Prut	Prut	-	-	-	-	-	Ν	4	G	-	-	Ν	Ν	-	-	F	L	-	-
MD0201/05	Prut	Prut (l.a.Costesti Stinca)	-	-	-	-	-	Ν	4	G	-	-	Ν	Y	-	-	F	L	-	-
MD0201/07	Prut	Prut	-	3	-	2	3	Ν	2	G	-	-	Ν	Ν	-	-	G	L	-	-
MD0201/08	Prut	Prut	-	-	-	-	-	Ν	2	G	-	-	Ν	Ν	-	-	G	L	-	-
MD0201/09	Prut	Prut	-	-	-	-	-	Ν	2	G	-	-	Ν	Ν	-	-	G	L	-	-
MD0201/10	Prut	Prut	-	3	-	2	3	Ν	2	G	2	L	Ν	Ν	-	-	G	L	-	-
MD0201/11	Prut	Prut	-	3	-	2	3	Ν	4	G	-	-	Ν	Ν	-	-	F	L	-	-
MD0201/12	Prut	Prut	-	-	-	-	-	Ν	4	G	2	L	Ν	Ν	-	-	F	L	-	-
MD0201/13	Prut	Prut	-	3	-	2	3	Ν	4	G	2	L	Ν	Ν	-	-	F	L	-	-

					gical Q lemen			itus	itions		STATUS	itatus)		Artii and H	ficial MWB			atus)		
Water Body code with country code	Name of river	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL ST	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
MD0201/14	Prut	Prut	-	-	-	-	-	Ν	4	G	-	-	Ν	Ν	-	-	F	L	-	-
MD0201/15	Prut	Prut	-	3	-	2	3	Ν	4	G	-	-	Ν	Ν	-	-	F	L	-	-
UALAR01	Latorica	Tisa	-	-	-	-	-		-	-	-	-	Ν	Ν	-	-	-	-	-	-
UALAR02	Latorica	Tisa	-	-	-	-	-		-	-	-	-	Ν	Ν	-	-	-	-	-	-
UALAR03	Latorica	Tisa	-	-	-	-	-		-	-	-	-	Ν	Ν	-	-	-	-	-	-
UA0201/01	Prut	Prut	-	-	-	-	-		-	-	-	-	Ν	Ν	-	-	-	-	-	-
UA0201/02	Prut	Prut	-	-	-	-	-		-	-	-	-	Ν	Ν	-	-	-	-	-	-
UA0201/03	Prut	Prut	-	-	-	-	-		-	-	-	-	Ν	Ν	-	-	-	-	-	-
UA0201/04	Prut	Prut	-	-	-	-	-		-	-	-	-	Ν	Ν	-	-	-	-	-	-
UA0201/05	Prut	Prut	-	-	-	-	-		-	-	-	-	Ν	Ν	-	-	-	-	-	-
UA0201/06	Prut	Prut	-	-	-	-	-		-	-	-	-	Ν	Ν	-	-	-	-	-	-
UA0201/07	Prut	Prut	-	-	-	-	-		-	-	-	-	Ν	Ν	-	-	-	-	-	-
UA0201/08	Prut	Prut	-	-	-	-	-		-	-	-	-	Ν	Ν	-	-	-	-	-	-
UA0201/09	Prut	Prut	-	-	-	-	-		-	-	-	-	Ν	Ν	-	-	-	-	-	-
UA0201/10	Prut	Prut	-	-	-	-	-		-	-	-	-	Ν	Ν	-	-	-	-	-	-
UA0201/11	Prut	Prut	-	-	-	-	-		-	-	-	-	Ν	Ν	-	-	-	-	-	-
UA0201/12	Prut	Prut	-	-	-	-	-		-	-	-	-	Ν	Ν	-	-	-	-	-	-
UA0201/13	Prut	Prut	-	-	-	-	-		-	-	-	-	Ν	Ν	-	-	-	-	-	-
UA0201/14	Prut	Prut	-	-	-	-	-		-	-	-	-	Ν	Ν	-	-	-	-	-	-
UA0201/15	Prut	Prut	-	-	-	-	-		-	-	-	-	Ν	Ν	-	-	-	-	-	-
UA0201/16	Prut	Prut	-	-	-	-	-		-	-	-	-	Ν	Ν	-	-	-	-	-	-
UA0201/17	Prut	Prut	-	-	-	-	-		-	-	-	-	Ν	Ν	-	-	-	-	-	-

					gical Q lemen			atus	itions		ATUS	itatus)		Artif and H				atus)		
Water Body code with country code	Name of river	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL STATUS	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
UA0201/18	Prut	Prut	-	-	-	-	-		-	-	-	-	Ν	Ν	-	-	-	-	-	-
UA0201/19	Prut	Prut	-	-	-	-	-		-	-	1	-	Ν	Ν	-	-	-	-	-	-
UA0201/20	Prut	Prut	-	-	-	-	-		-	-	I	-	Ν	Ν	-	-	-	-	-	-
UA0201/21	Prut	Prut	-	-	-	-	-		-	-	-	-	Ν	Ν	-	-	-	-	-	-
UA0201/22	Prut	Prut	-	-	-	-	-		-	-	-	-	Ν	Ν	-	-	-	-	-	-
UA0201/23	Prut	Prut	-	-	-	-	-		-	-	-	-	Ν	Ν	-	-	-	-	-	-
UA0201/24	Prut	Prut	-	-	-	-	-		-	-	-	-	Ν	Ν	-	-	-	-	-	-
UA0201/25	Prut	Prut	-	-	-	-	-		-	-	1	-	Ν	Ν	-	-	-	-	-	-
UA0201/26	Prut	Prut	-	-	-	-	-		-	-	-	-	Ν	Ν	-	-	-	-	-	-
UA0201/27	Prut	Prut	-	-	-	-	-		-	-	-	-	Ν	Ν	-	-	-	-	-	-
UA0201/28	Prut	Prut	-	-	-	-	-		-	-	-	-	Ν	Ν	-	-	-	-	-	-
UA0201/29	Prut	Prut	-	-	-	-	-		-	-	I	-	Ν	Ν	-	-	-	-	-	-
UASr	Siret	Siret	-	-	-	-	-		-	-	I	-	Ν	Ν	-	-	-	-	-	-
UATISR01	Tisza	Tisa	-	-	-	-	-		-	-	-	-	Ν	Ν	-	-	-	-	-	-
UATISR02	Tisza	Tisa	-	-	-	-	-		-	-	-	-	Ν	Ν	-	-	-	-	-	-
UATISR03	Tisza	Tisa	-	-	-	-	-		-	-	-	-	Ν	Ν	-	-	-	-	-	-
UATISR04	Tisza	Tisa	-	-	-	-	-		-	-	-	-	Ν	Ν	-	-	-	-	-	-
UATISR05	Tisza	Tisa	-	-	-	-	-		-	-	-	-	Ν	Ν	-	-	-	-	-	-

Status assessment of lakes

		Bie	ological	Quality	v Eleme	nts		SU		SU'	(SI		Artif and H				()		
Water Body code with country code	Name of water body	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL STATUS	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
ATOK10500200	Neusiedler See	2	2	2	2	2	Y	2	G	2	М	N	N			G	Н	Ν	Ν
HUAIH049	Balaton											Ν	N						
HUAIH070	Fertő											Ν	N						
ROLW14.1_B7	Razim	-	-	2	2	2	Y	2	G	2	М	Ν	N			G	М	Ν	Ν
UAKUW	Kugurlui (Yalpug-Kugurlui Lakes)											N	PY						
UAYAW	Yalpug (Yalpug-Kugurlui Lakes)											Ν	Y						

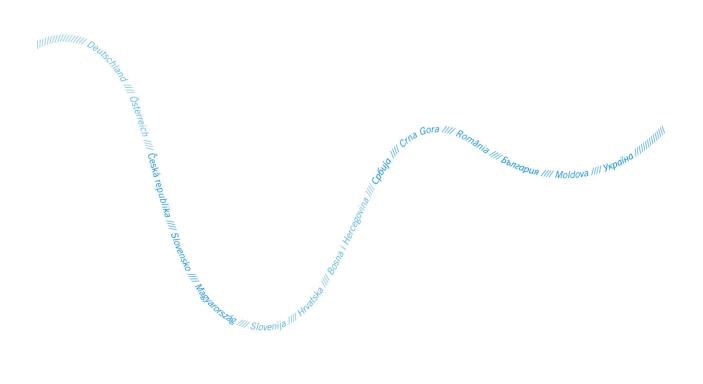
Explanations

	Labels in the table	Descripton	Possible values
	Water body code with country code		
	Name of water body		
	Fish	Status Class for the Water Body	
	Benthic invertebrates	Status Class for the Water Body	
	Angiosperms	Status Class for the Water Body	$1 = \text{high}, \\ 2 = \text{good},$
Biological Quality Elements	Macroalgae	Status Class for the Water Body	3 = moderate, 4 = poor,
	Phytoplankton	Status Class for the Water Body	5 = bad
	Overall Biological Status	Status Class for the Water Body = worst case of the status classes of all biological quality elements (acc. to one-out-all-out principle)	
Hydromorphology	Hydromorphology - High Status	Only if biological quality elements are in high status hydromorphology must also be in high status	Y = Yes, N = No
General Physical and Chemical conditions	General Physical and Chemical conditions SUPPORTIVE to the Ecological Status	Status Class for the Water Body	1 = high, 2 = good, 3 = moderate, 4 = poor, 5 = bad
Specific pollutants	Specific pollutants (good or failing for Ecological Status)	Status Class for the Water Body for specific pollutants based on national quality standards; relevant for the assessment of Ecological Status. Specific pollutants are those pollutants that are regulated at the national level (and not included in the List	G = good, F = failing

OVERALL ECOLOGICAL STATUS	Overall Ecological Status	Worst case of the Biological Quality Class and Specific pollutants Status Class. For High Ecological Status additionally the General Physical and Chemical Parameters and the Hydromorphology have to be in high status.	1 = high, 2 = good, 3 = moderate, 4 = poor, 5 = bad
	Confidence class (high, medium, low for Overall Ecol.Status)	Confidence level of assessment (as discussed in the MA EG)	H = high, M = medium, L = low
	Artificial Water Body (Y/N)	Is the water body artificial?	Y = Yes, N = No
Artificial and HMWB	HMWB (Y/N)	Is the water body heavily modified?	Y = Yes, N = No, PN = provisionally no, PY = provisionally yes
	Ecological Potential Class	If the water body is artificial or heavily modified - please give the information of the Ecological Potential Class	2 = good and above, 3 = moderate, 4 = poor, 5 = bad
	Confidence class (Ecological Potential)	Confidence level of assessment (as discussed in the MA EG)	H = high, M = medium, L = low
CHEMICAL STATUS CLASS	CHEMICAL STATUS CLASS	Chemical Status Class for all pollutants that are regulated by the EU	G = good, F = failing
CLASS	Confidence (Chemical Status)	Confidence level of assessment (as discussed in the MA EG)	H = high, M = medium, L = low
	Exemption Art. 4(4)		Y = Yes, N = No
Exemptions	Exemption Art. 4(5)		Y = Yes, N = No

Status assessment of coastal waters

			Biolog	ical Qu	ality El	ements			SU		SU'	(St			ficial MWB					
Water Body code with country code	Name of water body	Fish	Benthic invertebrates	Angiosperms	Macroalgae	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL STATUS	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
ROCT01_B1	Periboina-Cap Singol		1	-	-	3	3	Y	3	G	3	М	N	N			G	М	N	N
ROCT01_B2	Mangalia		1	-	-	2	2	N	3	G			N	Y	3	М	G	М	N	N
ROCT02_B1	Cap Singol-Eforie Nord		-	-	-	2	2	N	3	G			N	Y	3	М	G	М	N	N
ROCT02_B2	Eforie Nord-Vama Veche		1	-	-	2	2	Y	3	G	3	М	N	Ν			G	М	N	Ν
UABScstl	Black Sea coastal												N	0						


Statuss assessment of transitional waters

			Biolog	jical Qu	ality Ele	ements		tus	tions		ATUS	atus)		Arti and H				tus)		
Water Body code with country code	Name of water body	Fish	Benthic invertebrates	Angiosperms	Macroalgae	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	Specific pollutants	OVERALL ECOLOGICAL STATUS	Confidence class (Overall Ecol.Status)	Artificial Water Body	Heavily modified Water Body	Ecological Potential Class	Confidence class (Ecol. Pot.)	CHEMICAL STATUS	Confidence class (Chemical Status)	Exemption Art. 4(4)	Exemption Art. 4(5)
ROTT02_B1	Since												N	N						
ROTT03_B1	Chilia-Periboina												N	N						
UADDBS	Black sea												N	N						
UADD_UA_Bys	Bystroe												N	Y						
UADD_UA_Och	Ochakovskoe												N	N						
UADD_UA_Sts	Starostambulskoe												Ν	N						

Inventory of Protected Areas

ANNEX 8 DRAFT DRBM Plan – Update 2015

Explanations

Types:

- H = Habitat (FFH) Directive
- B = Bird Protection Directive
- O = Others (Non EU MS)

Data on protected areas for Germany as listed in this Annex is from the 1st DRBM Plan 2009.

Country	Area code	Name of Protected Area	Type(s)	Area in km ²
AT	AT1110137	Neusiedler See - Nordöstliches Leithagebirge	B,H	570.86
AT	AT1122916	Lafnitzauen	Н	5.9
AT	AT1126129	Waasen - Hanság	В	30.04
AT	AT1202000	March-Thaya-Auen	Н	88.76
AT	AT1202V00	March-Thaya-Auen (SPA)	В	148.27
AT	AT1204000	Donau-Auen östlich von Wien	Н	95.11
AT	AT1204V00	Donau-Auen östlich von Wien (SPA)	В	90.95
AT	AT1208A00	Thayatal bei Hardegg	Н	44.28
AT	AT1301000	Nationalpark Donau-Auen (Wiener Teil)	B,H	22.57
AT	AT2101000	SCI Nationalpark Hohe Tauern	B,H	346.03
AT	AT2102000	Nationalpark Nockberge (Kernzone)	Н	77.4
AT	AT2108000	Inneres Pöllatal	Н	31.96
AT	AT2109000	Wolayersee und Umgebung	Н	19.39
AT	AT2114000	Obere Drau	B,H	10.28
AT	AT2116000	Görtschacher Moos-Obermoos im Gailtal	B,H	12.42
AT	AT2120000	Schütt-Graschelitzen	B,H	23.05
AT	AT2205000	Pürgschachen-Moos und ennsnahe Bereiche zwischen Selzthal und dem Gesäuseeingang	B,H	16.13
AT	AT2208000	Lafnitztal - Neudauer Teiche	B,H	11.63
AT	AT2210000	Ennstaler Alpen / Gesäuse	B,H	145.12
AT	AT2213000	Steirische Grenzmur mit Gamlitzbach und Gnasbach	B,H	21.59
AT	AT2215000	Teile der Eisenerzer Alpen	Н	43.87
AT	AT2220000	Zirbitzkogel	В	23.11
AT	AT2225000	Demmerkogel-Südhänge; Wöllinggraben mit Sulm, Saggau und Laßnitzabschnitten und Pößn.	B,H	20.97
AT	AT2226000	Furtner Teich - Dürnberger-Moor	В	10.73
AT	AT2229000	Teile des Steirischen Jogl- und Wechsellandes	В	454.87
AT	AT2229002	Ennstal zwischen Liezen und Niederstuttern	В	25.59
AT	AT2230000	Teile des südoststeirischen Hügellandes inklusive Höll und Grabenlandbäche	B,H	156.56
AT	AT2233000	Raabklamm	B,H	5.55
AT	AT2236000	Ober- und Mittellauf der Mur mit Puxer Auwald, Puxer Wand und Gulsen	Н	13.08
AT	AT2243000	Totes Gebirge mit Altausseer See	B,H	239.53
AT	AT3101000	Dachstein	B,H	146.17
AT	AT3105000	Unterer Inn	B,H	8.63
AT	AT3110000	Ettenau	B,H	6.25
AT	AT3111000	Nationalpark Kalkalpen, 1. Verordnungsabschnitt	B,H	214.36
AT	AT3112000	Oberes Donautal	В	9.24
AT	AT3113000	Untere Traun	В	23.08
AT	AT3114000	Traun-Donau-Auen	B,H	6.64
AT	AT3117000	Mond- und Attersee	Н	61.36
AT	AT3119000	Auwälder am Unteren Inn	Н	5.5
AT	AT3120000	Waldaist und Naarn	Н	41.55

Country	Area code	Name of Protected Area	Type(s)	Area in km ²
AT	AT3121000	Böhmerwald und Mühltäler	Н	93.52
AT	AT3122000	Oberes Donau- und Aschachtal	Н	71.18
AT	AT3123000	Wiesengebiete und Seen im Alpenvorland	Н	10.63
AT	AT3124000	Wiesengebiete im Freiwald	В	21.43
AT	AT3209022	Salzachauen, Salzburg (SPA)	В	11.19
AT	AT3210001	Hohe Tauern, Salzburg	В	805
AT	AT3211012	Kalkhochalpen, Salzburg	Н	236.9
AT	AT3223000	Salzachauen, Salzburg	Н	5.78
AT	AT3302000	Vilsalpsee	B,H	18.28
AT	AT3309000	Lechtal	B,H	41.44
BA	BABardaca	Zasticeno podrucje BARDACA	В	35
BA	BAProkosko jezero	Zasticeno podrucje Prokoško jezero	0	21.19
BA	BASkakavac	Zasticeno podrucje Skakavac	0	14.3
BA	BAUna	Zasticeno podrucje Una	0	198
BA	BAVrelo Bosne	Zasticeno podrucje Vrelo Bosne	0	6.03
BG	BG0000106	Harsovska reka	Н	367.56
BG	BG0000107	Suha reka	Н	624.81
BG	BG0000113	Vitosha	B,H	158.7
BG	BG0000117	Kotlenska planina	Н	149.18
BG	BG0000165	Lozenska planina	Н	12.96
BG	BG0000166	Vrachanski Balkan	Н	360.25
BG	BG0000168	Ludogorie	Н	594.47
BG	BG0000169	Ludogorie - Srebarna	Н	52.24
BG	BG0000171	Ludogorie - Boblata	Н	48.33
BG	BG0000173	Ostrovche	Н	58.94
BG	BG0000180	Boblata	Н	32.17
BG	BG0000181	Reka Vit	Н	57.18
BG	BG0000182	Orsoya	Н	24.61
BG	BG0000190	Vitata stena	Н	26.3
BG	BG0000199	Tzibar	Н	23.04
BG	BG0000204	Vardim	Н	11.05
BG	BG0000211	Tvardishka planina	Н	256.04
BG	BG0000213	Tarnovski visochini	Н	44.32
BG	BG0000214	Dryanovski manastir	Н	29.86
BG	BG0000231	Belenska gora	Н	50.39
BG	BG0000232	Batin	Н	26.83
BG	BG0000233	Studena reka	Н	52.99
BG	BG0000237	Ostrov Pozharevo	В	9.75
BG	BG0000239	Obnova - Karaman dol	Н	107.49
BG	BG0000240	Studenetz	B,H	280.57
BG	BG0000241	Srebarna	B,H	14.47
BG	BG0000247	Nikopolsko plato	Н	185.01

Country	Area code	Name of Protected Area	Type(s)	Area in km ²
BG	BG0000263	Skalsko	Н	21.89
BG	BG0000275	Yazovir Stamboliyski	Н	93.53
BG	BG0000308	Verila	Н	37.48
BG	BG0000313	Rui	Н	16.36
BG	BG0000322	Dragoman	Н	213.57
BG	BG0000332	Karlukovski karst	В	142.17
BG	BG0000334	Ostrov	Н	34.4
BG	BG0000335	Karaboaz	Н	122
BG	BG0000336	Zlatiya	Н	31.95
BG	BG0000339	Rabrovo	Н	9.11
BG	BG0000340	Tzar Petrovo	Н	17.48
BG	BG0000374	Bebresh	Н	68.22
BG	BG0000377	Kalimok - Brashlen	Н	73.32
BG	BG0000396	Persina	Н	223.77
BG	BG0000399	Bulgarka	Н	210.91
BG	BG0000432	Golyama reka	Н	74.52
BG	BG0000494	Tzentralen Balkan	B,H	312.21
BG	BG0000495	Rila	B,H	206.5
BG	BG0000497	Archar	Н	5.97
BG	BG0000498	Vidbol	Н	13.05
BG	BG0000500	Voynitza	Н	23.13
BG	BG0000503	Reka Lom	Н	14.41
BG	BG0000507	Deleina	Н	22.58
BG	BG0000509	Tzibritza	Н	9.63
BG	BG0000517	Portitovtsi-Vladimirovo	Н	6.64
BG	BG0000518	Vartopski dol	Н	9.87
BG	BG0000521	Makresh	Н	20.61
BG	BG0000522	Vidinski park	Н	15.79
BG	BG0000523	Shishentzi	Н	5.73
BG	BG0000529	Marten-Ryahovo	Н	11.73
BG	BG0000530	Pozharevo - Garvan	Н	58.66
BG	BG0000533	Ostrovi Kozlodui	Н	6.06
BG	BG0000569	Kardam	Н	9.18
BG	BG0000570	Izvorovo - Kraishte	Н	10.81
BG	BG0000572	Rositza - Loznitza	Н	18.12
BG	BG0000576	Svishtovska gora	Н	19.17
BG	BG0000608	Lomovete	Н	324.89
BG	BG0000609	Reka Rositza	Н	14.41
BG	BG0000610	Reka Yantra	Н	139
BG	BG0000611 BG0000611	Yazovir Gorni Dubnik	Н	25.39
BG	BG0000613	Reka Iskar	Н	94.58
BG	BG0000613 BG0000614	Reka Ogosta	Н	12.53
DO	D0000014	Neka Ogusia	п	12.55

Country	Area code	Name of Protected Area	Type(s)	Area in km ²
BG	BG0000616	Mikre	Н	154.47
BG	BG0000617	Reka Palakariya	Н	31.56
BG	BG0000618	Vidima	Н	18.23
BG	BG0000624	Lyubash	Н	12.67
BG	BG0001014	Karlukovo	Н	288.42
BG	BG0001017	Karvav kamak	Н	36.5
BG	BG0001036	Balgarski izvor	Н	26.19
BG	BG0001037	Pastrina	Н	35.52
BG	BG0001040	Zapadna stara planina i Predba	Н	2193.03
BG	BG0001042	Iskarski prolom - Rzhana	Н	226.93
BG	BG0001043	Etropole - Baylovo	Н	191.26
BG	BG0001307	Plana	Н	27.89
BG	BG0001389	Sredna Gora	Н	21.42
BG	BG0001493	Tzentralen Balkan - buffer	Н	867.22
BG	BG0002001	Rayanovtsi	В	132.02
BG	BG0002002	Zapaden Balkan	В	1467.72
BG	BG0002004	Dolni Bogrov-Kazichene	В	22.54
BG	BG0002005	Ponor	В	314.06
BG	BG0002009	Zlatiata	В	435.38
BG	BG0002017	Complex Belenski Ostrovi	В	66.83
BG	BG0002018	Ostrov Vardim	В	11.66
BG	BG0002024	Ribarnitsi Mechka	В	27.11
BG	BG0002025	Lomovete	В	43.08
BG	BG0002029	Kotlenska planina	В	196.89
BG	BG0002030	Complex Kalimok	В	92.2
BG	BG0002039	Harsovska reka	В	354
BG	BG0002048	Suha reka	В	257.5
BG	BG0002053	Vrachanski Balkan	В	309.17
BG	BG0002062	Ludogorie	В	913.15
BG	BG0002074	Nikopolsko plato	В	222.31
BG	BG0002083	Svishtovsko-Belenska nizina	В	54.39
BG	BG0002084	Palakaria	В	158.25
BG	BG0002085	Chairya	В	14.5
BG	BG0002088	Mikre	В	123.87
BG	BG0002090	Berkovitsa	В	28.04
BG	BG0002091	Ostrov Lakat	В	11.56
BG	BG0002095	Gorni Dabnik-Telish	В	34
BG	BG0002096	Obnova	В	54.21
BG	BG0002101	Meshtitsa	В	16.27
BG	BG0002102	Devetashko plato	В	78.92
BG	BG0002104	Tsibarsko blato	В	9.11
BG	BG0002109	Vasilyovska planina	В	454.84
BG	BG0002110	Apriltsi	В	19.42

Country	Area code	Name of Protected Area	Type(s)	Area in km ²
BG	BG0002111	Velchevo	В	23.1
BG	BG0002112	Ruy	В	173.94
CZ	CZ0314024	Šumava	Н	107.77
CZ	CZ0320180	Čerchovský les	Н	21.91
CZ	CZ0323151	Kateřinský a Nivní potok	Н	9.79
CZ	CZ0324026	Niva Nemanického potoka	Н	6.81
CZ	CZ0530146	Králický Sněžník	Н	17.16
CZ	CZ0614131	Údolí Oslavy a Chvojnice	Н	23.39
CZ	CZ0614134	Údolí Jihlavy	Н	8.62
CZ	CZ0620009	Lednické rybníky	Н	6.18
CZ	CZ0620245	Rakovecké údolí	Н	7.56
CZ	CZ0621025	Bzenecká Doubrava - Strážnické Pomoraví	В	11.72
CZ	CZ0621027	Soutok-Tvrdonicko	В	95.59
CZ	CZ0621028	Lednické rybníky	В	6.85
CZ	CZ0621029	Pálava	В	85.39
CZ	CZ0621030	Střední nádrž vodního díla Nové Mlýny	В	10.47
CZ	CZ0624064	Krumlovský les	Н	19.46
CZ	CZ0624068	Strážnická Morava	Н	6.59
CZ	CZ0624070	Hodonínská doubrava	Н	30.29
CZ	CZ0624072	Čertoryje	Н	48.52
CZ	CZ0624095	Údolí Dyje	Н	18.21
CZ	CZ0624096	Podyjí	Н	62.68
CZ	CZ0624099	Niva Dyje	Н	32.49
CZ	CZ0624103	Mušovský luh	Н	5.57
CZ	CZ0624119	Soutok - Podluží	Н	97
CZ	CZ0624130	Moravský kras	Н	64.85
CZ	CZ0710161	Království	Н	5.88
CZ	CZ0711018	Litovelské Pomoraví	В	93.19
CZ	CZ0714073	Litovelské Pomoraví	Н	94.59
CZ	CZ0714075	Keprník	Н	17.51
CZ	CZ0714077	Praděd	Н	28.02
CZ	CZ0714085	Morava - Chropyňský luh	Н	32.05
CZ	CZ0714133	Libavá	Н	67.32
CZ	CZ0720033	Semetín	Н	13.27
CZ	CZ0720192	Velká Vela	Н	7.71
CZ	CZ0720422	Valy-Bučník	Н	10.95
CZ	CZ0720428	Na Koncoch	Н	17.35
CZ	CZ0720435	Podkrálovec	Н	9.62
CZ	CZ0720437	Valentová	Н	5.58
CZ	CZ0724089	Beskydy	Н	632.22
CZ	CZ0724090	Bílé Karpaty	Н	200.34
CZ	CZ0724091	Chřiby	Н	192.26
CZ	CZ0724107	Nedakonický les	Н	15.25

Country	Area code	Name of Protected Area	Type(s)	Area in km ²
CZ	CZ0724120	Kněžpolský les	н	5.21
CZ	CZ0724120	Nad Jasenkou	Н	7.39
CZ				
	CZ0724429	Hostýnské vrchy	Н	23.97
CZ	CZ0724430	Vlárský průsmyk	Н	31.69
DE	DE5937-471	Schneeberggebiet und Goldkronacher / Sophientaler Forst	В	26.19
DE	DE6139-371	Waldnaabtal zwischen Tirschenreuth und Windisch-Eschenbach	Н	26.18
DE	DE6139-471	Waldnaabaue westlich Tirschenreuth	В	22.59
DE	DE6237-371	Heidenaab, Creussenaue und Weihergebiet nordwestlich Eschenbach	Н	18.65
DE	DE6336-301	US-Truppenübungsplatz Grafenwöhr	B,H	192.79
DE	DE6336-471	Vilsecker Mulde	В	9.2
DE	DE6337-371	Vilsecker Mulde mit den Tälern der Schmalnohe und Wiesenohe	Н	9.39
DE	DE6338-301	Lohen im Manteler Forst mit Schießlweiher und Straßweiherkette	Н	7.73
DE	DE6338-401	Manteler Forst	В	26.92
DE	DE6528-371	Anstieg der Frankenhöhe östlich der A 7	Н	11.79
DE	DE6537-371	Vils von Vilseck bis zur Mündung in die Naab	Н	6.22
DE	DE6541-371	Bayerische Schwarzach und Biberbach	Н	5.3
DE	DE6636-371	Lauterachtal	Н	8.23
DE	DE6639-371	Talsystem von Schwarzach, Auerbach und Ascha	Н	7.84
DE	DE6639-372	Charlottenhofer Weihergebiet, Hirtlohweiher und Langwiedteiche		9.31
DE	DE6728-471	Altmühltal mit Brunst-Schwaigau und Altmühlsee	В	49.71
DE	DE6736-302	Truppenübungsplatz Hohenfels	B,H	149.06
DE	DE6741-371	Chamb, Regentalaue und Regen zwischen Roding und Donaumündung	Н	31.94
DE	DE6741-471	Regentalaue und Chambtal mit Rötelseeweihergebiet	В	27.78
DE	DE6830-371	Obere Altmühl mit Brunst-Schwaigau und Wiesmet	Н	45.08
DE	DE6833-371	Trauf der südlichen Frankenalb	Н	41.47
DE	DE6834-301	Trauf der mittleren Frankenalb im Sulztal	Н	12.24
DE	DE6836-371	Schwarze Laaber	Н	11.6
DE	DE6844-371	Oberlauf des Weißen Regens bis Kötzting mit Kaitersbachaue	Н	6.37
DE	DE6844-373	Großer und Kleiner Arber mit Arberseen	Н	22.96
DE	DE6935-371	Weiße, Wissinger, Breitenbrunner Laaber u. Kreuzberg bei Dietfurt	н	23.23
DE	DE6937-371	Naab unterhalb Schwarzenfeld und Donau von Poikam bis Regensburg	Н	11.15
DE	DE6939-302	Bachtäler im Falkensteiner Vorwald	Н	13.87
	DE6939-371	Trockenhänge am Donaurandbruch	Н	5.21
DE		Nationalpark Bayerischer Wald	B,H	242.18
DE DE	DE6946-301		1,11	272.10
DE	DE6946-301		ц	38.03
	DE7029-371	Wörnitztal Trockenhänge im unteren Altmühltal mit Laaberleiten und	Н	38.93
DE DE		Wörnitztal	H H B	38.93 27.19 48.44

Country	Area code	Name of Protected Area	Type(s)	Area in km ²
DE	DE7040-302	Wälder im Donautal	B,H	12.89
DE	DE7040-371	Donau und Altwässer zwischen Regensburg und Straubing	Н	21.94
DE	DE7040-471	Donau zwischen Regensburg und Straubing	В	32.6
DE	DE7043-371	Deggendorfer Vorwald	Н	14.98
DE	DE7045-371	Oberlauf des Regens und Nebenbäche	Н	19.22
DE	DE7128-371	Trockenverbund am Rand des Nördlinger Rieses	Н	9.5
DE	DE7130-471	Nördlinger Ries und Wörnitztal	В	70.36
DE	DE7132-371	Mittleres Altmühltal mit Wellheimer Trockental und Schambachtal	Н	42.01
DE	DE7132-471	Felsen und Hangwälder im Altmühltal und Wellheimer Trockental	В	36.12
DE	DE7136-301	'Weltenburger Enge' und 'Hirschberg und Altmühlleiten'	Н	9.34
DE	DE7136-304	Donauauen zwischen Ingolstadt und Weltenburg	Н	27.67
DE	DE7138-372	Tal der Großen Laaber zwischen Sandsbach und Unterdeggenbach	Н	6.82
DE	DE7142-301	Donauauen zwischen Straubing und Vilshofen	Н	47.86
DE	DE7142-471	Donau zwischen Straubing und Vilshofen	В	67.76
DE	DE7229-471	Riesalb mit Kesseltal	В	120.37
DE	DE7230-371	Donauwörther Forst mit Standortübungsplatz und Harburger Karab	Н	24.01
DE	DE7231-471	Donauauen zwischen Lechmündung und Ingolstadt	В	69.61
DE	DE7232-301	Donau mit Jura-Hängen zwischen Leitheim und Neuburg	Н	32.81
DE	DE7233-372	Donauauen mit Gerolfinger Eichenwald	Н	29.27
DE	DE7233-373	Donaumoosbäche, Zucheringer Wörth und Brucker Forst	Н	9.47
DE	DE7243-301	Untere Isar zwischen Landau und Plattling	Н	12.17
DE	DE7243-302	Isarmündung	Н	19.07
DE	DE7243-401	Untere Isar oberhalb Mündung	В	9.74
DE	DE7243-402	Isarmündung	В	21.13
DE	DE7246-371	Ilz-Talsystem	Н	28.45
DE	DE7329-301	Donauauen Blindheim-Donaumünster	Н	12.11
DE	DE7329-372	Jurawälder nördlich Höchstädt	Н	38.2
DE	DE7330-301	Mertinger Hölle und umgebende Feuchtgebiete	Н	8.58
DE	DE7330-471	Wiesenbrüterlebensraum Schwäbisches Donauried	В	39.66
DE	DE7335-371	Feilenmoos mit Nöttinger Viehweide	Н	8.7
DE	DE7341-471	Wiesenbrütergebiete im Unteren Isartal	В	13.84
DE	DE7347-371	Erlau	Н	5.75
DE	DE7427-471	Schwäbisches Donaumoos	В	25.78
DE	DE7428-301	Donau-Auen zwischen Thalfingen und Höchstädt	Н	57.97
DE	DE7428-471	Donauauen	В	80.53
DE	DE7433-371	Paar	Н	29.7
DE	DE7439-371	Isarleiten bei der Gretlmühle	Н	6.43
DE	DE7440-371	Vilstal zwischen Vilsbiburg und Marklkofen	Н	8.35
DE	DE7446-301	Donauleiten von Passau bis Jochenstein	Н	5.17
DE	DE7446-371	Östlicher Neuburger Wald und Innleiten bis Vornbach	Н	10.89

Country	Area code	Name of Protected Area	Type(s)	Area in km ²
DE	DE7447-371	Donau von Kachlet bis Jochenstein mit Inn- und Ilzmündung	Н	5.08
DE	DE7537-301	Isarauen von Unterföhring bis Landshut	Н	52.77
DE	DE7537-401	Naturschutzgebiet "Vogelfreistätte Mittlere Isarstauseen"	В	5.87
DE	DE7630-371	Schmuttertal	Н	9
DE	DE7631-371	Lechauen zwischen Königsbrunn und Augsburg	Н	23.04
DE	DE7631-372	Lech zwischen Landsberg und Königsbrunn mit Auen und Leite	Н	25.02
DE	DE7635-301	Ampertal	Н	21.72
DE	DE7636-471	Freisinger Moos	В	11.3
DE	DE7726-371	Untere Illerauen	Н	16.42
DE	DE7736-471	Ismaninger Speichersee und Fischteiche	В	10.29
DE	DE7739-371	Isental mit Nebenbächen	Н	7.66
DE	DE7742-371	Inn und Untere Alz	Н	15.65
DE	DE7744-371	Salzach und Unterer Inn	Н	56.89
DE	DE7744-471	Salzach und Inn	В	48.28
DE	DE7820-441	Südwestalb und Oberes Donautal	В	428.56
DE	DE7823-341	Donau zwischen Munderkingen und Riedlingen	Н	14.29
DE	DE7828-471	Mindeltal	В	26.55
DE	DE7829-301	Angelberger Forst	Н	6.41
DE	DE7832-371	Ampermoos	Н	5.29
DE	DE7833-371	Moore und Buchenwälder zwischen Etterschlag und Fürstenfeldbruck	н	7.76
DE	DE7837-371	Ebersberger und Großhaager Forst	Н	38.41
DE	DE7919-341	Donautal und Hochflächen von Tuttlingen bis Beuron	Н	54.26
DE	DE7920-342	Oberes Donautal zwischen Beuron und Sigmaringen	Н	27.04
DE	DE7922-342	Donau zwischen Riedlingen und Sigmaringen	Н	11.66
DE	DE7932-372	Ammerseeufer und Leitenwälder	Н	9.53
DE	DE7932-471	Ammerseegebiet	В	77.1
DE	DE7934-371	Moore und Wälder der Endmoräne bei Starnberg	Н	5.87
DE	DE7939-301	Innauen und Leitenwälder	Н	35.53
DE	DE7939-401	NSG 'Vogelfreistätte Innstausee bei Attel und Freiham'	В	5.67
DE	DE8016-341	Baar	Н	22.24
DE	DE8017-341	Nördliche Baaralb und Donau bei Immendingen	Н	24.98
DE	DE8017-441	Baar	В	377.58
DE	DE8031-471	Mittleres Lechtal	В	32.08
DE	DE8032-371	Ammersee-Südufer und Raistinger Wiesen	Н	8.82
DE	DE8032-372	Moore und Wälder westlich Dießen	Н	25.91
DE	DE8033-371	Moränenlandschaft zwischen Ammersee und Starnberger See	Н	20.73
DE	DE8034-371	Oberes Isartal	Н	46.71
DE	DE8038-371	Rotter Forst und Rott	Н	8.47
DE	DE8039-302	Moore und Seen nordöstlich Rosenheim	Н	5.6
DE	DE8039-371	Murn, Murner Filz und Eiselfinger See	Н	5.14
DE	DE8040-371	Moorgebiet von Eggstädt-Hemhof bis Seeon	Н	21.16
DE	DE8040-471	Moorgebiet von Eggstätt-Hemhof bis Seeon	В	20.06

Country	Area code	Name of Protected Area	Type(s)	Area in km ²
DE	DE8127-301	Illerdurchbruch zwischen Reicholzried und Lautrach	Н	9.68
DE	DE8131-301	Moorkette von Peiting bis Wessobrunn	Н	9.43
DE	DE8131-371	Lech zwischen Hirschau und Landsberg mit Auen und Leiten	Н	28.9
DE	DE8133-301	Naturschutzgebiet 'Osterseen'	Н	10.87
DE	DE8133-302	Eberfinger Drumlinfeld mit Magnetsrieder Hardt u. Bernrieder Filz	Н	11.16
DE	DE8133-371	Starnberger See	Н	56.89
DE	DE8133-401	Starnberger See	В	56.93
DE	DE8134-371	Moore südlich Königsdorf, Rothenrainer Moore und Königsdorfer Alm	Н	10.98
DE	DE8135-371	Moore zwischen Dietramszell und Deining	Н	9.61
DE	DE8136-302	Taubenberg	B,H	18.5
DE	DE8136-371	Mangfalltal	Н	13.47
DE	DE8138-372	Moore um Raubling	Н	10.28
DE	DE8139-371	Simsseegebiet	Н	10.42
DE	DE8140-371	Moore südlich des Chiemsees	Н	35.67
DE	DE8140-372	Chiemsee	Н	81.51
DE	DE8140-471	Chiemseegebiet mit Alz	В	103.55
DE	DE8141-471	Moore südlich des Chiemsees	В	27.21
DE	DE8142-371	Moore im Salzach-Hügelland	Н	13.08
DE	DE8142-372	Oberes Surtal und Urstromtal Höglwörth	Н	8.78
DE	DE8227-373	Kürnacher Wald	Н	27.6
DE	DE8228-301	Kempter Wald mit Oberem Rottachtal	Н	40.96
DE	DE8232-371	Grasleitner Moorlandschaft	Н	21.38
DE	DE8233-301	Moor- und Drumlinlandschaft zwischen Hohenkasten und Antdorf	Н	14.12
DE	DE8234-371	Moore um Penzberg	Н	11.62
DE	DE8235-301	Ellbach- und Kirchseemoor	Н	11.72
DE	DE8235-371	Attenloher Filzen und Mariensteiner Moore	Н	6.51
DE	DE8236-371	Flyschberge bei Bad Wiessee	Н	9.55
DE	DE8237-371	Leitzachtal	Н	22.39
DE	DE8239-371	Hochriesgebiet und Hangwälder im Aschauer Tal	Н	18.26
DE	DE8239-372	Geigelstein und Achentaldurchbruch	Н	32.07
DE	DE8239-401	Geigelstein	В	32.08
DE	DE8241-372	Östliche Chiemgauer Alpen	Н	129.23
DE	DE8327-304	Rottachberg und Rottachschlucht	Н	5.27
DE	DE8329-301	Wertachdurchbruch	B,H	8.76
DE	DE8329-303	Sulzschneider Moore	Н	17.95
DE	DE8330-371	Urspringer Filz, Premer Filz und Viehweiden	Н	5.48
DE	DE8330-471	Ammergebirge mit Kienberg und Schwarzenberg sowie Falkenstein	В	301.05
DE	DE8331-302	Ammer vom Alpenrand b. zum NSG 'Vogelfreistätte Ammersee- Südufer'	Н	23.91
DE	DE8331-303	Trauchberger Ach, Moore und Wälder am Nordrand des Ammergebirges	Н	11.29

Country	Area code	Name of Protected Area	Type(s)	Area in km ²
DE	DE8332-301	Murnauer Moos	Н	42.9
DE	DE8332-371	Moore im oberen Ammertal	Н	6.29
DE	DE8332-372	Moränenlandschaft zwischen Staffelsee und Baiersoien	Н	25.92
DE	DE8332-471	Murnaür Moos und Pfrühlmoos	В	72.82
DE	DE8334-371	Loisach-Kochelsee-Moore	Н	19
DE	DE8334-373	Kesselberggebiet	Н	6.48
DE	DE8334-471	Loisach-Kochelsee-Moore	В	41.84
DE	DE8336-371	Mangfallgebirge	Н	148.72
DE	DE8342-301	Nationalpark Berchtesgaden	B,H	213.64
DE	DE8342-302	NSG 'Aschau', NSG 'Schwarzbach' und Schwimmendes Moos	Н	8.04
DE	DE8343-303	Untersberg	Н	35.14
DE	DE8426-302	Nagelfluhkette Hochgrat-Steineberg	Н	19.93
DE	DE8429-303	Kienberg mit Magerrasen im Tal der Steinacher Ach	Н	6.24
DE	DE8430-301	Naturschutzgebiet 'Bannwaldsee'	Н	5.58
DE	DE8430-303	Falkenstein, Alatsee, Faulenbacher- und Lechtal	Н	9.87
DE	DE8431-371	Ammergebirge	Н	275.82
DE	DE8432-301	Loisachtal zwischen Farchant und Eschenlohe	Н	6.92
DE	DE8433-301	Karwendel mit Isar	B,H	195.9
DE	DE8433-371	Estergebirge	Н	60.77
DE	DE8434-372	Jachenau und Extensivwiesen bei Fleck	Н	14.52
DE	DE8527-301	Hörnergruppe	Н	11.83
DE	DE8528-301	Allgäuer Hochalpen	Н	212.27
DE	DE8532-371	Wettersteingebirge	Н	42.57
DE	DE8532-471	Naturschutzgebiet "Schachen und Reintal"	В	39.64
DE	DE8533-301	Mittenwalder Buckelwiesen	Н	19.29
DE	DE8626-301	Hoher Ifen	Н	24.51
HR	HR1054	Plitvička jezera	0	296.2
HR	HR146755	Jelas polje	0	195.26
HR	HR146758	Bara Dvorina kraj Donje Bebrine	0	7.37
HR	HR15602	Kopački rit	0	231.43
HR	HR15605	U□e podrucje Kopačkog rita	0	72.37
HR	HR15614	Medvednica	0	179.36
HR	HR15615	Bijele i Samarske stijene	0	11.26
HR	HR15618	Crna Mlaka	0	6.94
HR	HR2518	Risnjak	0	63.45
HR	HR377823	Vuka	0	5.23
HR	HR377833	Mura	0	143.54
HR	HR377853	Ž umberak - Samoborsko gorje	0	342.43
HR	HR377920	Turopoljski lug i vlaž ne livade uz rijeku Odru	0	33.48
HR	HR378013	Odransko polje	0	93.99
HR	HR378033	Papuk	0	343.07
HR	HR392915	Sunjsko polje	0	203.2
HR	HR393049	Mura-Drava	0	1448.11

Country	Area code	Name of Protected Area	Type(s)	Area in km ²
HR	HR63666	Lonjsko polje	0	511.26
HR	HR81108	Veliki Paž ut	0	12.01
HR	HR81116	Varoški Lug	0	8.97
HR	HR81145	Jankovac	0	6.48
HR	HRHR1000001	Pokupski bazen	В	449.69
HR	HRHR1000002	Sava kod Hru□čice (s okolnim □ljunčarama)	В	17.58
HR	HRHR1000003	Turopolje	В	227.44
HR	HRHR1000004	Donja Posavina	В	1258.87
HR	HRHR1000005	Jelas polje s ribnjacima i poplavnim paš njacima uz Savu	В	418.46
HR	HRHR1000006	Spačvanski bazen	В	429.3
HR	HRHR1000011	Ribnjaci Grudnjak i Na⊡ički ribnjak s kompleksom luž njakovih š uma	В	205.56
HR	HRHR1000013	Dravske akumulacije	В	196.81
HR	HRHR1000014	Gornji tok Drave (od Donje Dubrave do Terezinog polja)	В	341.21
HR	HRHR1000015	Srednji tok Drave (od Terezinog polja do Donjeg Miholjca)	В	171.76
HR	HRHR1000016	Podunavlje i donje Podravlje	В	823.99
HR	HRHR1000040	Papuk	В	362.72
HR	HRHR2000364	Mura	Н	145.93
HR	HRHR2000365	Plitvica	Н	21.5
HR	HRHR2000366	Bednja	Н	42.25
HR	HRHR2000372	Dunav - Vukovar	Н	61.83
HR	HRHR2000382	Potok Zbel	Н	7.45
HR	HRHR2000387	Beletinec	Н	16.17
HR	HRHR2000388	Slanje	Н	6.76
HR	HRHR2000394	Kopa_ki rit	Н	231.27
HR	HRHR2000401	Uš_e Plitvice i Bednje	Н	13.5
HR	HRHR2000409	Kri_nica	Н	6.98
HR	HRHR2000414	Izvorišno podru_je Odre	Н	9.05
HR	HRHR2000415	Odransko polje	Н	84.96
HR	HRHR2000416	Lonjsko polje	Н	501.83
HR	HRHR2000420	Sunjsko polje	Н	203.6
HR	HRHR2000424	Vlakanac - Radinje	Н	32.05
HR	HRHR2000426	Dvorina	Н	20.64
HR	HRHR2000427	Gajna	Н	5.65
HR	HRHR2000431	Sava - Štitar	Н	17.55
HR	HRHR2000439	Dolina Bijele	Н	5.16
HR	HRHR2000452	Zrinska gora	Н	356.59
HR	HRHR2000463	dolina Une	Н	39.35
HR	HRHR2000465	Žutica	Н	46.97
HR	HRHR2000569	Vuka	Н	5.23
HR	HRHR2000580	Papuk	Н	350.34
HR	HRHR2000583	Medvednica	Н	226.09
HR	HRHR2000592	Ogulinsko-plaš_ansko podru_je	Н	434.78

Country	Area code	Name of Protected Area	Type(s)	Area in km
HR	HRHR2000593	Mre_nica - Tounj_ica	Н	15.21
HR	HRHR2000595	Korana	Н	25.74
HR	HRHR2000609	Dolina Dretulje	Н	5.81
HR	HRHR2000613	Stari tok Drave I	Н	26.41
HR	HRHR2000614	Stari tok Drave II	Н	24.51
HR	HRHR2000620	Mala i Velika Utinja	Н	21.5
HR	HRHR2000631	Odra	Н	5.03
HR	HRHR2000632	Krbavsko polje	Н	118.53
HR	HRHR2000634	Stajni_ko polje	Н	5
HR	HRHR2000642	Kupa	Н	63.66
HR	HRHR2000646	Polje Lug	Н	7.31
HR	HRHR2000879	Lapa_ko polje	Н	22.23
HR	HRHR2001070	Sutla	Н	5.53
HR	HRHR2001118	Park šuma Jankovac	Н	6.38
HR	HRHR2001311	Sava	Н	123.61
HR	HRHR5000006	Spa_vanski bazen	Н	429.3
HR	HRHR5000013	Šire podru_je Drave	Н	1527.98
HR	HRHR5000019	Gorski kotar, Primorje i sjeverna Lika	Н	1651.27
HR	HRHR5000020	Nacionalni park Plitvi_ka jezera (s Vrhovinskim poljem)	Н	266.49
HU	HU109/NP/74	Kiskunsági Nemzeti Park	0	505.23
HU	HU112/TK/75	Ócsai Tájvédelmi Körzet	0	36.45
HU	HU118/TK/75	Lázbérci Tájvédelmi Körzet	0	37.18
HU	HU122/TK/76	Pusztaszeri Tájvédelmi Körzet	0	223.33
HU	HU124/TT/76	Péteri-tavi madárrezervátum természetvédelmi terület	0	7.8
HU	HU126/TK/76	Zselici Tájvédelmi Körzet	0	83.01
HU	HU138/NP/76	Bükki Nemzeti Park	0	428.41
HU	HU139/TK/76	Vértesi Tájvédelmi Körzet	0	152.08
HU	HU140/TK/77	Soproni Tájvédelmi Körzet	0	50.68
HU	HU146/TK/77	Kelet-Mecsek Tájvédelmi Körzet	0	93.39
HU	HU148/TT/77	Tiszadobi-ártér természetvédelmi terület	0	10.21
HU	HU150/TT/77	Nagybereki Fehér-víz természetvédelmi terület	0	15.83
HU	HU152/TK/77	Gerecsei Tájvédelmi Körzet	0	86.6
HU	HU158/TK/78	Közép-tiszai Tájvédelmi Körzet	0	94.52
HU	HU164/TT/78	Tiszatelek– Tiszaberceli-ártér természetvédelmi terület	0	15.06
HU	HU170/TK/80	Kőszegi Tájvédelmi Körzet	0	43.35
HU	HU171/TK/82	Szatmár-beregi Tájvédelmi Körzet	0	218.92
HU	HU172/TK/84	Zempléni Tájvédelmi Körzet	0	267.65
HU	HU177/NP/85	Aggteleki Nemzeti Park	0	201.84
HU	HU180/TK/85	Mátrai Tájvédelmi Körzet	0	129.88
HU	HU181/TK/86	Sárréti Tájvédelmi Körzet	0	22.14
HU	HU183/TK/86	Tokaj–Bodrogzug Tájvédelmi Körzet	0	52.86
HU	HU183/TK/86	Bihari-legelő természetvédelmi terület	0	7.7
HU	HU184/TT/86	Balatonfüredi-erdő természetvédelmi terület	0	8.69

Country	Area code	Name of Protected Area	Type(s)	Area in km
HU	HU187/TK/87	Szigetközi Tájvédelmi Körzet	0	96.87
HU	HU201/TK/88	Hajdúsági Tájvédelmi Körzet	0	70.9
HU	HU211/TK/89	Karancs- Medves Tájvédelmi Körzet	0	66.2
HU	HU212/TK/89	Borsodi-Mezőség Tájvédelmi Körzet	0	184.3
HU	HU219/TT/90	Császártöltési Vörös Mocsár Természetvédelmi Terület	0	9.3
HU	HU221/TT/90	Kiskőrösi-turjános természetvédelmi terület	0	6.41
HU	HU230/TT/90	Kecskeri-puszta Természetvédelmi Terület	0	12.63
HU	HU232/TK/90	Kesznyéteni Tájvédelmi Körzet	0	58.33
HU	HU238/NP/91	Fertő– Hanság Nemzeti Park	0	237.27
HU	HU240/TK/91	Magas-bakonyi Tájvédelmi Körzet	0	87.32
HU	HU242/TK/91	Boronka-melléki Tájvédelmi Körzet	0	84.96
HU	HU253/TK/92	Pannonhalmi Tájvédelmi Körzet	0	82.85
HU	HU258/TK/93	Hevesi Füves Puszták Tájvédelmi Körzet	0	161.07
HU	HU260/TK/93	Tarnavidéki Tájvédelmi Körzet	0	93.84
HU	HU271/NP/96	Duna–Dráva Nemzeti Park	0	496.34
HU	HU272/TT/96	Rétszilasi-tavak Természetvédelmi Terület	0	14.96
HU	HU274/TT/96	Long-erdő természetvédelmi terület	0	10.05
HU	HU276/NP/97	Körös– Maros Nemzeti Park	0	512.01
HU	HU280/TK/97	Sárvíz-völgye Tájvédelmi Körzet	0	34.8
HU	HU282/NP/97	Balaton-felvidéki Nemzeti Park	0	580.56
HU	HU283/NP/97	Duna– Ipoly Nemzeti Park	0	606.69
HU	HU284/TK/98	Bihari-sík Tájvédelmi Körzet	0	166.05
HU	HU287/TK/98	Tápió-Hajta Vidéke Tájvédelmi Körzet	0	42.31
HU	HU293/TK/99	Dél-Mezőföld Tájvédelmi Körzet	0	77.52
HU	HU296/NP/02	Őrségi Nemzeti Park	0	438.98
HU	HU308/TK/07	Mura-menti Tájvédelmi Körzet	0	19.02
HU	HU319/TK/09	Nyugat-Mecsek Tájvédelmi Körzet	0	103.65
HU	HU330/TK/12	Körös-éri Tájvédelmi Körzet	0	22.24
HU	HU87/TT/66	Dinnyési-fertő természetvédelmi terület	0	5.29
HU	HU94/TK/71	Mártélyi Tájvédelmi Körzet	0	22.76
HU	HU97/NP/73	Hortobágyi Nemzeti Park	0	811.31
HU	HUAN10001	Aggteleki-karszt	В	236.2
HU	HUAN10002	Putnok-dombság	В	71.16
HU	HUAN20001	Aggteleki-karszt és peremterületei	Н	231.04
HU	HUAN20002	Rakaca-völgy és oldalvölgyei	Н	20.82
HU	HUAN20003	Bódva-völgy és Sas-patak-völgye	Н	26.95
HU	HUAN20004	Hernád-völgy és Sajóládi-erdő	Н	50.38
HU	HUAN20005	Szuha-völgy	Н	10.39
HU	HUAN20006	Sajó-völgy	Н	20.75
HU	HUAN21007	Bózsva-patak	Н	8.32
HU	HUBF10001	Mórichelyi-halastavak	В	6.49
HU	HUBF20001	Keleti-Bakony	Н	226.5
HU	HUBF20002	Papod és Miklád	Н	77.35

Country	Area code	Name of Protected Area	Type(s)	Area in km ²
HU	HUBF20003	Kab-hegy	Н	80.76
HU	HUBF20004	Agár-tető	Н	51.36
HU	HUBF20006	Tihanyi-félsziget	Н	7.74
HU	HUBF20007	Monostorapáti Fekete-hegy	Н	17.89
HU	HUBF20009	Devecseri Széki-erdő	Н	15.94
HU	HUBF20011	Felső-Nyirádi-erdő és Meggyes-erdő	Н	41.77
HU	HUBF20014	Pécselyi-medence	Н	8.67
HU	HUBF20015	Marcal-medence	Н	48.87
HU	HUBF20016	Öreg-hegyi riviéra	Н	12.07
HU	HUBF20017	Kádártai dolomitmezők	Н	7.93
HU	HUBF20028	Tapolcai-medence	Н	23.01
HU	HUBF20034	Balatonfüredi-erdő	Н	34.9
HU	HUBF20035	Keszthelyi-hegység	Н	148.98
HU	HUBF20037	Alsó-Zala-völgy	Н	65.52
HU	HUBF20039	Nyugat-Göcsej	Н	45.25
HU	HUBF20040	Vétyempuszta	Н	41.41
HU	HUBF20043	Mura mente	Н	21.45
HU	HUBF20044	Kerka mente	Н	73.41
HU	HUBF20045	Szévíz–Principális-csatorna	Н	80.19
HU	HUBF20046	Oltárc	Н	89.61
HU	HUBF20047	Felső-Zala-völgy	Н	11.1
HU	HUBF20048	Kebele	Н	19.25
HU	HUBF20049	Dél-zalai homokvidék	Н	29.09
HU	HUBF20050	Csörnyeberek	Н	21.34
HU	HUBF20052	Sárvíz-patak mente	Н	11.86
HU	HUBF20054	Nagykapornaki erdő	Н	6.38
HU	HUBF20055	Remetekert	Н	9.72
HU	HUBF30001	Északi-Bakony	B,H	257.79
HU	HUBF30002	Balaton	B,H	594.83
HU	HUBF30003	Kis-Balaton	B,H	133.44
HU	HUBN10001	Bodrogzug–Kopasz-hegy–Taktaköz	В	226.46
HU	HUBN10002	Borsodi-sík	В	362.4
HU	HUBN10003	Bükk hegység és peremterületei	В	662.08
HU	HUBN10004	Hevesi-sík	В	770.16
HU	HUBN10005	Kesznyéten	В	63.53
HU	HUBN10006	Mátra	В	373.07
HU	HUBN10007	Zempléni-hegység a Szerencsi-dombsággal és a Hernád-völggyel	В	1145.37
HU	HUBN20001	Bükk-fennsík és Lök-völgy	Н	143.83
HU	HUBN20002	Hór-völgy és Déli-Bükk	Н	55.2
HU	HUBN20007	Kisgyőri Halom-vár– Csincse-völgy– Cseh-völgy	Н	10.01
HU	HUBN20012	Egerbakta-Bátor környéki erdők	Н	26.3
HU	HUBN20013	Hevesaranyosi-Fedémesi dombvidék	Н	12.38
110	110 11 20015	The commission for the states of the states		12.50

Country	Area code	Name of Protected Area	Type(s)	Area in km
HU	HUBN20015	Izra-völgy és Arlói-tó	Н	13.49
HU	HUBN20018	Upponyi-szoros	Н	12.9
HU	HUBN20021	Domaházi Hangony-patak völgye	Н	11.71
HU	HUBN20025	Nagybarcai Liget-hegy és sajóvelezdi Égett-hegy	Н	12.02
HU	HUBN20034	Borsodi-Mezőség	Н	148.5
HU	HUBN20041	Pélyi szikesek	Н	27.69
HU	HUBN20047	Mátra északi letörése	Н	7.8
HU	HUBN20049	Mátrabérc– Fallóskúti-rétek	Н	15.07
HU	HUBN20051	Nyugat-Mátra	Н	14.99
HU	HUBN20056	Tepke	Н	24.23
HU	HUBN20057	Bézma	Н	8.32
HU	HUBN20062	Középső-Ipoly-völgy	Н	16.79
HU	HUBN20063	Karancs	Н	8.82
HU	HUBN20069	Kesznyéteni Sajó-öböl	Н	47.29
HU	HUBN20071	Bodrogzug és Bodrog hullámtere	Н	73.72
HU	HUBN20081	Long-erdő	Н	31.6
HU	HUBN20084	Központi-Zempléni-hegység	Н	86.66
HU	HUBN20085	Északi-Zempléni-hegység	Н	18.54
HU	HUBN20087	Baskói-rétek	Н	5.86
HU	HUBN20089	Füzéri Pál-hegy	Н	7.33
HU	HUDD10002	Nyugat-Dráva	В	152.37
HU	HUDD10003	Gemenc	В	196.41
HU	HUDD10004	Béda-Karapancsa	В	87.22
HU	HUDD10007	Mecsek	В	206.35
HU	HUDD10008	Belső-Somogy	В	333.28
HU	HUDD10012	Balatoni berkek	В	86.49
HU	HUDD20001	Tenkes	Н	15.59
HU	HUDD20004	Dél-Zselic	Н	68.05
HU	HUDD20007	Kelet-Dráva	Н	66.24
HU	HUDD20008	Ormánsági erdők	Н	105.32
HU	HUDD20011	Szekszárdi-dombvidék	Н	24.46
HU	HUDD20012	Geresdi-dombvidék	Н	65.67
HU	HUDD20014	Jánosházi-erdő és Égett-berek	Н	6.19
HU	HUDD20015	Kisbajomi erdők	Н	13
HU	HUDD20016	Észak-Zselici erdőségek	Н	162.48
HU	HUDD20017	Mocsoládi-erdő	Н	25.86
HU	HUDD20020	Közép-mezőföldi löszvölgyek	Н	15.98
HU	HUDD20023	Tolnai Duna	Н	71.62
HU	HUDD20026	Lengyel-hőgyészi erdők	Н	36.36
HU	HUDD20029	Kisszékelyi-dombság	Н	29.79
HU	HUDD20030	Mecsek	Н	261.81
HU	HUDD20031	Fehérvíz	Н	15.5
HU	HUDD20032	Gemenc	Н	207.04

Country	Area code	Name of Protected Area	Type(s)	Area in km
HU	HUDD20035	Pogány-völgyi rétek	Н	19.87
HU	HUDD20036	Ordacsehi berek	Н	7.49
HU	HUDD20040	Tengelici homokvidék	Н	57.88
HU	HUDD20042	Köröshegyi-erdők	Н	16.82
HU	HUDD20044	Boronka-melléke	Н	114.91
HU	HUDD20045	Béda-Karapancsa	Н	107.98
HU	HUDD20046	Törökkoppányi erdők	Н	21.65
HU	HUDD20051	Darányi borókás	Н	34.79
HU	HUDD20052	Ormánsági vizes élőhelyek és gyepek	Н	14.14
HU	HUDD20056	Közép-Dráva	Н	62.75
HU	HUDD20057	Somogymeggyesi erdő	Н	6.78
HU	HUDD20058	Látrányi-puszta	Н	9.81
HU	HUDD20059	Balatonkeresztúri rétek	Н	5.89
HU	HUDD20062	Nyugat-Dráva-sík	Н	51.78
HU	HUDD20063	Szentai erdő	Н	195.28
HU	HUDD20064	Ságvári dombok	Н	23.44
HU	HUDD20066	Pécsi-sík	Н	5.05
HU	HUDD20068	Gyékényesi erdők	Н	7.76
HU	HUDD20073	Szedresi Ős-Sárvíz	Н	7.53
HU	HUDI10003	Gerecse	В	295.98
HU	HUDI10004	Jászkarajenői puszták	В	104.34
HU	HUDI10005	Sárvíz völgye	В	78.64
HU	HUDI10006	Tatai Öreg-tó	В	26.24
HU	HUDI10007	Velencei-tó és Dinnyési-fertő	В	21.76
HU	HUDI10008	Ipoly völgye	В	63.54
HU	HUDI20003	Alapi kaszálórétek	Н	5.19
HU	HUDI20005	Bársonyos	Н	12.1
HU	HUDI20009	Budai-hegység	Н	95.22
HU	HUDI20015	Déli-Gerecse	Н	48.15
HU	HUDI20016	Epöli szarmata vonulat	Н	15.77
HU	HUDI20019	Felső-Tápió	Н	20.48
HU	HUDI20021	Gerje mente	Н	33.43
HU	HUDI20022	Gógány- és Kőrös-ér mente	Н	8.18
HU	HUDI20023	Gödöllői-dombság	Н	75.17
HU	HUDI20024	Tápiógyörgye-Újszilvási szikesek	Н	17.44
HU	HUDI20025	Hajta mente	Н	57.94
HU	HUDI20026	Ipoly-völgy	Н	29.37
HU	HUDI20030	Központi-Gerecse	Н	59.12
HU	HUDI20031	Lajoskomáromi löszvölgyek	Н	9.1
HU	HUDI20033	Móri-árok	Н	6.84
HU	HUDI20034	Duna és ártere	Н	165.74
HU	HUDI20039	Pilis és Visegrádi-hegység	Н	301.46
HU	HUDI20042	Ráckevei Duna-ág	Н	31.91

Country	Area code	Name of Protected Area	Type(s)	Area in km ²
HU	HUDI20044	Sárrét	Н	41.09
HU	HUDI20046	Székek	Н	36.16
HU	HUDI20049	Szentgyörgypuszta	Н	9.75
HU	HUDI20050	Alsó-Tápió és patakvölgyek	Н	18.01
HU	HUDI20051	Turjánvidék	Н	122.13
HU	HUDI20054	Velencei-tó	Н	10.82
HU	HUDI30001	Vértes	B,H	255.54
HU	HUDI30002	Zámolyi-medence	B,H	25.95
HU	HUFH10001	Fertő-tó	В	86.97
HU	HUFH10004	Mosoni-sík	В	130.96
HU	HUFH20001	Rábaköz	Н	59.73
HU	HUFH20002	Fertő-tó	Н	112.99
HU	HUFH20003	Fertőmelléki dombsor	Н	25.64
HU	HUFH20009	Gönyüi-homokvidék	Н	28.81
HU	HUFH20010	Répce mente	Н	16.26
HU	HUFH20011	Rába	Н	51.07
HU	HUFH20012	Soproni-hegység	Н	52.64
HU	HUFH20013	Határ-menti erdők	Н	22.53
HU	HUFH30004	Szigetköz	B,H	171.83
HU	HUFH30005	Hanság	B,H	135.45
HU	HUHN10001	Szatmár-Bereg	В	528.48
HU	HUHN10002	Hortobágy	В	1211.1
HU	HUHN10004	Közép-Tisza	В	136.39
HU	HUHN10008	Felső-Tisza	В	148.2
HU	HUHN20001	Felső-Tisza	Н	286.82
HU	HUHN20002	Hortobágy	Н	1051.7
HU	HUHN20003	Tisza-tó	Н	178.3
HU	HUHN20004	Felső-Sebes-Körös	Н	5.18
HU	HUHN20008	Kismarj-pocsaj-esztári gyepek	Н	24.27
HU	HUHN20013	Közép-Bihar	Н	120.45
HU	HUHN20015	Közép-Tisza	Н	142.36
HU	HUHN20016	Kék-Kálló-völgye	Н	15.04
HU	HUHN20032	Gúti-erdő	Н	56.83
HU	HUHN20035	Ömbölyi-erdő és Fényi-erdő	Н	14.33
HU	HUHN20045	Kaszonyi-hegy– Dédai-erdő	Н	13.27
HU	HUHN20046	Gelénes– Beregdaróc	Н	11.59
HU	HUHN20047	Vámosatya-Csaroda	Н	20.08
HU	HUHN20048	Tarpa-Tákos	Н	63.51
HU	HUHN20049	Lónya-Tiszaszalka	Н	41.35
HU	HUHN20050	Kömörő-Fülesd	Н	19.44
HU	HUHN20053	Magosligeti-erdő és gyepek	Н	5.6
HU	HUHN20054	Csaholc– Garbolc	Н	40.54
HU	HUHN20055	Rozsály– Csengersima	Н	9.85

Country	Area code	Name of Protected Area	Type(s)	Area in km ²
HU	HUHN20058	Teremi-erdő	Н	9.12
HU	HUHN20069	Hajdúszoboszlói szikes gyepek	Н	5.54
HU	HUHN20113	Kisvárdai gyepek	Н	6.87
HU	HUHN21164	Liget-legelő	Н	22.07
HU	HUKM10002	Kis-Sárrét	В	83.4
HU	HUKM10003	Dévaványai-sík	В	252.14
HU	HUKM10004	Vásárhelyi- és Csanádi-puszták	В	218.33
HU	HUKM10005	Cserebökényi-puszták	В	280.75
HU	HUKM20001	Hódmezővásárhely környéki és csanádi-háti puszták	Н	164.19
HU	HUKM20002	Hómezővásárhelyi Kék-tó	Н	39.1
HU	HUKM20004	Száraz-ér	Н	15.22
HU	HUKM20005	Deszki gyepek	Н	5.37
HU	HUKM20008	Maros	Н	59.65
HU	HUKM20012	Fekete-, Fehér- és Kettős-Körös	Н	19.8
HU	HUKM20014	Dévaványa környéki gyepek	Н	140.27
HU	HUKM20015	Hortobágy-Berettyó	Н	30.79
HU	HUKM20016	Sebes-Körös	Н	14.55
HU	HUKM20017	Hármas-Körös	Н	78.18
HU	HUKM20019	Dél-bihari szikesek	Н	65.22
HU	HUKM20026	Tóniszállás-szarvasi gyepek	Н	5.87
HU	HUKM20027	Cserebökény	Н	100
HU	HUKM20028	Tőkei gyepek	Н	29.86
HU	HUKM20029	Szentesi gyepek	Н	6.06
HU	HUKM20030	Lapistó-Fertő	Н	19.03
HU	HUKN10001	Felső-Kiskunsági szikes puszták és turjánvidék	В	418.16
HU	HUKN10002	Kiskunsági szikes tavak és az őrjegi turjánvidék	В	357.22
HU	HUKN10004	Tisza Alpár-Bokrosi ártéri öblözete	В	50.27
HU	HUKN10007	Alsó-Tiszavölgy	В	362.93
HU	HUKN10008	Balástya-Szatymaz környéki homokvidék	В	61.72
HU	HUKN20002	Peszéri-erdő	Н	16.28
HU	HUKN20003	Felső-kiskunsági turjánvidék	Н	144.36
HU	HUKN20004	Dél-Bácska	Н	7.81
HU	HUKN20008	Déli-Homokhátság	Н	23.86
HU	HUKN20013	Fülöpszállás-soltszentimre-csengődi lápok	Н	31.23
HU	HUKN20015	Ágasegyháza-orgoványi rétek	Н	43.21
HU	HUKN20017	Közép-csongrádi szikesek	Н	11.43
HU	HUKN20019	Baksi-puszta	Н	48.75
HU	HUKN20020	Harkai-tó	Н	6.62
HU	HUKN20021	Ökördi □erdőteleki □keceli lápok	Н	25.18
HU	HUKN20022	Kiskőrösi turjános	Н	28.71
HU	HUKN20024	Bócsa-bugaci homokpuszta	Н	116.6
HU	HUKN20026	Móricgáti lápok	Н	7.67
HU	HUKN20028	Tisza Alpár-Bokrosi ártéri öblözet	Н	32.88

Country	Area code	Name of Protected Area	Type(s)	Area in km
HU	HUKN20031	Alsó-Tisza hullámtér	Н	79.3
HU	HUKN20032	Dél-Őrjeg	Н	45.85
HU	HUKN20036	Imre-hegy- pirtó- kiskunhalasi homokbuckák	Н	15.64
HU	HUKN30001	Csongrád-Bokrosi Sós-tó	В	7.14
HU	HUKN30002	Gátéri Fehér-tó	В	8.14
HU	HUKN30003	Izsáki Kolon-tó	B,H	35.82
HU	HUON10001	Őrség	В	456.94
HU	HUON20002	Kőszegi-hegység	Н	40.18
HU	HUON20003	Ablánc-patak völgye	Н	14.65
HU	HUON20008	Rába és Csörnöc-völgy	Н	121.47
HU	HUON20012	Kemenessömjéni cserjés legelő	Н	6.18
HU	HUON20018	Őrség	Н	441.65
MD	MDPA03	Feteti-Fetesti	0	5.55
MD	MDPA04	La Costel-Gordinesti	0	7.39
MD	MDPA05	Zabriceni-Onesti	0	5.93
MD	MDPA06	Suta de Movila-Cobani	0	6.88
MD	MDPA08	Padurea Domneasca-Cobani	0	60.52
MD	MDPA09	Izvoare-Risipeni-Risipeneni	0	15.41
MD	MDPA13	Vila Nisporeni-Nisporeni	0	41.55
MD	MDPA14	Padurea Hincesti-Mereseni	0	46.78
MD	MDPA18	Prutul de Jos-Manta	0	132.47
RO	RO2.104.	Zona carstică - Cheile Dâmbovita	0	12.46
RO	RO2.125.	Valea Vâlsanului	0	118.85
RO	RO2.234.	Rezervatia naturală Bucegi (Abruptul Bucsoiu, Mălăesti, Gaura)	0	17.17
RO	RO2.243.	Rezervatia naturală Cheile Dopca	0	20.63
RO	RO2.253.	Rezervatia naturală Muntele Postăvarul	0	12.36
RO	RO2.257.	Rezervatia naturală Pădurea Bogătii	0	63.3
RO	RO2.260.	Lacul Jirlău-Trup Visani	0	5.43
RO	RO2.271.	Balta Albă	0	11.67
RO	RO2.272.	Balta Amara	0	8.14
RO	RO2.276.	Rezervatia Cheile Nerei – Beusnita	0	41.86
RO	RO2.277.	Valea Ciclovei – Ilidia	0	19.63
RO	RO2.282.	Cheile Carasului	0	32.65
RO	RO2.283.	Izvoarele Carasului	0	5.78
RO	RO2.284.	Izvoarele Nerei	0	50.73
RO	RO2.285.	Cheile Gârlistei	0	5.11
RO	RO2.298.	Rezervația naturală Valea Mare	0	11.64
RO	RO2.334.	Stufarisurile de la Sic I	0	5.04
RO	RO2.337.	Pestera din Piatra Ponorului	0	17.08
RO	RO2.345.	Vama Veche – 2 Mai (Acvatoriul litoralul marin)	0	55.6
RO	RO2.346.	Grindul Chituc DD– A	0	23
RO	RO2.347.	Grindul Lupilor DD– A	0	20.74
RO	RO2.372.	Mestecănisul de la Reci	0	21.13

Country	Area code	Name of Protected Area	Type(s)	Area in km ²
RO	RO2.376.	Orzea - Zănoaga	0	7.13
RO	RO2.389.	Gogosu Stefănel	0	8.17
RO	RO2.399.	Cleanov	0	7.39
RO	RO2.414.	Lunca joasă a Prutului	0	11.69
RO	RO2.422.	Piatra Closanilor	0	23.58
RO	RO2.442.	Cheile Sohodolului	0	6.1
RO	RO2.482.	Cheile Bicazului si Lacul Rosu	0	22
RO	RO2.483.	Masivul Hăsmasul Mare, Piatra Singuratică	0	8.76
RO	RO2.485.	Cheile Vârghisului si pesterile din chei	0	7.71
RO	RO2.494.	Rezervatia Stiintifică Gemenele	0	19.29
RO	RO2.497.	Complexul carstic Călianu – Ponorici – Ciclovina	0	15.5
RO	RO2.499.	Cheile si Pestera Sura Mare	0	37.95
RO	RO2.500.	Pestera Tecuri (Complexul carstic Răchitaua – Tecuri)	0	5.36
RO	RO2.525.	Codrii seculari de pe valea Dobrisoarei si Prisloapei	0	5.04
RO	RO2.530.	Cheile Cernei	0	5.35
RO	RO2.556.	Raul Prut	0	53.21
RO	RO2.580.	Cornu Nedeii-Ciungii Bălăsânii	0	25.14
RO	RO2.583.	Cheile Lăpusului (între Groape si Împreunături)	0	14.87
RO	RO2.589.	Piatra Rea	0	5.23
RO	RO2.597.	Gura Văii - Vârciorova PN - D, Municipiul Drobeta - Turnu Severin, localitatea	0	7.21
RO	RO2.600.	Pădurea de liliac Ponoarele Comuna Ponoarele	0	6.17
RO	RO2.601.	Tufărisurile mediteraneene de la Isverna Comuna Isverna	0	5
RO	RO2.602.	Vârful lui Stan, PN-B, Comuna Isverna	0	7.1
RO	RO2.603.	Valea Tesna PN-B Comuna Balta	0	10.65
RO	RO2.613.	Complexul carstic de la Ponoarele Comuna Ponoarele	0	6.63
RO	RO2.615.	Cheile Cosustei	0	7.19
RO	RO2.616.	Cornetul Babelor si Cerboaniei Comuna Balta	0	8.51
RO	RO2.619.	Cornetul Băltii, Comuna Balta	0	9.35
RO	RO2.638.	Defileul Deda - Toplita	0	91.57
RO	RO2.643.	Cheile Bicazului	0	17.46
RO	RO2.658.	Rezervatia de zimbri Neamt	0	121.14
RO	RO2.672.	Abruptul Prahovean Bucegi	0	56.33
RO	RO2.673.	Muntii Colti lui Barbes	0	8.73
RO	RO2.680.	Cursul inferior al râului Tur, Comuna Călinesti Oas	0	15.12
RO	RO2.701.	Valea Bâlii	0	5.07
RO	RO2.705.	Iezerele Cindrelului	0	14.53
RO	RO2.706.	Parcul Natural Dumbrava Sibiului	0	10.06
RO	RO2.707.	Parcul Natural Cindrel	0	79.13
RO	RO2.709.	Golul Alpin al Munților Făgăras	0	48.45
RO	RO2.715.	Tinovul Poiana Stampei	0	6.44
RO	RO2.722.	Pietrele Doamnei-Rarău	0	9.7
RO	RO2.723.	Codrul Secular Slătioara	0	10.07

Country	Area code	Name of Protected Area	Type(s)	Area in km ²
RO	RO2.730.	Jnepenisul cu Pinus Cembra-Călimani PN-K	0	5.61
RO	RO2.750.	Rosca – Buhaiova DD– A	0	94.56
RO	RO2.751.	Pădurea Letea DD- A	0	30.85
RO	RO2.752.	Grindul si Lacul Răducu DD– A	0	26.64
RO	RO2.754.	Complexul 🗆 Vătafu Lungulet DD 🗆 A	0	16.21
RO	RO2.755.	Pădurea Caraorman DD– A	0	22.49
RO	RO2.758.	Complexul Sacalin Zătoana DD- A	0	213.93
RO	RO2.761.	Lacul Potcoava DD– A	0	6.26
RO	RO2.798.	Pădurea Călinesti - Brezoi	0	9.93
RO	RO2.826.	Rezervația naturală Valea Tisitei	0	27.12
RO	RO2.827.	Rezervatia naturală Pădurea Neagra	0	5.99
RO	ROA	Delta Dunarii - zona marina	0	5800
RO	ROA.1	Defileul Muresului Superior	0	94.94
RO	ROA.1.	Defileul Jiului	0	111.36
RO	ROB	Domogled - Valea Cernei	0	611.9
RO	ROC	Retezat	0	381.17
RO	ROD	Portile de Fier	0	1300
RO	ROE	Cheile Nerei - Beusnita	0	367.07
RO	ROF	Apuseni	0	760.22
RO	ROG	Muntii Rodnei	0	472.07
RO	ROH	Bucegi	0	325.98
RO	ROI	Cheile Bicazului - Hasmas	0	69.33
RO	ROII.1.	Buila - Vanturarita	0	44.9
RO	ROJ	Ceahlau	0	77.39
RO	ROK	Calimani	0	239.15
RO	ROL	Cozia	0	167.21
RO	ROM	Piatra Craiului	0	147.81
RO	RON	Gradistea Muncelului - Cioclovina	0	381.16
RO	ROO	Semenic - Cheile Carasului	0	362.19
RO	ROP	Muntii Macinului	0	111.14
RO	ROR	Balta Mica a Brailei	0	204.6
RO	ROS	Vanatori-Neamt	0	308.41
RO	ROSCI0002	Apuseni	Н	759.43
RO	ROSCI0004	Bagau	Н	31.29
RO	ROSCI0005	Balta Alba - Amara - Jirlau - Lacul Sarat Câineni	Н	63
RO	ROSCI0006	Balta Mica a Brailei	Н	208.72
RO	ROSCI0007	Bazinul Ciucului de Jos	Н	26.93
RO	ROSCI0008	Betfia	Н	17.48
RO	ROSCI0009	Bisoca	Н	11.63
RO	ROSCI0012	Bratul Macin	Н	102.35
RO	ROSCI0013	Bucegi	Н	387.87
RO	ROSCI0014	Bucsani	Н	5.13
RO	ROSCI0015	Buila - Vânturarita	Н	45.25

Country	Area code	Name of Protected Area	Type(s)	Area in km
RO	ROSCI0019	Calimani - Gurghiu	Н	1349.66
RO	ROSCI0020	Câmpia Careiului	Н	236.36
RO	ROSCI0021	Câmpia Ierului	Н	212.83
RO	ROSCI0022	Canaralele Dunarii	Н	259.43
RO	ROSCI0024	Ceahlau	Н	77.37
RO	ROSCI0025	Cefa	Н	52.57
RO	ROSCI0027	Cheile Bicazului - Hasmas	Н	76.41
RO	ROSCI0028	Cheile Cernei	Н	5.77
RO	ROSCI0029	Cheile Glodului, Cibului si Mazii	Н	7.35
RO	ROSCI0030	Cheile Lapusului	Н	16.6
RO	ROSCI0031	Cheile Nerei - Beusnita	Н	377.2
RO	ROSCI0036	Cheile Vârghisului	Н	8.34
RO	ROSCI0037	Ciomad - Balvanyos	Н	59.91
RO	ROSCI0038	Ciucas	Н	218.64
RO	ROSCI0039	Ciuperceni - Desa	Н	395.74
RO	ROSCI0040	Coasta Lunii	Н	6.94
RO	ROSCI0042	Codru Moma	Н	246.5
RO	ROSCI0043	Comana	Н	264.81
RO	ROSCI0044	Corabia - Turnu Magurele	Н	81.85
RO	ROSCI0045	Coridorul Jiului	Н	710.93
RO	ROSCI0046	Cozia	Н	167.6
RO	ROSCI0047	Creasta Nemirei	Н	35.09
RO	ROSCI0048	Crisul Alb	Н	8.91
RO	ROSCI0049	Crisul Negru	Н	18.27
RO	ROSCI0050	Crisul Repede amonte de Oradea	Н	18.59
RO	ROSCI0051	Cusma	Н	442.53
RO	ROSCI0056	Dealul Ciocas - Dealul Vitelului	Н	9.17
RO	ROSCI0058	Dealul lui Dumnezeu	Н	5.79
RO	ROSCI0061	Defileul Crisului Negru	Н	22.03
RO	ROSCI0062	Defileul Crisului Repede - Padurea Craiului	Н	394.11
RO	ROSCI0063	Defileul Jiului	Н	109.46
RO	ROSCI0064	Defileul Muresului	Н	341.34
RO	ROSCI0065	Delta Dunarii	Н	4530.76
RO	ROSCI0066	Delta Dunarii - zona marina	Н	737.56
RO	ROSCI0069	Domogled - Valea Cernei	Н	621.71
RO	ROSCI0070	Drocea	Н	261.08
RO	ROSCI0071	Dumbraveni - Valea Urluia - Lacul Vederoasa	Н	179.75
RO	ROSCI0074	Fagetul Clujului - Valea Morii	Н	16.67
RO	ROSCI0075	Padurea Patrauti	Н	87.46
RO	ROSCI0075 ROSCI0076	Dealul Mare - Hârlau	Н	251.12
RO	ROSCI0070	Ferice - Plai	Н	19.97
RO	ROSCI0085	Frumoasa	Н	1373.59
RO	ROSCI0085	Gaina - Lucina	Н	8.48

Country	Area code	Name of Protected Area	Type(s)	Area in km ²
RO	ROSCI0087	Gradistea Muncelului - Ciclovina	Н	398.18
RO	ROSCI0088	Gura Vedei - Saica - Slobozia	Н	97.93
RO	ROSCI0089	Gutâi - Creasta Cocosului	Н	6.84
RO	ROSCI0090	Harghita Madaras	Н	133.73
RO	ROSCI0091	Herculian	Н	128.83
RO	ROSCI0092	Ignis	Н	195.98
RO	ROSCI0099	Lacul Stiucilor - Sic - Puini - Bontida	Н	37.98
RO	ROSCI0101	Larion	Н	30.23
RO	ROSCI0102	Leaota	Н	13.93
RO	ROSCI0103	Lunca Buzaului	Н	69.86
RO	ROSCI0104	Lunca Inferioara a Crisului Repede	Н	6.56
RO	ROSCI0105	Lunca Joasa a Prutului	Н	48.21
RO	ROSCI0106	Lunca Mijlocie a Argesului	Н	36.14
RO	ROSCI0108	Lunca Muresului Inferior	Н	174.65
RO	ROSCI0109	Lunca Timisului	Н	99.19
RO	ROSCI0111	Mestecanisul de la Reci	Н	21.04
RO	ROSCI0115	Mlastina Satchinez	Н	22.9
RO	ROSCI0116	Molhasurile Capatânei	Н	8.16
RO	ROSCI0119	Muntele Mare	Н	16.54
RO	ROSCI0122	Muntii Fagaras	Н	1986.17
RO	ROSCI0123	Muntii Macinului	Н	168.94
RO	ROSCI0124	Muntii Maramuresului	Н	1068.91
RO	ROSCI0125	Muntii Rodnei	Н	480.62
RO	ROSCI0126	Muntii Tarcu	Н	586.57
RO	ROSCI0128	Nordul Gorjului de Est	Н	491.6
RO	ROSCI0129	Nordul Gorjului de Vest	Н	869.58
RO	ROSCI0130	Oituz - Ojdula	Н	153.5
RO	ROSCI0131	Oltenita - Mostistea - Chiciu	Н	113.49
RO	ROSCI0132	Oltul Mijlociu - Cibin - Hârtibaciu	Н	28.26
RO	ROSCI0135	Padurea Bârnova - Repedea	Н	122.16
RO	ROSCI0137	Padurea Bogatii	Н	63.52
RO	ROSCI0138	Padurea Bolintin	Н	57.36
RO	ROSCI0140	Padurea Calugareasca	Н	6.77
RO	ROSCI0149	Padurea Eseschioi - Lacul Bugeac	Н	29.67
RO	ROSCI0152	Padurea Floreanu - Frumusica - Ciurea	Н	189.78
RO	ROSCI0154	Padurea Glodeni	Н	10.42
RO	ROSCI0155	Padurea Goroniste	Н	9.52
RO	ROSCI0156	Muntii Gosman	Н	171.56
RO	ROSCI0157	Padurea Hagieni - Cotul Vaii	Н	36.2
RO	ROSCI0158	Padurea Balteni - Hârboanca	Н	5.26
RO	ROSCI0162	Lunca Siretului Inferior	Н	250.81
RO	ROSCI0166	Padurea Resca Hotarani	Н	16.3
RO	ROSCI0168	Padurea Sarului	Н	67.93

Country	Area code	Name of Protected Area	Type(s)	Area in km
RO	ROSCI0172	Padurea si Valea Canaraua Fetii - Iortmac	Н	136.32
RO	ROSCI0173	Padurea Stârmina	Н	27.69
RO	ROSCI0177	Padurea Topana	Н	8.91
RO	ROSCI0187	Pajistile lui Suciu	Н	160.05
RO	ROSCI0188	Parâng	Н	304.34
RO	ROSCI0190	Penteleu	Н	112.68
RO	ROSCI0194	Piatra Craiului	Н	158.67
RO	ROSCI0195	Piatra Mare	Н	42.74
RO	ROSCI0198	Platoul Mehedinti	Н	535.94
RO	ROSCI0200	Platoul Vascau	Н	49.83
RO	ROSCI0201	Podisul Nord Dobrogean	Н	847.99
RO	ROSCI0202	Silvostepa Olteniei	Н	92.97
RO	ROSCI0206	Portile de Fier	Н	1255.46
RO	ROSCI0207	Postavarul	Н	13.03
RO	ROSCI0208	Putna - Vrancea	Н	381.82
RO	ROSCI0211	Podisul Secaselor	Н	70.14
RO	ROSCI0212	Rarau - Giumalau	Н	25.47
RO	ROSCI0213	Râul Prut	Н	80.7
RO	ROSCI0214	Râul Tur	Н	205.15
RO	ROSCI0217	Retezat	Н	435.61
RO	ROSCI0218	Dealul Mocrei - Rovina - Ineu	Н	37.3
RO	ROSCI0219	Rusca Montana	Н	127.58
RO	ROSCI0220	Sacueni	Н	7.33
RO	ROSCI0222	Saraturile Jijia Inferioara - Prut	Н	106.13
RO	ROSCI0224	Scrovistea	Н	33.91
RO	ROSCI0225	Seaca - Optasani	Н	21.1
RO	ROSCI0226	Semenic - Cheile Carasului	Н	375.54
RO	ROSCI0227	Sighisoara - Târnava Mare	Н	858.15
RO	ROSCI0229	Siriu	Н	62.3
RO	ROSCI0230	Slanic	Н	14.08
RO	ROSCI0231	Nadab - Socodor - Varsad	Н	66.61
RO	ROSCI0233	Somesul Rece	Н	85.29
RO	ROSCI0236	Strei - Hateg	Н	249.68
RO	ROSCI0238	Suatu -Cojocna - Crairât	Н	41.46
RO	ROSCI0239	Târnovu Mare - Latorita	Н	13.66
RO	ROSCI0240	Tasad	Н	15.57
RO	ROSCI0241	Tinovul Apa Lina - Honcsok	Н	79.06
RO	ROSCI0247	Tinovul Mare Poiana Stampei	Н	6.93
RO	ROSCI0250	Tinutul Padurenilor	Н	72
RO	ROSCI0251	Tisa Superioara	Н	63.1
RO	ROSCI0252	Toplita - Scaunul Rotund Borsec	Н	54.66
RO	ROSCI0253	Trascau	Н	500.64
RO	ROSCI0259	Valea Calmatuiului	Н	179.23

Country	Area code	Name of Protected Area	Type(s)	Area in km ²
RO	ROSCI0260	Valea Cepelor	Н	7.96
RO	ROSCI0262	Valea Iadei	Н	29.46
RO	ROSCI0263	Valea Ierii	Н	63.02
RO	ROSCI0264	Valea Izei si Dealul Solovan	Н	468.73
RO	ROSCI0265	Valea lui David	Н	14.35
RO	ROSCI0266	Valea Oltetului	Н	15.37
RO	ROSCI0267	Valea Rosie	Н	8.19
RO	ROSCI0268	Valea Vâlsanului	Н	94.8
RO	ROSCI0269	Vama Veche - 2 Mai	Н	15.35
RO	ROSCI0270	Vânatori - Neamt	Н	302.02
RO	ROSCI0273	Zona marina de la Capul Tuzla	Н	9.83
RO	ROSCI0277	Becicherecu Mic	Н	20.67
RO	ROSCI0278	Bordusani - Borcea	Н	58.1
RO	ROSCI0281	Cap Aurora	Н	22.82
RO	ROSCI0283	Cheile Doftanei	Н	26.13
RO	ROSCI0286	Colinele Elanului	Н	7.55
RO	ROSCI0289	Coridorul Drocea - Codru Moma	Н	32.29
RO	ROSCI0290	Coridorul Ialomitei	Н	267.27
RO	ROSCI0291	Coridorul Muntii Bihorului - Codru Moma	Н	75.92
RO	ROSCI0292	Coridorul Rusca Montana - Tarcu - Retezat	Н	244.42
RO	ROSCI0293	Costinesti - 23 August	Н	10.09
RO	ROSCI0294	Crisul Alb între Gurahont si Ineu	Н	12.28
RO	ROSCI0296	Dealurile Dragasaniului	Н	76.26
RO	ROSCI0297	Dealurile Târnavei Mici - Biches	Н	370.82
RO	ROSCI0298	Defileul Crisului Alb	Н	165.58
RO	ROSCI0299	Dunarea la Gârla Mare – Maglavit	Н	94.95
RO	ROSCI0303	Hârtibaciu Sud - Est	Н	259.03
RO	ROSCI0304	Hârtibaciu Sud - Vest	Н	227.26
RO	ROSCI0305	Ianca - Plopu - Sarat - Comaneasca	Н	32.22
RO	ROSCI0306	Jiana	Н	134.16
RO	ROSCI0308	Lacul si Padurea Cernica	Н	32.67
RO	ROSCI0309	Lacurile din jurul Mascurei	Н	11.6
RO	ROSCI0310	Lacurile Falticeni	Н	8.95
RO	ROSCI0314	Lozna	Н	102.49
RO	ROSCI0315	Lunca Chineja	Н	9.45
RO	ROSCI0318	Magura Târgu Ocna	Н	8.44
RO	ROSCI0319	Mlastina de la Fetesti	Н	20.2
RO	ROSCI0320	Mociar	Н	40.17
RO	ROSCI0322	Muntele Ses	Н	348.81
RO	ROSCI0323	Muntii Ciucului	Н	596.41
RO	ROSCI0324	Muntii Bihor	Н	208.85
RO	ROSCI0325	Muntii Metaliferi	Н	143.03
RO	ROSCI0326	Muscelele Argesului	Н	100.15

Country	Area code	Name of Protected Area	Type(s)	Area in km
RO	ROSCI0327	Nemira - Lapos	Н	98.65
RO	ROSCI0328	Obcinele Bucovinei	Н	322.46
RO	ROSCI0329	Oltul Superior	Н	15.08
RO	ROSCI0333	Pajistile Sarmasel - Milas - Urmenis	Н	11.36
RO	ROSCI0334	Padurea Buciumeni - Homocea	Н	49.93
RO	ROSCI0335	Padurea Dobrina - Husi	Н	85.18
RO	ROSCI0337	Padurea Neudorfului	Н	45.02
RO	ROSCI0339	Padurea Povernii - Valea Cernita	Н	8.7
RO	ROSCI0341	Padurea si Lacul Stolnici	Н	15.26
RO	ROSCI0342	Padurea Târgu Mures	Н	5.74
RO	ROSCI0343	Padurile din Silvostepa Mostistei	Н	21.2
RO	ROSCI0344	Padurile din Sudul Piemontului Cândesti	Н	43.13
RO	ROSCI0345	Pajistea Cenad	Н	60.31
RO	ROSCI0350	Lunca Teuzului	Н	52.39
RO	ROSCI0352	Persani	Н	22.61
RO	ROSCI0354	Platforma Cotmeana	Н	125.28
RO	ROSCI0355	Podisul Lipovei - Poiana Rusca	Н	357.1
RO	ROSCI0357	Porumbeni	Н	70.52
RO	ROSCI0359	Prigoria - Bengesti	Н	24.89
RO	ROSCI0360	Râul Bârlad între Zorleni si Gura Gârbovatului	Н	25.69
RO	ROSCI0361	Râul Caras	Н	5.88
RO	ROSCI0362	Râul Gilort	Н	8.73
RO	ROSCI0363	Râul Moldova între Oniceni si Mitesti	Н	32.15
RO	ROSCI0364	Râul Moldova între Tupilati si Roman	Н	47.21
RO	ROSCI0365	Râul Moldova între Paltinoasa si Rusi	Н	53.03
RO	ROSCI0366	Râul Motru	Н	19.21
RO	ROSCI0367	Râul Mures între Moresti si Ogra	Н	5.27
RO	ROSCI0370	Râul Mures între Lipova si Paulis	Н	6.19
RO	ROSCI0373	Râul Mures între Branisca si Ilia	Н	18.84
RO	ROSCI0374	Râul Negru	Н	10.01
RO	ROSCI0376	Râul Olt între Maruntei si Turnu Magurele	Н	121.46
RO	ROSCI0377	Râul Putna	Н	6.55
RO	ROSCI0378	Râul Siret între Pascani si Roman	Н	37.11
RO	ROSCI0379	Râul Suceava	Н	8.81
RO	ROSCI0380	Râul Suceava Liteni	Н	12.54
RO	ROSCI0381	Râul Târgului - Argesel - Râusor	Н	132.13
RO	ROSCI0382	Râul Târnava Mare între Copsa Mica si Mihalt	Н	9.3
RO	ROSCI0385	Râul Timis între Rusca si Prisaca	Н	14.41
RO	ROSCI0386	Râul Vedea	Н	90.77
RO	ROSCI0387	Salonta	Н	35.86
RO	ROSCI0389	Saraturile de la Gura Ialomitei - Mihai Bravu	Н	34.49
RO	ROSCI0389 ROSCI0390	Saraturile Dinias	Н	10.12
RO	ROSCI0390 ROSCI0391	Siretul Mijlociu - Bucecea	Н	5.7

Country	Area code	Name of Protected Area	Type(s)	Area in km
RO	ROSCI0393	Somesul Mare	Н	5.57
RO	ROSCI0395	Soveja	Н	45.65
RO	ROSCI0400	Sieu - Budac	Н	8.88
RO	ROSCI0403	Vânju Mare	Н	21.88
RO	ROSCI0406	Zarandul de Est	Н	203.15
RO	ROSCI0407	Zarandul de Vest	Н	88.88
RO	ROSPA0001	Aliman - Adamclisi	В	194.68
RO	ROSPA0002	Allah Bair - Capidava	В	116.45
RO	ROSPA0003	Avrig - Scorei - Fagaras	В	30.23
RO	ROSPA0004	Balta Alba - Amara - Jirlau	В	20.23
RO	ROSPA0005	Balta Mica a Brailei	В	258.56
RO	ROSPA0006	Balta Tataru	В	99.81
RO	ROSPA0007	Balta Vederoasa	В	21.44
RO	ROSPA0008	Baneasa - Canaraua Fetei	В	61
RO	ROSPA0009	Bestepe - Mahmudia	В	36.63
RO	ROSPA0010	Bistret	В	19.16
RO	ROSPA0011	Blahnita	В	440
RO	ROSPA0012	Bratul Borcea	В	130.97
RO	ROSPA0013	Calafat - Ciuperceni - Dunare	В	293.68
RO	ROSPA0014	Câmpia Cermeiului	В	244.24
RO	ROSPA0015	Câmpia Crisului Alb si Crisului Negru	В	395.02
RO	ROSPA0016	Câmpia Nirului - Valea Ierului	В	385.4
RO	ROSPA0017	Canaralele de la Hârsova	В	74.06
RO	ROSPA0018	Cheile Bicazului - Hasmas	В	79.61
RO	ROSPA0019	Cheile Dobrogei	В	109.33
RO	ROSPA0020	Cheile Nerei-Beusnita	В	404.22
RO	ROSPA0021	Ciocanesti - Dunare	В	8.68
RO	ROSPA0022	Comana	В	249.56
RO	ROSPA0023	Confluenta Jiu - Dunare	В	197.67
RO	ROSPA0024	Confluenta Olt - Dunare	В	210.56
RO	ROSPA0025	Cozia - Buila - Vânturarita	В	217.69
RO	ROSPA0026	Cursul Dunarii - Bazias - Portile de Fier	В	99.1
RO	ROSPA0027	Dealurile Homoroadelor	В	370.93
RO	ROSPA0028	Dealurile Târnavelor si Valea Nirajului	В	860.73
RO	ROSPA0029	Defileul Muresului Inferior - Dealurile Lipovei	В	556.6
RO	ROSPA0030	Defileul Muresului Superior	В	95.14
RO	ROSPA0031	Delta Dunarii si Complexul Razim - Sinoie	В	5086.88
RO	ROSPA0032	Deniz Tepe	В	19
RO	ROSPA0033	Depresiunea si Muntii Giurgeului	В	878.92
RO	ROSPA0034	Depresiunea si Muntii Ciucului	В	517.44
RO	ROSPA0035	Domogled-Valea Cernei	В	665.08
RO	ROSPA0036	Dumbraveni	B	20.56
RO	ROSPA0037	Dumbravita - Rotbav - Magura Codlei	В	45.36

Country	Area code	Name of Protected Area	Type(s)	Area in km
RO	ROSPA0038	Dunare - Oltenita	В	60.25
RO	ROSPA0039	Dunare - Ostroave	В	162.24
RO	ROSPA0040	Dunarea Veche - Bratul Macin	В	187.59
RO	ROSPA0042	Elesteele Jijiei si Miletinului	В	189.9
RO	ROSPA0043	Frumoasa	В	1309.67
RO	ROSPA0044	Gradistea - Caldarusani - Dridu	В	64.42
RO	ROSPA0045	Gradistea Muncelului - Cioclovina	В	380.6
RO	ROSPA0046	Gruia - Gârla Mare	В	27.56
RO	ROSPA0047	Hunedoara Timisana	В	15.37
RO	ROSPA0048	Ianca - Plopu - Sarat	В	19.82
RO	ROSPA0049	Iazurile de pe valea Ibanesei - Baseului - Podrigai	В	27.05
RO	ROSPA0050	Iazurile Mihesu de Câmpie - Taureni	В	12.09
RO	ROSPA0051	Iezer Calarasi	В	50.01
RO	ROSPA0053	Lacul Bugeac	В	13.92
RO	ROSPA0054	Lacul Dunareni	В	12.61
RO	ROSPA0055	Lacul Galatui	В	8.13
RO	ROSPA0056	Lacul Oltina	В	33.03
RO	ROSPA0057	Lacul Siutghiol	В	18.49
RO	ROSPA0058	Lacul Stânca Costesti	В	18.65
RO	ROSPA0059	Lacul Strachina	В	20.14
RO	ROSPA0060	Lacul Tasaul	В	27.01
RO	ROSPA0061	Lacul Techirghiol	В	29.39
RO	ROSPA0062	Lacurile de acumulare de pe Arges	В	22.6
RO	ROSPA0063	Lacurile de acumulare Buhusi - Bacau - Beres	В	55.76
RO	ROSPA0064	Lacurile Falticeni	В	7.27
RO	ROSPA0065	Lacurile Fundata -Amara	В	20.36
RO	ROSPA0066	Limanu-Herghelia	В	8.74
RO	ROSPA0067	Lunca Barcaului	В	52.91
RO	ROSPA0068	Lunca Inferioara a Turului	В	202.35
RO	ROSPA0069	Lunca Muresului Inferior	В	174.09
RO	ROSPA0070	Lunca Prutului-Vladesti-Frumusita	В	143.91
RO	ROSPA0071	Lunca Siretului Inferior	В	364.92
RO	ROSPA0072	Lunca Siretului Mijlociu	В	104.55
RO	ROSPA0073	Macin - Niculitel	В	673.61
RO	ROSPA0074	Maglavit	В	36.47
RO	ROSPA0075	Magura Odobesti	В	131.64
RO	ROSPA0076	Marea Neagra	В	1488.47
RO	ROSPA0077	Maxineni	В	15.04
RO	ROSPA0080	Muntii Almajului - Locvei	В	1181.42
RO	ROSPA0081	Muntii Apuseni - Vladeasa	B	930.82
RO	ROSPA0082	Muntii Bodoc Baraolt	B	565.92
RO	ROSPA0083	Muntii Rarau - Giumalau	B	21.57
RO	ROSPA0084	Muniii Retezat	B	382.83

Country	Area code	Name of Protected Area	Type(s)	Area in km ²
RO	ROSPA0085	Muntii Rodnei	В	548.32
RO	ROSPA0086	Muntii Semenic - Cheile Carasului	В	362.4
RO	ROSPA0087	Muntii Trascaului	В	931.89
RO	ROSPA0088	Muntii Vrancei	В	381.8
RO	ROSPA0089	Obcina Feredeului	В	637.59
RO	ROSPA0090	Ostrovu Lung - Gostinu	В	23.72
RO	ROSPA0091	Padurea Babadag	В	584.73
RO	ROSPA0092	Padurea Bârnova	В	128.87
RO	ROSPA0093	Padurea Bogata	В	63.29
RO	ROSPA0094	Padurea Hagieni	В	13.74
RO	ROSPA0095	Padurea Macedonia	В	46.25
RO	ROSPA0096	Padurea Miclesti	В	86.31
RO	ROSPA0097	Pescaria Cefa - Padurea Radvani	В	121.64
RO	ROSPA0098	Piemontul Fagaras	В	712.56
RO	ROSPA0099	Podisul Hârtibaciu	В	2375.15
RO	ROSPA0100	Stepa Casimcea	В	222.02
RO	ROSPA0101	Stepa Saraiu - Horea	В	41.86
RO	ROSPA0102	Suhaia	В	44.65
RO	ROSPA0103	Valea Alceului	В	36.34
RO	ROSPA0104	Valea Fizesului - Sic - Lacul Stiucilor	В	16.27
RO	ROSPA0105	Valea Mostistea	В	65.78
RO	ROSPA0106	Valea Oltului Inferior	В	527.86
RO	ROSPA0107	Vânatori - Neamt	В	308.4
RO	ROSPA0108	Vedea - Dunare	В	223.74
RO	ROSPA0109	Acumularile Belcesti	В	20.99
RO	ROSPA0110	Acumularile Rogojesti - Bucecea	В	21.06
RO	ROSPA0111	Bertestii de Sus - Gura Ialomitei	В	68.9
RO	ROSPA0112	Câmpia Gherghitei	В	75.88
RO	ROSPA0113	Cânepisti	В	62.12
RO	ROSPA0114	Cursul Mijlociu al Somesului	В	332.59
RO	ROSPA0115	Defileul Crisului Repede-Valea Iadului	В	171.71
RO	ROSPA0116	Dorohoi-Saua Bucecei	В	253.3
RO	ROSPA0117	Drocea - Zarand	В	406.77
RO	ROSPA0118	Grindu - Valea Macrisului	В	32.58
RO	ROSPA0119	Horga - Zorleni	В	201.88
RO	ROSPA0120	Kogalniceanu - Gura Ialomitei	В	68.94
RO	ROSPA0121	Lacul Brates	В	158.01
RO	ROSPA0122	Lacul si Padurea Cernica	В	37.44
RO	ROSPA0123	Lacurile de acumulare de pe Crisul Repede	В	18.18
RO	ROSPA0124	Lacurile de pe Valea Ilfovului	В	5.97
RO	ROSPA0127	Lunca Bârzavei	В	23.93
RO	ROSPA0128	Lunca Timisului	B	134.04
RO	ROSPA0129	Masivul Ceahlau	B	278.37

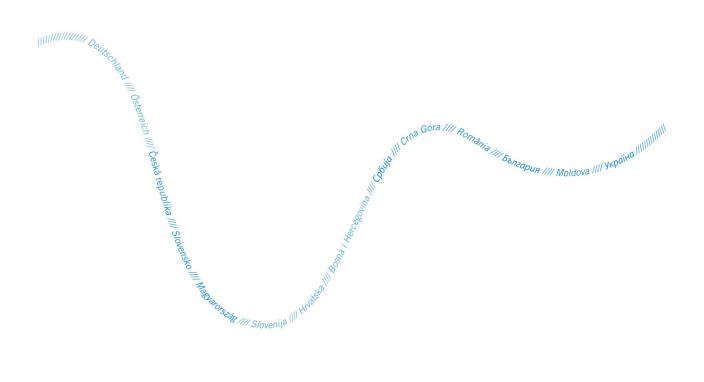
Country	Area code	Name of Protected Area	Type(s)	Area in km
RO	ROSPA0130	Mata - Cârja - Radeanu	В	57.68
RO	ROSPA0131	Muntii Maramuresului	В	709.88
RO	ROSPA0132	Muntii Metaliferi	В	266.71
RO	ROSPA0133	Muntii Calimani	В	290.48
RO	ROSPA0134	Muntii Gutâi	В	284.06
RO	ROSPA0136	Oltenita - Ulmeni	В	121.69
RO	ROSPA0137	Padurea Radomir	В	12.33
RO	ROSPA0138	Piatra Soimului - Scorteni - Gârleni	В	374.45
RO	ROSPA0139	Piemontul Muntilor Metaliferi si Vintului	В	83.88
RO	ROSPA0140	Scrovistea	В	33.56
RO	ROSPA0141	Subcarpatii Vrancei	В	358.23
RO	ROSPA0142	Teremia Mare - Tomnatic	В	66.34
RO	ROSPA0143	Tisa Superioara	В	28.39
RO	ROSPA0144	Uivar-Dinias	В	100.43
RO	ROSPA0145	Valea Calmatuiului	В	205.15
RO	ROSPA0146	Valea Câlnistei	В	25.38
RO	ROSPA0148	Vitanesti-Rasmiresti	В	11.08
RO	ROSPA0149	Depresiunea Bozovici	В	96.59
RO	ROT	Cefa	0	50.04
RO	ROV.1.	Lunca Muresului	0	173.55
RO	ROV.2	Lunca Joasa a Prutului Inferior	0	72.61
RO	ROV.3.	Comana	0	249.63
RO	ROV.4.	Geoparcul Dinozaurilor Tara Hategului	0	1000
RO	ROV.5.	Muntii Maramuresului	0	1300
RO	ROV.6.	Geoparcul Platoul Mehedinti	0	1100
RO	ROV.7.	Putna - Vrancea	0	381.9
RS	RS121	Fruška gora	0	261.24
RS	RS155	Deliblatska peščara	0	353.61
RS	RS314	Đerdap	0	636
RS	RS365	Sićevačka klisura	0	77
RS	RS470	Tara	0	192
RS	RS471	Kopaonik	0	118
RS	RS483	Subotička peščara	0	54.05
RS	RS484	Palić	0	7.35
RS	RS485	Gornje Podunavlje	0	193.55
RS	RS50	Obedska bara	0	99.14
RS	RS517	Klisura reke Gradac	0	13
RS	RS595	Uvac	0	75
RS	RS596	Klisura reke Trešnjice	0	6
RS	RS599	Zasavica	0	6.21
RS	RS601	Pašnjaci velike droplje	0	9.98
RS	RS602	Karađorđevo	0	30.45
RS	RS603	Selevenjske pustare	0	6.43

Country	Area code	Name of Protected Area	Type(s)	Area in km ²
RS	RS604	Stara planina	0	1143
RS	RS605	Tikvara	0	5.31
RS	RS608	Koviljsko-petrovaradinski rit	0	58.89
RS	RS612	Lazarev kanjon	0	18
RS	RS613	Ovčarsko-Kablarska klisura	0	22
RS	RS615	Golija	0	752
RS	RS619	Slano Kopovo	0	10.07
RS	RS64	Ludaško jezero	0	8.6
RS	RS661	Šargan-Mokra Gora	0	108
RS	RS663	Jegrička	0	11.44
RS	RS666	Vlasina	0	128.15
RS	RS69	Carska bara	0	47.26
SI	SISI3000046	Bela Krajina	Н	5.18
SI	SISI3000051	Krakovski gozd	Н	34.19
SI	SISI3000057	Vrhtrebnje - Sv. Ana	Н	6.96
SI	SISI3000059	Mirna	Н	5.47
SI	SISI3000062	Gradac	Н	15.07
SI	SISI3000075	Lahinja	Н	8.5
SI	SISI3000100	Gozd Kranj - Škofja Loka	Н	19.44
SI	SISI3000101	Gozd Olševek - Adergas	Н	8.39
SI	SISI3000126	Nanoščica	Н	7.71
SI	SISI3000149	Obrež	Н	7.58
SI	SISI3000166	Razbor	Н	14.5
SI	SISI3000171	Radensko polje - Viršnica	Н	5.22
SI	SISI3000172	Zgornja Drava s pritoki	Н	46.83
SI	SISI3000173	Bloščica	Н	7.89
SI	SISI3000175	Kolpa	Н	6.85
SI	SISI3000188	Ajdovska planota	Н	24.09
SI	SISI3000191	Ajdovska jama	Н	17.22
SI	SISI3000192	Radulja s pritoki	Н	13.09
SI	SISI3000194	Radgonsko - Kapelske Gorice	Н	10.84
SI	SISI3000197	Slavinski Ravnik	Н	11.86
SI	SISI3000205	Kandrše - Drtijščica	Н	13.6
SI	SISI3000206	Lubnik	Н	12.68
SI	SISI3000214	Ličenca pri Poljčanah	Н	27.28
SI	SISI3000215	Mura	Н	102.52
SI	SISI3000219	Grad Brdo - Preddvor	Н	5.82
SI	SISI3000220	Drava	Н	36.93
SI	SISI3000221	Goričko	Н	448.24
SI	SISI3000224	Huda luknja	Н	30.18
SI	SISI3000231	Javorniki - Snežnik	Н	440.39
SI	SISI3000232	Notranjski trikotnik	Н	152.32
SI	SISI3000253	Julijske Alpe	Н	740.86

Country	Area code	Name of Protected Area	Type(s)	Area in km ²
SI	SISI3000255	Trnovski gozd - Nanos	Н	532.35
SI	SISI3000256	Krimsko hribovje - Menišija	Н	203.34
SI	SISI3000257	Rački ribniki - Požeg	Н	6.13
SI	SISI3000262	Sava Medvode - Kresnice	Н	11.24
SI	SISI3000263	Kočevsko	Н	1067.94
SI	SISI3000264	Kamniško - Savinjske Alpe	Н	145.68
SI	SISI3000267	Gorjanci - Radoha	Н	117.99
SI	SISI3000268	Dobrava - Jovsi	Н	28.66
SI	SISI3000270	Pohorje	Н	275.68
SI	SISI3000271	Ljubljansko barje	Н	129.61
SI	SISI3000273	Orlica	Н	38.31
SI	SISI3000274	Bohor	Н	68.32
SI	SISI3000275	Rašica	Н	22.36
SI	SISI3000278	Pokljuška barja	Н	8.59
SI	SISI3000285	Karavanke	Н	230.9
SI	SISI3000288	Dolsko	Н	8.71
SI	SISI3000297	Mišja dolina	Н	6.37
SI	SISI3000303	Sotla s pritoki	Н	5.49
SI	SISI3000306	Dravinja s pritoki	Н	5.42
SI	SISI3000311	Vitanje - Oplotnica	Н	13.04
SI	SISI3000313	Vzhodni Kozjak	Н	16.94
SI	SISI3000335	Polhograjsko hribovje	Н	29.65
SI	SISI3000337	Zahodni Kozjak	Н	16.28
SI	SISI3000338	Krka s pritoki	Н	24.48
SI	SISI3000348	Bohinjska Bistrica in Jereka	Н	7.27
SI	SISI5000001	Jelovica	В	97.67
SI	SISI5000002	Snežnik - Pivka	В	549.27
SI	SISI5000005	Dravinjska dolina	В	19.11
SI	SISI5000006	Pohorje	В	186.87
SI	SISI5000009	Goričko	В	402.03
SI	SISI5000010	Mura	В	146.51
SI	SISI5000011	Drava	В	100.37
SI	SISI5000012	Krakovski gozd - Šentjernejsko polje	В	83.47
SI	SISI5000013	Kočevsko	В	979.35
SI	SISI5000014	Ljubljansko barje	В	123.7
SI	SISI5000015	Cerkniško jezero	В	33.51
SI	SISI5000016	Planinsko polje	В	10.46
SI	SISI5000017	Nanoščica	В	19.27
SI	SISI5000019	Julijci	В	886.45
SI	SISI5000021	Vipavski rob	B	133.64
SI	SISI5000024	Grintovci	В	319.58
SI	SISI5000024 SISI5000026	Posavsko hribovje	B	35.16
SI	SISI5000020 SISI5000027	Črete	B	14.45

Country	Area code	Name of Protected Area	Type(s)	Area in km ²
SI	SISI5000029	Gluha loza	В	14.42
SI	SISI5000032	Dobrava - Jovsi	В	28.49
SI	SISI5000033	Kozjansko	В	80.42
SK	SKCHVU002	Bukovské vrchy	В	409.32
SK	SKCHVU003	Cerová vrchovina - Porimavie	В	301.88
SK	SKCHVU005	Dolné Považie	В	311.96
SK	SKCHVU007	Dunajské luhy	В	165.12
SK	SKCHVU008	Horná Orava	В	587.38
SK	SKCHVU009	Košická kotlina	В	173.54
SK	SKCHVU010	Kráľová	В	12.16
SK	SKCHVU013	Malá Fatra	В	662.28
SK	SKCHVU015	Medzibodrožie	В	337.54
SK	SKCHVU016	Záhorské Pomoravie	В	310.73
SK	SKCHVU019	Ostrovné lúky	В	82.98
SK	SKCHVU021	Poiplie	В	80.63
SK	SKCHVU023	Úľanská mokraď	В	181.74
SK	SKCHVU024	Senianske rybníky	В	26.68
SK	SKCHVU026	Sĺňava	В	5.09
SK	SKCHVU027	Slovenský kras	В	438.6
SK	SKCHVU037	Ondavská rovina	В	159.07
SK	SKCHVU051	Levočské vrchy	В	455.98
SK	SKUEV0006	Latorica	Н	75.01
SK	SKUEV0036	Litava	Н	26.3
SK	SKUEV0048	Dukla	Н	68.61
SK	SKUEV0057	Rašeliniská Oravskej kotliny	Н	8.4
SK	SKUEV0064	Bratislavské luhy	Н	6.92
SK	SKUEV0090	Dunajské luhy	Н	45.42
SK	SKUEV0104	Homol'ské Karpaty	Н	51.83
SK	SKUEV0110	Levočská dubina	Н	6
SK	SKUEV0112	Slovenský raj	Н	168.65
SK	SKUEV0125	Gajarské alúvium Moravy	Н	12.44
SK	SKUEV0130	Zobor	Н	19.05
SK	SKUEV0163	Rudava	Н	19.59
SK	SKUEV0168	Horný les	Н	5.56
SK	SKUEV0173	Kotlina	Н	6.17
SK	SKUEV0188	Pilsko	Н	7.01
SK	SKUEV0189	Babia hora	Н	5.04
SK	SKUEV0192	Prosečné	Н	23
SK	SKUEV0192	Hybická tiesňava	Н	5.64
SK	SKUEV0194 SKUEV0197	Salatín	Н	33.45
SK	SKUEV0203	Stolica	Н	28.12
SK	SKUEV0205	Hubková	H	27.93
SK	SKUEV0209	Morské oko	Н	160.08

34


Country	Area code	Name of Protected Area	Type(s)	Area in km ²
SK	SKUEV0210	Stinská	Н	15.27
SK	SKUEV0211	Daňová	Н	8.98
SK	SKUEV0225	Muránska planina	Н	202.57
SK	SKUEV0229	Bukovské vrchy	Н	292.31
SK	SKUEV0238	Veľká Fatra	Н	463.49
SK	SKUEV0251	Zázrivské lazy	Н	29.28
SK	SKUEV0252	Malá Fatra	Н	222.53
SK	SKUEV0256	Strážovské vrchy	Н	299.73
SK	SKUEV0259	Stará hora	Н	24
SK	SKUEV0263	Hodrušská hornatina	Н	102.68
SK	SKUEV0264	Klokoč	Н	22.81
SK	SKUEV0265	Suť	Н	90.41
SK	SKUEV0266	Skalka	Н	97.15
SK	SKUEV0267	Biele hory	Н	101.46
SK	SKUEV0269	Ostrovné lúčky	Н	6.28
SK	SKUEV0273	Vtáčnik	Н	100.57
SK	SKUEV0274	Baské	Н	40.33
SK	SKUEV0275	Kňaží stôl	Н	42.27
SK	SKUEV0276	Kuchynská hornatina	Н	32.75
SK	SKUEV0278	Brezovské Karpaty	Н	26.71
SK	SKUEV0279	Šúr	Н	6.55
SK	SKUEV0282	Tisovský kras	Н	14.69
SK	SKUEV0287	Galmus	Н	32
SK	SKUEV0288	Kysucké Beskydy	Н	70.01
SK	SKUEV0295	Biskupické luhy	Н	9.16
SK	SKUEV0299	Baranovo	Н	8.61
SK	SKUEV0302	Ďumbierske Tatry	Н	440.28
SK	SKUEV0305	Choč	Н	16.27
SK	SKUEV0306	Pod Suchým hrádkom	Н	7.53
SK	SKUEV0307	Tatry	Н	669.94
SK	SKUEV0310	Kráľovohoľské Tatry	Н	304.79
SK	SKUEV0313	Devínske jazero	Н	12.64
SK	SKUEV0318	Pod Bukovou	Н	5.38
SK	SKUEV0319	Poľana	Н	30.72
SK	SKUEV0326	Strahul'ka	Н	11.7
SK	SKUEV0327	Milič	Н	51.13
SK	SKUEV0328	Stredné Pohornádie	Н	70.93
SK	SKUEV0331	Čergovský Minčol	Н	42.62
SK	SKUEV0332	Čergov	Н	60.29
SK	SKUEV0337	Pieniny	Н	13.02
SK	SKUEV0356	Horný vrch	Н	60.28
SK	SKUEV0357	Cerová vrchovina	Н	26.28
SK	SKUEV0366	Drienčanský kras	Н	16.09

Country	Area code	Name of Protected Area	Type(s)	Area in km ²
SK	SKUEV0367	Holubyho kopanice	Н	39
SK	SKUEV0387	Beskyd	Н	53.49
SK	SKUEV0393	Dunaj	Н	14.26
SK	SKUEV0642	Javornícky hrebeň	Н	13.56
SK	SKUEV0663	Šíp	Н	17.94
SK	SKUEV1337	Pieniny	Н	13.9
UA	UA01	Danube Biosphere reserve	0	520
UA	UA02	Izmail Islands	0	16
UA	UA11	Kartal lake	0	8
UA	UA12	Kugurlui Lake	0	84
UA	UA30	Pritisanskij regional landscape park	0	280
UA	UA37	Lung	0	17
UA	UA41	Pistenka	0	26
UA	UA42	Gutsulshina	0	387
UA	UA43	Cheremoshskiy	0	234
UA	UA44	Verhovynskiy	0	104
UA	UA47	Chernivetskiy	0	200
UA	UA48	Vyzhnytskyi	0	128
UA	UA49	Uzhanskyi	0	395
UA	UA50	Carpathian National Park	0	528
UA	UA51	Carpathian Biosphere reserve	0	547

Economic Analysis – Synthesis of Questionnaires

The economics analysis of the DRAFT DRBM Plan – Update 2015 is based on the economic analysis which was performed for the 2013 Update of the Danube Basin Analysis. Two questionnaires were developed and sent out in 2013 for the collection of information on economics from the Danube countries (the information was updated, if necessary, by the Danube countries in 2015). The questionnaires treat inter alia water pricing, cost recovery (CR) and environmental and resource costs (ERC) - topics which are closely interlinked. This synthesis provides an overview on the approaches which are in place in the Danube countries. The collected information is summarised in form of tables as presented below (tables 1 to 6).

Tables 7 and 8 represent the results of a second survey done in the aftermath of the TG ECON meetings in Zagreb and Vienna (2014/2015), and concern approaches towards Disproportionality of Costs and Exemptions, as well as projections of trends regarding socio-economic developments.

Data from Serbia does not include data from the Autonomous Provinces Kosovo and Metohija.

Table 1: Investment costs for water supply and wastewater, and priorities of investments for the period 2009-2015*

Country	Demand and Supply Costs ¹ [EUR]	Only demand costs [EUR]	Only investment costs (without distinguishing) [EUR]	Priorities/main objectives of investments	
DE	-	-	Water supply services: 340 million EUR / year Waste water services: 490 million EUR / year Aggregated investment costs: 830 million on average per annum	Good Status of water bodies	
AT	-	-	3.2 billion	Good Status	
CZ	-	822 million		Good Status	
SK	_	-	1,086 million EUR** (water supply + wastewater) of which: water supply: 101 million wastewater: 985 million	Good status and UWWT	
HU	3.1 billion / 2.3 billion (until 2012)	2,675.38 million	-	Drinking Water and UWWT derogations	
SI	-	1.1 billion (1,020.6 mio EUR for wastewater collection and treatment for households and 113.4 mio EUR for water supply for households) ² (2010-2015)	-	Wastewater collection and treatment for households and water supply for households.	
HR	1.9 billion / 650 million	-	-	Drinking Water and UWWT	
BA	-	653 million	-	Good Status and UWWT	
ME n.a.					

¹ According to the questionnaires: demand cost are the "total costs related to implementing the EU Directives"; supply costs are the investment costs that could be realistically covered.

 $^{^{2}}$ The costs for the Danube River Basin are estimated according to the relation of the Danube River Basin's area to Slovenia's territory (81% of the total area).

RS	1.8 billion / 900 million	-	-	UWWT	
RO	-	-	UWWT (waste water treatment and sewerage systems): 12,700 million Euro; Water supply: 7,580 million Euro	UWWT and Water Supply	
BG	-	1.6 billion (2010-2015; wastewater collection and treatment) Assessment of investment costs for the time 2016-2021 is forthcoming task in the frame of RBMP- updating process.	-	UWWT/priority in the first RBMP	
MD	-	-	3.2 billion (over 20 years)	WWT (urban and rural)	
UA	n. a.				

*timescales: 2009-2015, if not noted otherwise.

**data for the whole country (Danube part represents 96.23 % of the total territory of Slovakia).

Table 2: What are water services - what are water uses?

Country	Only water supply and wastewater	Water supply, wastewater AND others	Included in cost recovery calculations (Y/N)	Other definitions
DE	\checkmark		Y	
AT	\checkmark		Y (based on estimation)	
CZ		Rivers and river basin management; surface water abstraction; GW abstraction; discharge of wastewater into surface water; discharge of wastewater into GW; impoundment for the energy production; navigation – only recreation	N (but in the 2 nd cycle, several others will be added)	
SK		✓ Use of hydro-energy potential of water- course; abstraction of energy water from watercourse; abstraction of surface water from water-course	Y	Navigation is defined as a "public service - paid by the state"
HU		✓ Agricultural water services for irrigation, fishponds, etc. Water abstraction for its own use (for industrial, agricultural, households and thermal water uses)	Y	✓ (the other different water uses are taken into consideration as "water uses" (according to WFD Article 2 Definition 39))

		Damming and storage of water for energy production		
SI		√ 23 further services defined	Partly (financial costs recovery for public water supply and for public wastewater collection and treatment services was assessed and the internalized part of ERC were considered for all water services).	
HR	\checkmark		Y	
BA		✓ 13 other water services defined	Ν	
ME		n.	a.	
RS	\checkmark	✓ (irrigation)	N	
RO		✓ Storage, impoundment, regulation, quantitative and qualitative assessment of water resources, operative hydrological activities, hydrological prognoses, receiving the pollutants in surface water according to legal requirements, flood protection	Y	
BG			Y All costs considered (financial, environmental and resource costs)	✓ Public water supply; public collection of waste water; public treatment of waste water; individual water supply in industry; individual water supply in agriculture for irrigation; individual water supply for stock- breeding; producing of electric power by water electric plant; protection of harmful impact of water; navigation and other activities connected with navigation; individual drinking water supply
MD	\checkmark		Y	
UA		n.	a.	

Country	Water service	Environmental cost [EUR/m ³ , EUR/?, not assessed]	Resource cost [EUR/m ³ , EUR/?, not assessed]	Payment* for environmental cost recovery [EUR/m ³ , no payment*]	Payment* for resource cost recovery [EUR/m ³ , no payment*]
DE	Water supply	ERC are considered in the recov services (EUR/m ³); they are			very of the costs of water supply e not quantified individually
DE	Waste water treatment	ERC are considered in the recov services; they are not q			very of the costs of waste water quantified individually
AT	Water supply	ERC are internalized in the price t they are no			ed in the price for drinking water ey are not assessed
AI	WWT	ERC are internalized in the price fo but they are n			ized in the price for wastewater ut they are not assessed
	Drinking water supply	ERC costs in the form of charges f abstraction is internalized in the p		No separate payment exists. ER	C recovery costs are internalized.
	Wastewater treatment	ERC are in the form of charges for p wastev	-	See the answer above.	
CZ	Water storage and impoundment for energy production	ERC costs in the form of charges for impoundments are internalized in the price which is agreed between the customer and State Enterprises of River Basin Management(EUR/m ³)		No separate payment exists. ERC recovery costs are internalized.	
	Navigation	Not assessed	Not assessed	No payment	No payment
	Water supply for households, industry and agriculture	Not assessed	Resource cost in the form of charges for groundwater abstraction as well as payments for surface water abstraction is internalized in the price for drinking water (EUR/m ³)	No payment	No separate payment, only the internalized one
SK	Collection and treatment of wastewater	Environmental cost in the form of charges for discharge of wastewater is internalized in the price for the collection and treatment of wastewater (EUR/m ³)	harges for discharge of water is internalized in the Not assessed ce for the collection and		No payment
	Use of hydro-energy- potential of watercourse	Not assessed	Not assessed	No payment	No payment
	Abstraction of energy water	Not assessed	Not assessed	No payment	No payment

Country	Water service	Environmental cost [EUR/m ³ , EUR/?, not assessed]	Resource cost [EUR/m ³ , EUR/?, not assessed]	Payment* for environmental cost recovery [EUR/m ³ , no payment*]	Payment* for resource cost recovery [EUR/m ³ , no payment*]
	from watercourse				
	Abstraction of surface water from watercourse	Not assessed	Not assessed	No payment	The payment for surface water abstraction is determined in EUR/m ³ and is a component of the price for drinking water. This payment is considered as covering a part of resource costs.
	Wastewater collection and treatment for industry public	EC are internalized in the price for wastewater treatment (EUR/m3)	-	0,0241	-
	Direct discharge of industry	EC are internalized in the water load fee (EUR/m3)	-	0,0016 ¹	-
	Direct discharge of other sector	EC are internalized in the water load fee (EUR/m3)	-	0,01811	-
HU	Public water supply for households and others	-	RC are internalized in the price for wastewater treatment (EUR/m ³)	-	0,0181
	Water supply for industry (own wells)	-	RC are internalized in water resource fee (EUR/m ³)	-	0,0551
	Water supply for agriculture (livestock)	-	-	-	n. a.
	Water supply for agriculture (irrigation, fishponds, rice production)	-	-	-	0
	Wastewater collection and treatment for industry	not assessed (only internalized part assessed)	not assessed (only internalized part assessed)	Environmental tax: 26.4125 EUR/unit load	-
SI ³	Wastewater collection and treatment for households	not assessed (only internalized part assessed)	not assessed (only internalized part assessed)	Environmental tax: 26.4125 EUR/unit load	-
	Water abstraction for drinking	not assessed	not assessed	Water reimbursemen	t fee: 0.0638 EUR/m ³

³ Data for Slovenia updated according to the draft of 2nd RBMP 2015-2021.

Country	Water service	Environmental cost [EUR/m ³ , EUR/?, not assessed]	Resource cost [EUR/m ³ , EUR/?, not assessed]	Payment* for environmental cost recovery [EUR/m ³ , no payment*]	Payment* for resource cost recovery [EUR/m ³ , no payment*]
	water supply	(only internalized part assessed)	(only internalized part assessed)		
	Water abstraction for drink industry	not assessed (only internalized part assessed)	not assessed (only internalized part assessed)	Water reimbursement fee: 0.092 EUR/m ³ Water reimbursement fee: 0.092 EUR/m ³ Payment for water rights (details in Slovene RBMP for Danube RBI	
	Water abstraction for technological purposes	not assessed (only internalized part assessed)	not assessed (only internalized part assessed)	Water reimbursemer	nt fee: 0.092 EUR/m ³
	Water abstraction for swimming pools open to public, natural spas	not assessed (only internalized part assessed)	not assessed (only internalized part assessed)	Water reimbursement fee: 0.0015 EUR/m ³	
	Water abstraction for snowmaking	not assessed (only internalized part assessed)	not assessed (only internalized part assessed)		
	Water abstraction for irrigation in agriculture	not assessed (only internalized part assessed)	not assessed (only internalized part assessed)		
	Water abstraction for irrigation of non-agricultural activities	not assessed (only internalized part assessed)	not assessed (only internalized part assessed)	Water reimbursemen	t fee: 0.0919 EUR/m ³
	Water abstraction for technological purposes for cooling thermal and nuclear power plants	not assessed (only internalized part assessed)	not assessed (only internalized part assessed)	Water reimbursement	fee: 0.00738 EUR/m ³
	Water abstraction for aquaculture of salmonid fish	not assessed (only internalized part assessed)	not assessed (only internalized part assessed)		036 EUR/m3 available water for m water source
	Water abstraction from public water supply services for drink industry	not assessed (only internalized part assessed)	not assessed (only internalized part assessed)	Water reimbursemen	t fee: 0.1009 EUR/m ³
	Water abstraction for technological purposes where water is main ingredient	not assessed (only internalized part assessed)	not assessed (only internalized part assessed)	Water reimbursemen	t fee: 0.1009 EUR/m ³
	Water abstraction for swimming pools open to public, natural	not assessed (only internalized part assessed)	not assessed (only internalized part assessed)	Water reimbursemen	t fee: 0.1009 EUR/m ³

Country	Water service	Environmental cost [EUR/m ³ , EUR/?, not assessed]	Resource cost [EUR/m ³ , EUR/?, not assessed]	Payment* for environmental cost recovery [EUR/m ³ , no payment*]	Payment* for resource cost recovery [EUR/m³, no payment*]
	spas				
	Water abstraction for irrigation.	not assessed (only internalized part assessed)	not assessed (only internalized part assessed)	Water reimbursemen	t fee: 0.1009 EUR/m ³
	Electricity production in hydropower plants below 10 MW	not assessed (only internalized part assessed)	not assessed (only internalized part assessed)	Water reimbursement fee: 0.2361 EUR/MWh potential water energ available for electricity production according to obtained water rig	
	Electricity production in hydropower plants from 10 MW and above	not assessed (only internalized part assessed)	not assessed (only internalized part assessed)	available for electricity production	EUR/MWh potential water energy, a according to obtained water right a Slovene RBMP for Danube RBD)
	Water used for heat production	not assessed (only internalized part assessed)	not assessed (only internalized part assessed)	Water reimbursement fee: 0.974 EUR/MWh energy, available for heat production according to obtained water right Payment for water rights (details in Slovene RBMP for Danube RE	
	Water used for water driven mills, saws and other similar devices	not assessed (only internalized part assessed)	not assessed (only internalized part assessed)	Water reimbursement fee: 0.1948 EUR/MWh potential water energy available for mechanical work according to obtained water right	
	Sediment extraction	not assessed (only internalized part assessed)	not assessed (only internalized part assessed)	extract	of extracted gravel; 13.9 EUR/m ³ of ed sand a Slovene RBMP for Danube RBD)
	Water used for cyprinid fish aquaculture	not assessed (only internalized part assessed)	not assessed (only internalized part assessed)	Water reimbursement	fee: 0.000972 EUR/m ²
	Water used for mariculture	not assessed (only internalized part assessed)	not assessed (only internalized part assessed)	Water reimbursement	fee: 0.00498 EUR/m ²
	Water used for commercial pond fishing	not assessed (only internalized part assessed)	not assessed (only internalized part assessed)	Water reimbursemen	t fee: 0.0194 EUR/m ²
	The use of water areas for the operation of ports to vessels	not assessed (only internalized part assessed)	not assessed (only internalized part assessed)	0.345 EUR/m ² for local period 0.25 EUR/m ² for ports larger than ports smaller than 1,000,000 m ² and 1,000 m ² and	7 EUR/m ² for tourist harbours, orts, sports ports and other, 1,000,000 m ² , 0.0207 EUR/m ² for nd for areas of entering and exiting atterside land used for embarking

Country	Water service	Environmental cost [EUR/m ³ , EUR/?, not assessed]	Resource cost [EUR/m ³ , EUR/?, not assessed]	Payment* for environmental cost recovery [EUR/m ³ , no payment*]	Payment* for resource cost recovery [EUR/m³, no payment*]
	The use of water areas for the operation of anchoring vessels	not assessed (only internalized part assessed)	not assessed (only internalized part assessed)	Water reimbursement fee: 2.07 0,0128 EUR/m ² for anchorag	7 EUR/m ² for local anchorages, ges larger than 10,000,000 m ²
	The use of water areas for operation of bathing places	not assessed (only internalized part assessed)	not assessed (only internalized part assessed)	Water reimbursemen	t fee: 0.9597 EUR/m ²
	Wastewater service	(for industry depends of Development fee introduced on HRK/m ³ or 0 ERC are partly internalized throu	Water protection fee: 2.85 HRK/m ³ or 0.38 EUR/m ³ for households (for industry depends on level of pollution); Development fee introduced on local level and vary from 0–4.0 HRK/m ³ or 0.53 EUR/m ³ ERC are partly internalized through water price (in form of water fees). Assessment of ERC is ongoing.		or 0.4 EUR/m ³ rough estimation has been made, f Hrvatske vode (National Agency (anagement)
HR	Water supply service	Water use fee: 1.35 HRK/m ³ or 0.18 EUR/m ³ abstracted water; Water use fee for energy (5-7,5% of price of 1kWh for generation of electrical power and 2 HRK/kW/year for plant operation); Development fee - introduced on local level and vary from 0–4.0 HRK/m ³ or 0-0.53 HRK/m ³ ERC are partly internalized through water price (in form of water fees). Assessment of ERC is ongoing.		1.7 HRK/m ³ or 0.22 EUR/m ³ For purpose of this questionnaire rough estimation has been made, based on Annual Financial Plan of Hrvatske vode (National Agency for water Management)	
	Public water supply	-	-	-	0.005 Euro/ m ³ of abstracted water
	Bottling of water & mineral water	-	-	-	1.00 Euro/ m ³ of abstracted water
	Water supply to industry and others (abstraction)	-	-	-	0.01/0.015 Euro/m ³ (RS/FBiH)
BA	Irrigation (abstraction)	-	-	-	0.001 Euro/m ³ BA
	Fish farming (abstract.)	-	-	-	0.0005 Euro/m ³ (RS only) abstr. water
	Fish farming (pollution)	-	-	0.01/0.025 (RS/FBiH) Euro/kg produc. fish	-
	Electricity production	-	-	0.0005 Euro/kWh of produced electricity	-

Country	Water service	Environmental cost [EUR/m ³ , EUR/?, not assessed]	Resource cost [EUR/m ³ , EUR/?, not assessed]	Payment* for environmental cost recovery [EUR/m³, no payment*]	Payment* for resource cost recovery [EUR/m³, no payment*]
	Wastewater discharge	-	-	1.00 Euro/PE	-
	Pollution caused by vehicles	-	-	1.00 Euro/PE	-
	Pollution caused by use of artificial fertilizer	-	-	0.0025 Euro/kg prod. / imported fertilizer	-
	Pollution caused by use of pesticides	-	-	0.04 Euro/kg of prod. / imported pesticides	-
	Sediment extraction	-	-	0.75 Euro/m ³ of the extracted material	-
	General water charge	-	-	0.5% of the net salary (FBiH only)	0.5% of the net salary (FBiH only)
ME			n. a.		
	Fee for water use (public utilities), population	-	-	-	Extracted amount 0.002
	Fee for water use (public utilities), legal entities	-	-	-	Extracted amount 0.004
	Fee for raw water use	-	-	-	0.003
	Fee for irrigation water use	-	-	-	0.001
RS	Fee for water bottling	-	-	-	0.012 (EUR/I)
	Fee for discharged water (public utilities), population	-	-	-	0.002
	Fee for discharged water (public utilities), legal entities	-	-	-	0.002
	Electricity production in hydropower plants below 10	-	-	Water reimbursement fee: 0.708 EUR/MWh potential water energy available for electricity production according to obtained water right	

Country	Water service	Environmental cost [EUR/m ³ , EUR/?, not assessed]	Resource cost [EUR/m ³ , EUR/?, not assessed]	Payment* for environmental cost recovery [EUR/m³, no payment*]	Payment* for resource cost recovery [EUR/m³, no payment*]
	MW				
	Electricity production in hydropower plants from 10 MW and above	-	-	Water reimbursement fee: 0.711 E available for electricity productior	
	Thermal power plants with recirculating cooling system	-	-	Water reimbursement	fee 0.386 EUR/MWh
	Water supply	-	0.15 EUR/cm	-	0.018 EUR/cm
RO	Wastewater treatment (* includes sewerage)	0.3 EUR/cm	-	0.3 EUR/cm	-
	Water abstraction for households from surface waters				
	Water abstraction for industry from surface waters				
	Water abstraction for irrigation				
	Water abstraction for aquaculture				
	Water abstraction for hydropower				
	Water abstraction for thermo power plants				
	Water abstraction for households from groundwater waters				
	Navigation (lock)				
	Receive pollutants in the surface waters				
BG	Public water supply	105,837.42 EUR (2012) (According Methodology: Costs for removal of damages, caused by diffuse pollution from	3,765,664.71 EUR (in 2012) 1.Costs connected with present lack of water	Recovery through water price paid by households, industry, agriculture and services Price for water supply by water	Recovery through water price paid by households, industry, agriculture and branch of services

Country	Water service	Environmental cost [EUR/m ³ , EUR/?, not assessed]	Resource cost [EUR/m³, EUR/?, not assessed]	Payment* for environmental cost recovery [EUR/m³, no payment*]	Payment* for resource cost recovery [EUR/m³, no payment*]
		agriculture, stock-breeding and fish- breeding)	2.Costs connected with future lack of water	companies/drinking water: 0.41 €/m3; Price for water supply for irrigation/supply by "Irrigation systems": 0.18 €/ m3	Price for water supply by water companies/drinking water: 0.41 €/ m3 Price for water supply for irrigation/supply by "Irrigation systems": 0.18 €/ m3
	Public collection of waste water	13,260,866.23 EUR (in 2012) (Costs for removal of damages, caused by diffuse pollution from settlements without sewage system)	No identified resource costs	Recovery through prices of public collection of waste water Price for collection of waste water: 0.09 €/ m3	Ν
	Public treatment of waste water	 27 240 608,85 EUR (in 2012) (1.Costs for removal of damages, caused by point pollution of waste water from households and industry /building of WWT-Plants 2. Costs for removal of damages, caused by diffuse pollution from landfills) 	No identified resource costs	Recovery through prices of treatment of waste water Price for treatment of waste water: 0.14 €/ m3	N
	Individual water supply in industry	No identified environmental costs	Costs in case of future water scarcity (no resource costs for 2008-2012: 0 €/m3)	N	Recovery through fee for water use according to National Tariff for fees: 0.045€/m3 – surface water. 0.07€/m3 – ground water.
	Individual water supply in agriculture for irrigation	7,669.38 EUR (in 2012) (Costs for removal of damages, caused by diffuse pollution from agriculture)	Costs in case of future water scarcity (no resource costs for 2008-2012: 0 €/m3)	Recovery through fee for water use according to National Tariff for fees: 0.0005€/m3 – surface water 0.005€ m3 – ground water	Recovery through fee for water use according to National Tariff for fees 0.0005€/m3 – surface water 0.005€/m3 – ground water
	Individual water supply for stock-breeding and fish- breeding	750,065.19 EUR (in 2012) (Costs for removal of damages, caused by diffuse pollution from	Costs in case of future water scarcity (no resource costs for the period 2008-2012: 0 €/m3)	Recovery through fee for water use according to National Tariff for fees:	Recovery through fee for water use according to National Tariff for fees

Country	Water service	Environmental cost [EUR/m ³ , EUR/?, not assessed] stock-breeding and fish-breeding)	Resource cost [EUR/m ³ , EUR/?, not assessed]	Payment* for environmental cost recovery [EUR/m³, no payment*] 0.0005€/m3 – surface water 0.005€/m3 – ground water	Payment* for resource cost recovery [EUR/m³, no payment*] 0.0005€/m3 – surface water 0.005€/m3 – ground water
	Producing of electric power by water electric plant	 16,361.34 EUR (in 2012) (1.Costs for removal of damages, caused by drying of rivers due to water use of hydro power plants; 2. Costs for removal of damages, caused by interruption of continuation of the rivers due to water use of hydro power plants /costs for building of fish-passages) 	Costs in case of future water scarcity, but no resource costs for the period 2008-2012: 0 €/ m3	Recovery through fee for water use according to National Tariff for fees: 0.0008 €/m3	Recovery through fee for water use according to National Tariff for fees: 0.0008 €/m3
	Protection of harmful impact of water	Costs for measures for recovery of damages due to gravel extraction: 2008-2012: 0 €/ m3	No identified resource costs	No fee. Cost recovery: - Own incomes of municipalities - State financing for "Irrigation systems" -State transfers Total amount for 2012: 20,577,453.03 EUR;	No
	Water conservation	No identified environmental costs (only financial costs)	No identified resource costs (only financial costs)	No fee. Cost recovery of financial costs only	No fee. Cost recovery of financial costs only
	Navigation and other activities connected with navigation	Costs for removal and prevention of damages, caused by navigation :2008-2012 for Danube - 0 €/m3	No identified resource costs	Cost recovery through harbor fees paid by shipping sector: 2008-2012 for Danube - 0 €/ m3	No
	Individual drinking water supply	No identified environmental costs	Costs in case of future water scarcity, but no resource costs for the period 2008-2012: 0 €/m3	No	Cost recovery through fees for issue of permits 0.02 €/m3 – surface water 0.75 €/m3 – ground water
MD	Water supply for households, industry, agro-industry, hydropower, irrigation, fishery	not assessed	Resource cost is paid in the form of payments for special water use into the state budget and is	no tax	no tax

Country	Water service	Environmental cost [EUR/m ³ , EUR/?, not assessed]	Resource cost [EUR/m ³ , EUR/?, not assessed]	Payment* for environmental cost recovery [EUR/m ³ , no payment*]	Payment* for resource cost recovery [EUR/m³, no payment*]
			internalized in the cost of goods and services provided by water users as follows:		
			1) For each 1 (one) m ³ of water abstracted from the surface water bodies – 0.02 EUR, including for irrigation		
			2) For 1 (one) m ³ of abstracted underground water , including drinking water for bottling for further commercial activity – 1 EUR		
			3) For each 10 (ten) m ³ of water used by hydro-power stations – 0.004 EUR		
	Collection and treatment of wastewater	Environmental cost is paid to the state budget in the form of charges for discharge of wastewater, and is internalized in the price for the collection and treatment of wastewater (when wastewater is discharged in allowed limits, it is 0.02 EUR/m ³)	not assessed	no tax	no tax
UA			n. a.		

*: Data is from 1st analysis (2005-2006).

Country	ERC estimations available [Y/N/partly]	Clear Methodology for calculating ERC [Y/N/partly]	Clear Methodology for cross subsidies [Y/N/partly]
DE	Ν	No commonly agreed position on the issue of operationalizing the concept of ERC available across Europe.	N
AT	N AT is "on the way" to find a method to isolate/separate the ERC in (company) cost accounting systems, to make them visible and do get a better basis for calculations.	Partly (expert judgment involved)	N
CZ	Y	Partly The calculation of EC in CZ is based on the costs of renewal and saved costs. It determines the costs that would be necessary for compensation of impacts of water management services on environment, respectively for the compensation of the impacts disturbing the state of surface and GW from the quantitative, qualitative and hydromorphological point of view.	N (Subsidies do not play a role in CZ)
SK	N No "full estimations of ERC for single water services"; only the "internalized parts are quantified" ⁴ .	N (still in development)	Partly (subsidies play little role)
HU	Partly ERC are partly quantified, only the internalized parts are quantified.	Partly (Methodology for calculating Water Load Fee seen as ERC method)	Ν
SI	Partly ERC are partly quantified, only the internalized parts are quantified.	N (still in development)	Ν
HR	Partly ERC are partly quantified, only the internalized parts are quantified.	Partly (cost-based approach) Assessment of ERC is ongoing.	Ν
BA	Partly ERC are partly quantified, only the internalized parts are quantified.	Partly (cost-based approach and expert judgment)	Ν
ME		n. a.	
RS	Ν	Partly	Ν

Table 4: Use and calculation of ERC

⁴ The share of the charges for the discharge of wastewater into the water courses on the total costs of water companies in providing of wastewater services (i.e. wastewater collection and treatment) is ca. 1,36 % (2010) – these charges are considered as environmental costs. Charges for groundwater abstraction and payments for surface water abstraction are considered as a part of the resource costs (which are paid by those who have the permission to use the water source). The share of these charges and payments for the abstraction on the total costs of water companies in providing of water supply service is about 2,97 % (2010). However, the abstraction of water could be also seen as a form of the environmental costs (because an abstraction represents one of the biggest pressures on water body)...The charges for discharge of wastewater do not represent full estimation of environmental costs. These charges are stipulated by the Decree of the Government and represent only a part (approximately 30%) of the real costs necessary for the wastewater treatment in the wastewater treatment plants.

Country	ERC estimations available [Y/N/partly]	Clear Methodology for calculating ERC [Y/N/partly]	Clear Methodology for cross subsidies [Y/N/partly]
	No "full estimations of ERC for each water service", but parts are included in charges/fees.	(cost-based approach)	
RO	Partly ERC are partly quantified, only the internalized parts are quantified.	Partly (cost-based approach)	No cross subsidy legally imposed
BG	Y ERC are quantified (2008-2012)	Y (Methodology is developed)	Ν
MD	N No estimations of ERC for each water service, but ERC "are internalized".	Ν	Ν
UA		n. a.	

Table 5: Cost Recovery (CR)

		1	1	1		
Country	Prices and costs for water services available ⁵ Levels of CR stated [Y/N/partly] [Y/N/partly]		Levels of CR for all defined water services [Y/N]	Clear methodology for calculating CR [Y/N/partly]		
DE	Y (water supply and waste water services)	Y (water supply and waste water services)	Y	Y		
AT	Y (total costs and total revenues of water services (water supply and wastewater treatment) are available, as well as bandwidths/ ranges of average water prices	Y Y		, Y		Y (based on expert judgment)
CZ	Y (abstraction, water supply and wastewater)	Partly (all O&M costs are fully covered, when including also subsidies on investment we would not reach 100% of cost recovery)	N (only water supply services and wastewater treatment)	N		
SK	Y (for all five water services)	Y	Y	N (seems only financial costs are considered)		
HU	Y (for the 1 st econ analysis) / partly (for the 2 nd economic analysis)	Y (for the 1 st econ analysis for drinking water and waste water) / partly (for the 2 nd analysis, which is ongoing)	Partly (analysis is ongoing)	Partly (analysis is ongoing)		

⁵ For exact amounts, see table 3 above.

ICPDR / International Commission for the Protection of the Danube River / www.icpdr.org

Country	Prices and costs for water services available ⁵ [Y/N/partly]	Levels of CR stated [Y/N/partly]	Levels of CR for all defined water services [Y/N]	Clear methodology for calculating CR [Y/N/partly]
SI	Y (for several water services)	Partly	N (only for public water supply and for public wastewater collection and treatment services)	Partly (only financial costs and internalized part of environmental and resource costs considered)
HR	Partly (water supply for households and industry)	Y	Y	Y (methodology and CR calculation will be included in 2nd National RBMP)
BA	Y (water supply and wastewater, excluding treatment)	Y	Y	Partly (depreciation, water loses, environmental and resource costs are not included)
ME		n.	a.	
RS	Partly (water supply for households and industry)	Ν	N	Ν
RO	Partly (water supply for households and industry)	Ν	N	N (only O&M costs considered; no figures provided)
BG	Y (for all water services)	Y	Y	Y
MD	Y (water supply and wastewater)	Ν	N	N
UA		n.	a.	

Table 6: The links between ERC and payments

Country	CR through fees/charges/taxes	CR through permits	CR through mitigation/supplementary measures	Clear definition of water services paying for RC and/or EC?	
DE	✓	√	✓	Concerted definition across Germany; differing definitions available and put into practice across Europe.	
AT	✓	√	Through the Programme of Measures the cost recovery regarding ERC was carried out.	Y (water supply and wastewater)	
CZ	\checkmark	-	-	Unclear	
SK	~	-	✓ (CR through mitigation/supplementary	Y (water supply: RC; wastewater: EC)	

			CD through	Clear definition of
Country	CR through fees/charges/taxes	CR through permits	CR through mitigation/supplementary measures	Clear definition of water services paying for RC and/or EC?
			measures)	
HU	\checkmark	✓ (at least for abstraction)	-	Y (all water users except irrigation, fishponds and rice production)
SI	\checkmark	~	\checkmark	Y (all water services)
HR	\checkmark	-	Through the Programme of Measures the cost recovery analysis regarding ERC was carried out	Y
BA	\checkmark	-	-	Y (see table 3)
ME			n. a.	
RS	\checkmark	\checkmark	-	-
RO	~	-	-	Y (water supply: RC; wastewater: EC)
BG	√ (for some water services)	No	-	Costs for some measures of the PoM will be covered by incomes of water services and fees
MD	~	~	-	Y (water supply: RC; wastewater: EC)
UA			n. a.	

Table 7: Use of Disproportionality of Costs in the Danube countries

Country	"Disproportionality of costs" used as a justification for exemptions (Y/N)*	Disproportionality applied for justifying Article 4.4 exemptions (Y/N)*	Disproportionality applied for justifying Article 4.5 exemptions (Y/N)*	Methodology/analysis tools used#
Austria	Y	Y	Ν	CEA
Bosnia and Herzegovina	N (or partly)	-	-	-
Bulgaria	-	-	-	-
Croatia	Y	Y	Y	Cost-benefit-Analyses Affordability, Cost-Effectiveness Analysis
Czech Republic	Ν	-	-	-
Germany (Danube RB)	(Danube Y		N	Assessment and evaluation of costs and benefits
Hungary	-	-	-	-
Moldova	-	-	-	-

ICPDR / International Commission for the Protection of the Danube River / www.icpdr.org

Country	"Disproportionality of costs" used as a justification for exemptions (Y/N)*	Disproportionality applied for justifying Article 4.4 exemptions (Y/N)*	Disproportionality applied for justifying Article 4.5 exemptions (Y/N)*	Methodology/analysis tools used#
Montenegro	-	-	-	-
Romania	Y	Y	Y	Cost-benefit- Analyses Affordability, Cost-Effectiveness Analysis
Serbia	N	-	-	-
Slovak Republic	Y	Y Y Y Y		Affordability, Cost-Effectiveness Analysis
Slovenia	Currently unknown	Currently unknown Currently unknown		Currently unknown
Ukraine			-	-

Questions marked with * will be reporting requirements (EC Reporting Guidance 2016 v4.9 of 30th January 2015). Questions marked with # are "conditional" reporting requirements, i.e. required if disproportionality has been used (EC Reporting Guidance 2016 v4.9).

Economic growth in general until 2021	Economic growth in agriculture until 2021	Economic growth in industry until 2021	Growth in electricity production (thermal) until 2020	Growth in electricity production (hydropower) until 2020 (change in GWh/a produced 2013-2020)*	Growth in energy production (biomass) until 2020 (change in GWh/a produced 2013-2020)#	Population growth until 2021 (changes in total population 2013- 2021 at constant fertility rates)+	Water demand per capita (development until 2021)
			Aust	ria			
Average economic growth: 1,5% p.a. until 2025. Overall economic output-growth: 1,8%	Agricultural area will decrease: Tendencies for intensifying agriculture will decrease.	Chemicals and chemical products: growth of 5,1% p.a. Metals: annual growth rate: 2,4%. Wood and paper e.g.: corresponds to the overall economic average. Below overall economic average: glass, products of stone and earth, food products and beverages	n. a.	+10.9% (37,958 to 42,114 GWh/a)	+7.9% (4,769 to 5,147 GWh/a)	+2.2%	120 l/capita/day until 2050 (source see below ⁶)
			Bosnia and H	Ierzegovina			
-	-	-	-	+607% (1,667 to 10,121 GWh/a) see below for explanation)	No information	-2.9%	-
			Bulg	aria			
GVA 2021: 27 507 mio. € (realistic scenario) and 20 110 mio € (baseline	GVA 2021: 1 120 mio € (realistic scenario) and 854 mio € (baseline scenario)	GVA 2021: 6 782 mio € (realistic scenario) and 5054 mio euro (baseline scenario)	n. a.	+10% (3,374 to 3,712 GWh/a)	+44.6% (251 to 865 GWh/a)	-7.3%	Water demand 2021 (1000m ³ ; realistic scenario): Households: 124.526 Industry: 84.783 Agriculture: 14.026 Services:

 Table 8: Socio-economic trends in the Danube countries

⁶ BMLFUW, ÖVGW, BOKU, 2012: Wasserverbrauch und Wasserbedarf, Auswertung empirischer Daten zum Wasserverbrauch.

Economic growth in general until 2021	Economic growth in agriculture until 2021	Economic growth in industry until 2021	Growth in electricity production (thermal) until 2020	Growth in electricity production (hydropower) until 2020 (change in GWh/a produced 2013-2020)*	Growth in energy production (biomass) until 2020 (change in GWh/a produced 2013-2020)#	Population growth until 2021 (changes in total population 2013- 2021 at constant fertility rates)+	Water demand per capita (development until 2021)
scenario)							31.026Projected drinking water consumption per capita in 2021: 38.65 l/ day
			Croa	tia			
3,1 (GDP growth)	-	2,85 % (average rate of growth per year)	Planned growth in electricity production until 2020 of 2400 MW	No information (only baseline was reported)	+1,280% (54.2 to 697.5 GWh/a)	-1.3%	-
			Czech Re	epublic			
3%7	-	-	Stagnation	+18% (2,293 to 2,706 GWh/a)	+29.9% (3,449 to 4,483 GWh/a)	+1%	1 litre/person/day decrease
	•		Germa	any ⁸			
Moderate increase of GDP in Germany expected for 2015; expected range: +1,0 % to +2,0 %. Projections for 2015 to 2021 not available Scenarios for 2010 to 2020	Slow further decline of contribution to GDP expected. Contribution to GDP of the sector "Agriculture, forestry and fisheries" in 2014 in Germany was 0,8 %. The GDP of the sector is fluctuating around a constant level.	Moderate growth is expected. Contribution of the industry sector to GDP +/- constant around 30 %.	Currently no up-to- date trend projection for the German share of the Danube basin available	Currently no up-to-date trend projection for German share of the Danube basin available	Currently no up-to- date trend projection for the German share of the Danube basin available	 -1.8% One single figure doesn't depict situation in different regions realistically. Strong regional disparities prevail; population decrease and increase possible, depending on local conditions. 	Steady conditions, slight further decrease is possible. 2010: 121 l/inhabitant and day in Germany

⁷ Potential real GDP growth 2018-2013 in the Czech Republic: <u>http://www.oecd.org/berlin/50405107.pdf</u>

⁸ National level reported; findings cover long-time empirical values and averages; findings only apply provided that further constant development of trends takes place, corresponding uncertainties exist.

Economic growth in general until 2021	Economic growth in agriculture until 2021	Economic growth in industry until 2021	Growth in electricity production (thermal) until 2020	Growth in electricity production (hydropower) until 2020 (change in GWh/a produced 2013-2020)*	Growth in energy production (biomass) until 2020 (change in GWh/a produced 2013-2020)#	Population growth until 2021 (changes in total population 2013- 2021 at constant fertility rates)+	Water demand per capita (development until 2021)
for Germany range from an average rate of growth per year of +1,2 % to +1,9 %9.							
			Hung	ary			
-	-	-	-	+26% (188 to 238 GWh/a)	+58.5% (2,097 to 3,324 GWh/a)	-2.7%	-
			Mold	ova			
-	-	-	-	No information	+620% (5 to 31 GWh/a)	-5.3%	-
Montenegro							
-	-	-	-	No information	Exceptionally large growth (from 1.1 GWh/a in 2013 to 101 GWh in 2020)	+/- 0%	-
Romania							
-	-	5.4%10	13%	+/- 0% (19,857 to	+41.6% (1,200 to	-3.4%	-

⁹ Source: HWWI, October 2013

¹⁰ Data are available till 2018 according to the National Commission for Prognosis.

Economic growth in general until 2021	Economic growth in agriculture until 2021	Economic growth in industry until 2021	Growth in electricity production (thermal) until 2020	Growth in electricity production (hydropower) until 2020 (change in GWh/a produced 2013-2020)*	Growth in energy production (biomass) until 2020 (change in GWh/a produced 2013-2020)#	Population growth until 2021 (changes in total population 2013- 2021 at constant fertility rates)+	Water demand per capita (development until 2021)
				19,768 GWh/a)	2,900 GWh/a)		
Serbia							
-	-	-	-	+15.2% (10,636 to 12,260 GWh/a)	Exceptionally large growth (from 0 GWh/a in 2013 to 945 GWh in 2020)	-4.1%	-
			Slovak Re	epublic	·		
Slow acceleration: 2015: +2,9 % 2016: +3,6 % 2017: +3,6% 2018: +3,7 %. - lower inflation rate - growth of export sector expected - foreign investments will stagnate - unemploy- ment will decline Estimates of economic growth for the period after	Highest priority in the agricultural sector is to increase efficiency (stabilize animal production, revive special crop production). The projected development are (up to 2020): Pigs: sows increase by 30,000pcs and increase of their reproductive performance parameters at the level of 20-21 piglets/sow. Poultry: increase in numbers of poultry (states in breeding) at least 885,000pcs (i. e. in 6 runs annually = 5,310,000pcs). Bovine animals: stopping the decline in the state of cattle and stabilization of	In total, the industrial production (manufacturing) will retain its about 80 %- share in GDP creation. 13	 a) Current fossil fuel power plants: 2015: 6,3 TWh 2020: 6,3TWh 2020: 6,3TWh 2030: 5,7 TWh 2030: 5,7 TWh 2035: 5,0 TWh b) Suggested fossil fuel power plants: 2015: 0,3 TWh 2020: 0,7 TWh 2020: 0,7 TWh 2030: 1,3 TWh 2035: 1,7 TWh Also the nuclear power plants operate on the principle of thermal 	+6% (5,099 to 5,400 GWh/a)	+62.8% (1,050 to 1,710 GWh/a)	-0.7%	Available is estimate of specific water consumption per capita (public water supply) in two variants: Variant 1: 2015: 81,7 liter/year 2016: 82,0 lit/y 2017: 82,3 lit/y 2018: 82,6 lit/y 2019: 82,9 lit/y 2020: 83,2 lit/y 2021: 83,5 lit/y Variant 2: 2015: 81,7 lit/y 2016: 82,4 lit/y 2017: 83,1 lit/y

Economic growth in general until 2021	Economic growth in agriculture until 2021	Economic growth in industry until 2021	Growth in electricity production (thermal) until 2020	Growth in electricity production (hydropower) until 2020 (change in GWh/a produced 2013-2020)*	Growth in energy production (biomass) until 2020 (change in GWh/a produced 2013-2020)#	Population growth until 2021 (changes in total population 2013- 2021 at constant fertility rates)+	Water demand per capita (development until 2021)
2018 are not available11.	milk production. Sheep and goats: continuous increase in numbers of breeding and production support from sheep's milk and meat. Vegetables: increase in harvested area of vegetables by 3,000 ha and increase vegetables production by 120.2 % at the level of 240,000t. Fruit: revitalization fruit orchards during 5-7 years in the area of 4,500 ha. Potatoes: increase on harvest area of potatoes by 743 ha.12		power plants – using the principle of change of thermal energy into electrical. Expected electricity production in nuclear power plants: 2015: 15,5 TWh 2020: 23,7 TWh 2025: 23,7 TWh 2030: 32,8 TWh 2035: 32,8 TWh14	nia			2018: 83,9 lit/y 2019: 84,6 lit/y 2020: 85,3 lit/y 2021: 86,0 lit/y
			Slove	mia	1		
-	-	-	-	+21.9% (4,198 to 5,121	+47.9% (457 to 676	+0.1%	-

¹³ Source: Evaluation of Routing Options and Conditions for Development of Industrial Production in Slovakia after 2013 (Ministry of Economy of the SR, 2012). An additional source could be "The Innovation Strategy of the Slovak Republic for the years 2014 – 2020".

¹¹ Source: Ministry of Finance of the Slovak Republic (as of January 2015).

¹² Prognosis in the agricultural sector is developed based on the "Conception of Agriculture Development of the Slovak Republic for 2013-2020"; additional source: "Rural Development Programme of the Slovak Republic for the period 2014-2020".

¹⁴ There is considered only a limited construction of resources for fossil fuels and therefore only smaller sources based on natural gas with combined electricity and heat production are included in the review (mainly realized as reconstructions to replace old blocks that do not meet the new emission regulations. The thermal power plant "Vojany" with capacity of 880 MW is the largest fossil fuel power plant in Slovakia. At the power plant "Vojany 1" will operate two fluidized blocks of 110 MW, corresponding to emission requirements even after 2015. "Elektrárne Nováky" is a thermal power plant which ensures the sales of domestic coal for electricity and heat production in terms of general economic interest. In order to fulfill the new emission regulations valid after 2015 two blocks have to be reconstructed (2 x 110 MW). Construction of large *steam-gas power plants* is not intended because of air protection and preference for carbon-free nuclear power and renewable energy.

Economic growth in general until 2021	Economic growth in agriculture until 2021	Economic growth in industry until 2021	Growth in electricity production (thermal) until 2020 Ukra	Growth in electricity production (hydropower) until 2020 (change in GWh/a produced 2013-2020)* GWh/a)	Growth in energy production (biomass) until 2020 (change in GWh/a produced 2013-2020)# GWh/a)	Population growth until 2021 (changes in total population 2013- 2021 at constant fertility rates)+	Water demand per capita (development until 2021)
-	-	-	-	+25% (0.16 to 0.2 GWh/a)	Exceptionally large growth (from 0 GWh/a before 2014 to 4.220 GWh in 2020)	-6.3%	-

*Information on hydropower retrieved from the Assessment Report on Hydropower Generation in the Danube Basin; the exception is BG, where data was retrieved from the National Action Plan under the RES Directive (there was no figure for 2020). All data on hydropower applies to the national level, except HR and UA (Danube-part). For RS, the value also includes the Kosovo – a territory defined by the United Nations resolution 1244 (1999) as an autonomous province of the Republic of Serbia administered by the UN. BA reported data for the current amount of electricity production for the national part of the Danube River Basin, while the figures for the expected amount of electricity production in the year 2020 refer to the whole country. For Romania, the reference year was hydrological exceptional, an increase is therefore also expected. Data for Moldova covers time span from 2015 to 2020.

#Based on the National Action Plans in the framework of the Renewable Energies Directive (RES Directive). For non-EU countries, only for Bosnia and Herzegovina there was no NAP available. Data is on the national level.

+National level data, based on: United Nations, Department of Economic and Social Affairs, Population Division (2013) - World Population Prospects: The 2012 Revision.

Summary Assessments of trends for some Danube countries

Slovakia

Agriculture: In the "Conception of Agriculture Development of the Slovak Republic for 2013-2020" considered increase in production of selected animal commodities by 2020 at the national level (compared with 2002) does not create a real risk to the increase of water pollution with nitrogen. The emergence of such risk, which is subject to a variety of environmental factors and management cannot be excluded at farm level.

Considered increase in production of selected crop commodities by 2020 (compared with 2002) does not create preconditions for significant agriculture intensity increase and relating increase in industrial fertilizer consumption. Increase in fertilizer consumption is influenced by production of crops for marketing in relation to the realization prices. It can be stated that current intensity of nitrogen fertilization in industrial fertilizers already at present exceeds the requirements arising from the target increase in production of selected crop commodities (requirements of the "Conception"). The impact of the increase in the intensity of nitrogen fertilization for increasing risk of pollution of water resources cannot be excluded at the farm level. In relation to the risk of pollution of surface- and groundwater with nitrogen from agriculture should be noted that the surplus balance of nitrogen is more objective indicator of non-productive nitrogen losses from agriculture than the actual consumption of nitrogen in industrial and organic fertilizers.

Industry: Key position in industry has the manufacturing, which will be a driver of economic growth also in the development up to 2020. Growth tendencies of the industry of Slovakia will be accompanied by increasing its technological level. Best development prospects in the horizon to the 2020 has the automotive industry and related sectors, especially machinery industry, electrical engineering, metallurgical industry, chemical industry (production of tires and plastics) and part of the furniture industry (car seats). Thanks new investment a favorable economic development will reach also the pulp and paper industry and glass industry.

Each of the (above mentioned) industries use to a greater or lesser extent water. Automotive industry, which is the leading branch, uses in car manufacturing large quantities so called "rinse water" for degreasing and surface treatment of bodyworks. The water must be properly adjusted for each of the production processes. Moreover, it is often necessary to recycle water: the objective is to minimize the consumption of new water and to prevent the penetration of heavy metals from surface treatment processes into wastewater (use of technology of selective ion exchange). Boiler water, cooling water and water for humidification are further examples of the water use in the car industry.

Energy (from: Draft Energy Policy until 2035): According to the reference scenario in the coming period it is envisaged the growth in final energy consumption up to 2035. The energy-saving scenario envisages a further reduction of final consumption. Between 2010 and 2012 there was a significant 10% (40 PJ) decrease in final energy consumption. For saving scenario and application of long-term key measures of energy efficiency, by 2035 further final energy consumption decrease may arise.

It is assumed that by the influence of the turbulence of the economic crisis the consumption of electricity in Slovakia reaches pre-crisis levels until 2017. In the period 2015-2017 the annual increase of electricity consumption should reach 1.7%, and in the next two years it is expected to slow down to 1.4%, respectively 1.3%. As regards the balance of consumption and production of electricity a positive balance is expected only from 2016.

The largest producer of electricity at the national level is "Slovenské elektrárne, a.s.", with the market share of 82 %. The company uses the surface water mainly as technological and cooling water and hydro-energy potential in hydropower plants. The discharge of wastewater is based on the valid permits issued by water management authorities. As the operation of power plants can have a negative influence on status of water, the company within the monitoring of groundwater and surface water ensures the control of this aspect. Data on hydrological and hydrogeological water status is continuously collected in different sites of individual power plants and their surroundings.

Hydropower: In Slovakia, the largest proportion of renewable electricity production belongs to hydropower, which covers 98% of electricity from renewable sources. The use of hydro-energy potential is approximately 57%. The potential suitable for small hydropower plants, however, is used only to 25%. Hydropower will continue to have a relatively important share of electricity production from renewable sources and by 2020 a dynamic development of mainly small hydropower plants is expected. Note: "Conception of using the hydropower potential of water courses of Slovakia until 2030" will be finished by the end of 2015 (after approval of this conception the size of usable hydropower potential will be specified).

Electricity production from hydropower can have, depending on the type of hydro power plant (derivative hydropower plant, accumulation and pumped-storage hydropower plants), a negative impact on the aquatic environment, natural environment and ecosystems. Hydropower is identified as one of the main causes of hydromorphological changes, loss of longitudinal continuity of flow and significant negative impacts on fish stocks. However, not all hydroelectric power must necessarily have resulted in a deterioration of ecological status according to the WFD.

Bosnia and Herzegovina

Increase in capacity of the urban waste water treatment from current 90,000 PE for additional 600,000 PE, through construction and reconstruction of the WWTPs.

Also in Bosnia and Herzegovina there is in strategic document planned to increase development of hydropower –electricity production and it is planned till 2021 to grow agricultural sector.

Germany

In the course of the analysis of future anthropogenic developments until 2021 in the German share of the Danube basin, socio-economic indicators were considered as well as figures concerning the hydrologic budget, the development of water abstraction and waste water disposal, the energy sector, agriculture and forestry, inland water transport and flood protection.

The development of the different sectors is widely interconnected and the effects of the observable trends are partly opposed.

Yet it remains to be stated that economic growth and use of resources, like water, are decoupled in a society based on the provision of services. Even though interactions clearly exist, changes of economic parameters don't necessarily induce direct changes of ecologic parameters, e.g. concerning the use of water resources and the hydrological balance.

In the overall view the pressure situation due to the observable trends in anthropogenic activities in the considered timeframe can be expected to remain steadily on the current level. Based on the available information, no additional endangerment for achieving the environmental objectives is to be expected, yet, under the assumption of the continuation of currently observable trends, the future pressure situation can't be expected to improve until 2021.

More detailed information on future developments concerning the driving forces affecting the pressure situation on water bodies and, in the end, water status as well as trends and developments concerning the provision of water services, can be obtained in the River Basin Management Plans for the German share of the Danube Basin, provided by Bavaria and Baden-Württemberg.

Austria

Agriculture: Owing to the studied indicators of potential water pollution (livestock or landuse) and accordingly to the prognosis of the Austrian Institute of economic research (WIFO) in the background document for the Economic Analysis 2013 the following things are predicted till 2025:

- in regions with favourable conditions for the expansion of milk production, an increase of the application of organic fertilizer will take place;
- an overall decrease of the agricultural area will happen. This also reduces the risk of diffuse pollution, provided that the specific intensities do not increase;
- as Organic agriculture will be even more financially supported in the next programme for rural development, the tendencies for intensifying agriculture will heavily decrease owing to the market conditions;
- the reason for regional differences in the river basins of Rhine and Danube will be led back to structural facts in these regions.

The expected decrease in beef production (laid down in the prognosis for the (Austrian) river basin management plan 2009) has taken place in the last decade. Unlike a decade ago it is now not to be expected that extensive forms of production will be extended. Relatively high agricultural prices tend to strengthen tendencies towards intensification (see, nitrogen balance in recent years). The impact of climate change could enhance an intensification in the coming decades. However, the agrienty environmental program and conditions of the 1st pillar of the CAP weaken these trends.

Industry, Production of goods

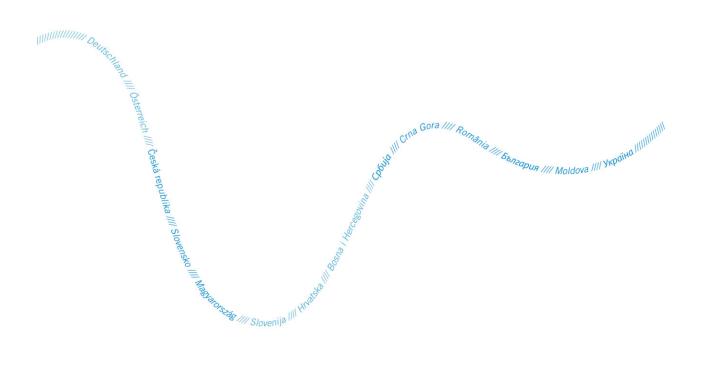
Given the observed development of water intensity and the expected production growth, it should be expected, that industrial water consumption will decline in the range of 5% to 15% by 2025.

It is assumed that the amount of waste water will continue to develop in line with water use. I.e. a moderate reduction is to be expected in the period to 2025.

Electricity generation

The electricity generation by hydro power (excluding Pumped storage power plants) will increase till 2025 by an annual average of 0.9% from 132 PJ (2010) to 152 PJ. The share of hydropower (excluding Pumped storage power plants) in domestic generation falls during this period from 54% to 52%. The share of fossil fuel power decreases from almost a quarter to 17%. The share of electricity produced from renewable energy sources (wind, photovoltaic, biomass) increases from 7% to almost 15%.

It was assumed that production losses in small hydropower and run-of-river power occur (> 10 MW) from 2011 and increase linearly until 2027. The losses in storage power plants on the other hand become noticeable from 2021. Furthermore, it was assumed that at the same time the existing potential for plant optimization for existing small hydro- and run-of-river power plants is used. Thus, the (2005) calculated losses are largely compensated..


Czech Republic

Water abstraction and waste water discharge for/from agriculture and industry in the Czech Republic are not expected to increase and the likely scenario (in abstraction and discharge) for the two sectors is stagnation. On the other hand, water abstraction and waste water discharge are expected to increase in case of households. Number of inhabitants supplied with water from water supply systems and inhabitants connected to sewerage systems and WWTPs is also expected to increase. Water quality should be positively affected by construction and improvements of WWTPs.

Progress in urban wastewater and industrial sectors by 2015

				Basic / supp	lementary measu	res				
		UWW	TD implementation			IED and	d BAT			
Country	Agglomerations >10,000 PE (and	Sensitive areas %	Estimated total costs		sources Euro)	Status of implementation	Trend	P-free detergents	Others	Remarks
	year)		(mil. Euro)	EU	National	Implementation				
Germany	Accomplished	Art. 5(8), combined with Art. 5(4)	Full compliance reached, no further significant costs	Will be made available at a later point in time	Will be made available at a later point in time	Implemented	Continuous improvement corresponding to updating BAT	P-free detergents are in use		Basic measures implemented, a minor number of projects still pending
Austria	Accomplished	Art. 5(8), combined with Art 5(4)	Full compliance reached, ongoing costs for maintenance and reinvestments		65 (2012) for total investments of 265 (Federal funding only)	Implemented	Continuous improvement corresponding to updating BAT	P-free detergents are in use		Basic measures implemented
Czech Republic	Accomplished	Whole territory	Full compliance reached, ongoing costs for maintenance and reinvestments	Will be made available later	Will be made available later	Implemented	Continuous improvement corresponding to updating BAT	dishwasher agents: P content is not restricted. Detergents with concentration of P lower than 0,5 % weight are in use except in industries and institutions where washing is organized by specially trained personnel	Measures are proposed in framewor k of the River Basin Managem ent Plan (RBM Plan)	Supplementary measures are planned as part of RBM Plan
Slovakia	2010	Whole territory				In	Continuous	The EU	Measures	2010

				Basic / supp	lementary measu	ires				
		UWW	TD implementation			IED and	d BAT			
Country	Agglomerations >10,000 PE (and	Sensitive areas %	Estimated total costs		j sources Euro)	Status of implementation	Trend	P-free detergents	Others	Remarks
	year)		(mil. Euro)	EU	National	Implementation				
		Art. 5(8)				implementation	improve-ment corresponding to updating BAT	Regulation No 259/2012 as regards the use of phosphates and other phosphorus compounds in consumer laundry detergents and consumer automatic dishwasher detergents will be implemented	will be proposed in the framewor k of the RBM Plan	
Slovenia	2010.	Art. 5 (8); Also: existing UWWTP=>10,00 0 PE in Danube Region must upgrade to tertiary treatment till August 2016	More than 884 (a)	More than 35 (a)	State – more than 398 (a) Municipal – more than 133 (a) Loans – more than 318 (a)	Implemented	Continuous improvement corresponding to updating BAT	P-free and P- including detergents are in use. Regulation on implementing the EU Regulation No 259/2012 as regards the use of phosphates and other phosphorus compounds in consumer laundry detergents and	Advisory services for farmers.	In progress. (a) more detailed information is not available

				Basic / supp	elementary measu	ires				
		UWW	TD implementation			IED and	d BAT			
Country	Agglomerations >10,000 PE (and	Sensitive areas %	Estimated total costs		j sources Euro)	Status of implementation	Trend	P-free detergents	Others	Remarks
	year)		(mil. Euro)	EU	National					
								consumer automatic dishwasher detergents is in process of adoption right now – November 2014)		
Croatia	2018 (for agglomerations larger than 15.000 PE) 2020 (for agglomerations between 10.000 and 15.000 PE - in sensitive areas) 2023 (for all of remaining agglomerations)	Decision on sensitive areas was issued in 2010. Danube river basin a catchment area of sensitive area due to eutrophycation of the Danube Delta - more advanced treatment with nitrogen and phosphorus removal in all agglomerations larger than 10.000 PE.	For Danube River RBD: Total construction costs EUR 1885 million, by means of which the Republic of Croatia would comply with the requirements of the Urban Waste Water Treatment Directive (Danube River RBD, till 2023.) . The greatest investments are expected in the period 2013 – 2018, amounting to slightly more than EUR 196 million per year.	EU funds: EUR 1225 million (till 2023)	National funds: EUR 660 million (till 2023)	Implemented	Continuous improvement corresponding to updating BAT.	EU legislation concerning the detergents is transposed into Croatian legislation. No production of P - detergents		Total construction costs EUR 3191 million, by means of which the Republic of Croatia would comply with the requirements of the Urban Waste Water Treatment Directive. The greatest investments are expected in the period 2013 – 2018, amounting to slightly more than EUR 294 million per

				Basic / sup	plementary meas	ures				
		UWW	/TD implementation			IED and	I BAT			
Country	Agglomerations >10,000 PE (and	Sensitive areas %	Estimated total costs		ng sources I. Euro)	Status of implementation	Trend	P-free detergents	Others	Remarks
	year)		(mil. Euro)	EU	National	Implementation				
										year.
Serbia	Construction ongoing for two WWTP, for three WWTP construction not yet started, planning on- going for one WWTP and for six WWTP planning not yet started ;	Proposal for designation of SA in Serbia is expected in 2015 through the cooperation Project with Swedish EPA (Designation of sensitive and vulnerable zones according to the ND and UWWD).	4500 -5000 mil. EUR for capital costs. Estimated by national experts;	Unknown	Unknown	Six permits have been issued and 105 out of an estimated 161 IPPC installations have submitted for permits.	Slow progress	Partially in use;		
Bosnia and Herzegov ina	Two existing wastewater treatment plants (WWTP) >10,000 PE and three planned WWTP of same size by 2015	Will be defined in 2013	First estimates about 450 (160 agglomerations with >2000 PE).	Unknown	Unknown	Full implementation is not determined yet. In preparation are 6 BAT for food industry.	Slow progress	Domestic factory produces about 50% P-free detergents, for imported product no information		
Hungary	Will be implemented by 31st Dec 2015 in 3 steps: 31st Dec 2015 (normal area, 2000-15000 PE) 31st Dec 2010 (normal area	On the basis of Art 5 (8) 3 sensitive areas were designated. From 2009 Art 5 (4) P and N reduction rate calculation method is using	2405 (2013-15)	1563* (2013-15)	842* (2013-15)	Implemented	Continuous improvement corresponding to updating BAT	Approx. 90% assumed as P- free by 2014 in household detergent' uses. In 2013 the 259/2004/EK regulation came into force, which will have	Measures will be proposed in the framewor k of the 2nd RBM Plan.	*Estimation: app. 35% of the cost is covered from national, and app. 65 % from EU sources.

				Basic / supp	lementary measu	res				
		UWW	/TD implementation			IED and	d BAT			
Country	Agglomerations >10,000 PE (and year)	Sensitive areas %	Estimated total costs (mil. Euro)		sources Euro) National	Status of implementation	Trend	P-free detergents	Others	Remarks
	above 15.000PE) 31st Dec 2008 in sensitive area 10000-15000 PE	by HU.						further positive effect using more P-free household detergent in HU.		
Bulgaria	2010	Whole Bulgarian part of the Danube River District	352.06 (including Urban WWTP and collecting systems)	178.36 (According to implementati on programme of Directive 91/271/EEC)	173.7 (According to Implementati on program of Directive 91/271/EEC)	Under implementation	Issue of permits corresponding to IPPC requirements	The EU Regulation No 259/2012 as regards the use of phosphates and other phosphorus compounds in consumer laundry detergents and consumer automatic dishwasher detergents will be implemented	Basic measures will be proposed in the framewor k of the RBM Plan	
Romania	2015 (2018 for agglomerations between 2000 - 10,000 PE) according to the EU Accession Treaty	Whole territory Art 5 (2) Art 5 (8)	13,400 (including agglomerations between 2000 - 10,000 PE) according to the Accession Treaty	2700 (Cohesion Fund for the period 2007- 2013) in the frame of the Sectoral Operational Program for	500 (National co- finance for EU Fund 2007-2013) 1792 (Loans at different International	Under implementation (maximum transition period obtained December 2015)	Continuous improvement corresponding to IPPC permits and IED permits	The decrease in trend of average % of P in AWM detergents is continuing. Romania will implement the provisions of the EU	Measures are proposed in the framewor k of the National RBM	In progress

				Basic / supp	lementary measu	res				
		UWW	/TD implementation			IED and	d BAT			
Country	Agglomerations >10,000 PE (and	Sensitive areas %	Estimated total costs		sources Euro)	Status of implementation	Trend	P-free detergents	Others	Remarks
	year)		(mil. Euro)	EU	National	implementation				
			12,084 (starting with 2007, for all agglomerations, basic and supplementary measures) according to the first National RBM Plan, out of which 10,772 until 2015 and 1,312 until 2018 for basic measures and 2024 for supplementary measures	Environment 2420 (Cohesion Fund for the period 2014- 2020) in the frame of the Operational Program for Large Infrastructure	Finance Institutions for the period 2006-2009) 427 (National co- finance for EU Fund 2014-2020)			Regulation No 259/2012 as regards the use of phosphates and other phosphorus compounds in consumer laundry detergents and consumer automatic dishwasher detergents (deadline 31st December 2016).	Plan	
Moldova	Till 2026 State of 2014	Not applicable	1,8000 (source: Water Supply & Sanitation Strategy) 6,7 (for all MD)	1,530 (estimate) 6,5 (for all MD)	270 (estimate) 0,2 (for all MD)	MD-EU Association Agreement was ratified by the Parliament in July 2014 (Law No 112 of July 2, 2014). Action Plan for implementation of MD-EU Association Agreement was approved by GD No 808 of Oct	In progress	No progress	In progress	For reporting of state of 2014, there exists no national statistics on UWWTP implementatio n a) disaggregated per PE of agglomeration s, and b) foreign investments,

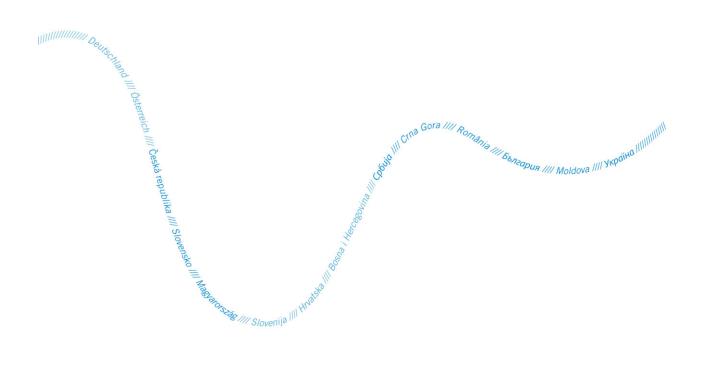
				Basic / supp	lementary measu	ires				
		UWW	TD implementation			IED and	BAT			
Country	Agglomerations		Estimated total		l sources	Status of		P-free	Others	Remarks
	>10,000 PE (and year)	Sensitive areas %	costs	-	Euro)	implementation	Trend	detergents		
	youry		(mil. Euro)	EU	National	7.0014				
						7, 2014. According to Action Plan, evaluation of institutional capacities and gaps in national legislation will be done in the 4 th quarter of 2015, and study aimed at identification of installations requiring permits will be finished in 4 th quarter of 2016				and c) EU funds very. Therefore provided figures on funding sources relate to a) all foreign investment, which are mainly EU (source of data: National Statistics on Investments of 2013, and open publications) and b) figures on Funding Sources are estimated.
Ukraine	2020	Not designated. Designation will be decided according EU-UA Association Agreement timetable.	will be determined by the implementation plan of the UWWTP directive	-	The National Law "Programme for Drinking Water" adopted 20 th of October 20011	No obligation to implement. The National Plant Protection Low was adopted in 1998. In 2006 Ukraine	Coordination of national legislation with EU standards in phytosanitary.	The Law "State regulation of detergents" had been registered in the national Parliament. This law provides a partial reduction	In progress	Not developed

				Basic / sup	plementary measu	ires				
		UWW	TD implementation			IED and	BAT			
Country	Agglomerations >10,000 PE (and	Sensitive areas %	Estimated total costs		g sources . Euro)	Status of	Trend	P-free detergents	Others	Remarks
	year)		(mil. Euro)	EU	National	implementation				
					N3933-VI) provids finance for 2015 of 916.4 mln UA hrn. During previous years The Programme for Drinking Water was usually underfunded. The State Budget for 2015 has not been adopted. Probably, many programs will be significantly reduced, because of the war with Russia.	subscribed the IPPC.		of phosphate compounds in detergents from 17% to 0.7% during 7 years. The law has not yet been adopted.		

	No of agglomerations for	Concepted	Costs				PLEMENTATION \$					
COUNTRY	which WWTP will be constructed, upgraded or	Generated load	Costs	Not	started		Ongo	oing		Co	mpleted	Comment
	extended as indicated in the					Plann	ing ongoing	Constru	uction ongoing			
	JPM of the 1st DRBM Plan ¹	PE	Euro	No of agglom	Generated load (PE)							
DE												UWWTD fully implemented
AT												UWWTD fully implemented
CZ	21 (> 10,000 PE)	387,847	-	-	-	-	-	-	-	21	387,847	All agglomerations with
	70 (> 2,000 and < 10,000 PE)	208,043	-	-	-	-	-	-	-	70	208,043	more than 2000 PE are connected to WWTPs
SK	73	3 748 336		0	0	5	213 826	16	942 100	52	2 455 020	The status of the
	272	1 126 112		0	0	113	442 625	22	108 122	137	712 755	implementation according National Programme 2012 is expressed in number of agglomeration with access to WWTP or provided by IAS . Reference year of PE - 2012-
HU	6	2,612,599										*Estimated cost: for the
	11	419,563	198 000*									period of 2011-15: 714,1 total number of agglomerations . >2,000 PE:546
SI	22 > 10,000 PE 118 between 2,000 and 10,000 PE	851,733 561,835		0 21 (a)	0 66,038	0 (a)	0	1 5	10,215 29,666	21 92	841,518 466,131	In DRBM 2009 Slovenia indicated 134 agglomerations >2,000 PE. In year 2010 aggl. have been revised. Now there are 140 aggl. >2,000 PE. New ones are reported in this table.

¹ as indicated in the Annex 3 of the 1st Danube River Basin Management Plan 2009.

	No of agglomerations for	Generated					PLEMENTATION S						
COUNTRY	which WWTP will be constructed, upgraded or	load	Costs	Not	started		Ongo	bing		Co	mpleted	Comment	
	extended as indicated in the					Planni	ng ongoing	Constru	uction ongoing				
	JPM of the 1st DRBM Plan ¹	PE	Euro	No of agglom	Generated load (PE)								
												 (a) data not reliable. Assumption is that for most of 21 aggl. planning is ongoing. (b) In some Slovenian cases one UWWTP serves for more than one aggl There are also cases that UWW of one aggl. are treated on more than one UWWTP. Thus ratio m:n should be taken into consideration. 	
HR												For Danube River RBD	
	31	1.941.649	829.306.734	0		5	1.000.371	7	363.807	19	577.471		
BA	6	100,000		2	5,000			2	80,000	2	15,000		
ME	-	-	-	-	-	-	-	-	-	-	-	-	
RS	13*	1,481,000	Unknown	6	673,000	4	343,000	2	235,000	1	230,000	*different number of aggl. due to integration of three planned WWTP in to one Regional UWWTP	


	No of agglomerations for						PLEMENTATION S					
COUNTRY	which WWTP will be constructed, upgraded or	Generated load	Costs	Not	Not started		Ongo	bing		Co	mpleted	Comment
	extended as indicated in the					Planni	ng ongoing	Constru	uction ongoing			
	JPM of the 1st DRBM Plan ¹	PE	Euro	No of agglom	Generated Ioad (PE)	No of agglom	Generated load (PE)	No of agglom	Generated load (PE)	No of agglom	Generated load (PE)	
RO	1350	18,836,562	6,994,988,374	88	677,921	320	2,358,894	480	10,531,653	462	5,268,094	This situation is a result of the rearrangement of agglomerations delineation due to the reconsideration of the priorities and funding according to the new County Master Plans and local strategies developed after 2012. As consequence in comparison with the baseline scenario presented in the Annex 3 of the DRBMP 2009, the total number of agglomerations with more than 2000 p.e. decreased from 2609 to 1852, out of which 1625 agglomerations between 2000-10000 p.e. and 227 agglomerations with more than 10000 p.e. and 1123 agglomerations between 2000-10000 p.e., representing around 89% of total biodegradable organic loads.
BG	171	1,628,204	380,678,360	109	496,090	57	616,113			5	516,001	

	No of agglomerations for						PLEMENTATION S					
COUNTRY	which WWTP will be constructed, upgraded or	Generated load	Costs	Not	started		Ongo	bing		Co	mpleted	Comment
	extended as indicated in the					Planni	ng ongoing	Constru	uction ongoing			
	JPM of the 1st DRBM Plan ¹	PE	Euro	No of agglom	Generated load (PE)	No of agglom	Generated load (PE)	No of agglom	Generated load (PE)	agglom load (PE)		
MD	4	137,000	19,320,000	4	137,000	2	32000	0	0	3	40600	In 3 agglomerations with total generated load of 40600 PE upgrade and extension of UWWTPs which were not included in the DRBMP were completed Construction of UWWTPs for 4 agglomerations included in the DRBMP has not started yet.
UA	14	638,600	2,600,000	5	559,350	3	30,116	4	47,034	2 (1 – for tubercula r clinic)	2,000 (100)	For 1 UWWTP (Beregomet, PE 2,511 (Siret basin) is planned 127.5 th.Euro but financing has not yet arrived
TOTAL	2,187	27,862,986	7,397,586,734	235	2,614,399	509	3,380,123	539	10,933,932	887	7,973,811	

Trends and implementation of measures in agriculture by 2015

Question	Land use develop	ment assessme	nt (% change)	Livestock Inorganic fertilisers application		Nitrogen (N) surplus	Nitrates Direct	ive implementation	Rural Development Programmes (Axis 2) (mil
Country	Cultivated agricultural area	Forestation	Urban area	trends	inorganic reruisers application	(trends)	Year	Vulnerable zones %	Euro)
Germany	-11	0	+1	-14%2	No changes	declining due to further increases in N-efficiency; estimate at present – 6%	1996	Action Programme for the whole German territory	Will be made available at a later point of time
Austria	with an estimate of -3,5% (period	Slight increase due to climate change and use of marginal agricultural land	Increasing, but an estimate cannot be given	0,3% 3	2,4% 4	Stabilized level between 25kg/ha and 35kg/ha	Fully implemented	Action Programme for the whole Austrian territory i.e. Austria accepts Black Sea waters as a <i>vulnerable zone</i>	817 (2012) ⁵ 5.698 (2007-2013)
Czech Republic	Slight decrease (-1)	Slight increase (0,2)	Increasing, but an estimate cannot be given	%)	Slight increase (+ 5 % N- fertilizers and P-fertilizers)	Stabilized level	2004	41,6% of Czech Republic	Will be made available at a later point in time
Slovakia ⁶	Decrease by 1.3%	Increase by 0.5%	3%	Cattle – decrease by 8% Pigs – decrease by 42% Sheep/goats – increase by 17,5% Poultry – decrease	Increase by 35% in total (of which N increase by 45%, P_2O_5 increase by 23%).	Stabilized level, under 50 kg/ha, values till now visibly influenced by variability of climatic conditions of concrete year	2004	33.5% of Slovak country	Will be available later

¹ National statistics for total area; near total area are used at present

² Data from Bavarian Grassland Study 2008

³ Data from AT Nitrates Report 2012

⁴ Data from AT Nitrates Report 2012

⁵ Grüner Bericht 2014 (www.gruenerbericht.at)

⁶ Comments from Slovakia – Data correspond to national scale and is based on Index 2011/2006. Data source – national statistics.

Country	Land use develop	ment assessme	nt (% change)	Livestock	Inorganic fertilisers application	Nitrogen (N) surplus	Nitrates Direct	ive implementation	Rural Development Programmes (Axis 2) (mil
Country	Cultivated agricultural area	Forestation	Urban area	trends		(trends)	Year	Vulnerable zones %	Euro)
				by 16%					
Slovenia		Slightly increasing, 2010-2013 (SURS)	Increasing (Kazalci okolja)	Declining trends 2010-2013 (SURS)	Slightly increasing in 2013 comparing to 2012 (SURS)	Slightly increasing since 2010-2012 (Kmetijski inštitut Slovenije, Kazalci okolja)	2004	Action Programme for the whole territory of Slovenia.	Agri-Environment Climate Measures and Organic farming (2014-2020) caa. 260 mil. euro
	under cropland and 1.216.000 ha under grassland. That makes around	of 2.334.000 ha of total Croatian area was under forests (cca 41 % of total area of Croatia).	around 4.5 % of the total area of Croatia was under settlements.	production in 2012. there were total of	In 2012. the consumption of mineral fertilizers in Croatia was 463.688 t.	Unknown	July 2013		Development Program for period 2014 – 2020 is funded by total of 2.383.790.294,12 €
Serbia	-1.5	0.5	1	In relation to the ten years average (2003- 2012) cattle: -11.7%; pigs -10.7%; horses -16.9%; sheep +4.1%; goats and poultry +25.4%;	46 kg N	n/a	Not yet transposed in the National legislation. Implementation of ND is planned for 2018.	Not yet determined.	n/a
Bosnia and Herzegovina	n/a	n/a	n/a	n/a	n/a	n/a	Full implement- tation is expected end 2021.	Identification of vulnerable zones is expected end 2012.	n/a
Hungary	-1 (2009-2013)	+1,0 (2009-2013)	+ 0.3	2013/2009 ratio: cattle: +12% pig: -7%	Increasing trend 2013/2009 ratio on country level: +35%	The yearly N surplus is generally negative on country level, but	From 2001continuously	70.0 (2014)	1627 (for the period 2007- 2013) For the period 2014-20 still

	Land use develop	ment assessme	nt (% change)			Nitrogen (N) surplus	Nitrates Direct	ive implementation	Rural Development
Country	Cultivated agricultural area	Forestation	Urban area	Livestock trends	Inorganic fertilisers application	(trends)	Year	Vulnerable zones %	Programmes (Axis 2) (mil Euro)
				sheep: +4 % poultry: -8% From 2009 to 2012 slightly decreasing (cattle, pig, sheep, poultry), but from 2012-2013 slightly increasing trends mainly in cattle, pig.	Brutto NPK fertilizer application (kg /hectare): 2009. 64 2010 72 2011 77 2012 82 2013 93	there are some years when the mean value is positive Year /N- balance (kgN/hectar) 2004 -13 2008 -18 2011 - 2 (There are bigger differences on the county level averages.)			under negotiation with EU Commission.
Bulgaria	Slight increase of the arable area and decrease of the total agricultural area	Slightly increasing	Slightly increasing	For the <i>livestock</i> equivalent indicator it is expected to increase by up to 2.5% by 2013	It is expected to increase regarding the use of inorganic fertilisers.	Total balance of nutrients in the soil is negative. N surplus is not expected.	2004: Identifi-cation of vulnerable zones 2006: First Action Programme	34	For the whole country: 3242 – National Rural Development programme 2007-2013, of which 777 for Axis 2 - Nature protection including protection of water resources.
Romania	Slightly decreasing (based on Statistics 2005-2013)	Very slight increasing (based on Statistics 2005-2013)	Slightly increasing (based on Statistics 2005- 2013)	Decreasing for cattle, pigs, horses and poultry and increasing for sheep and goats (but still far behind EU average) based on National Institute of Statistics 2005-2013)	Slightly increasing until 2011 and after then a slightlyy decreasing but still far behind EU average. (based on Statistics 2005- 2013)	N surplus is still very low compared with other EU member states. No important changes are expected taking into consideration the trends for livestock and fertilisers. (2005 – 2013)	2007-2010 -first action programme 2011-2013 –second action programme 2014-2017 – third action programme	6.70 (for the first Action Programme)57.7 (for the second Action Programme)whole territory approach (for the third action programme)	 2792 for Axis 2, 2007 - 2013 (realized, including cofinancing) 3723 planed for Environmental Measures for the next National Rural Development Plan 2014 - 2020
Moldova	+ 0,5 (2010-2013)	Slight increase, by 400 ha (2010-2013)	+ 0,3 (2010- 2013)	-14% (2010-2013)	+ 72%, from them, nitrogen fertilizers + 64 (2010-2012), however, organic farming is practiced on 1,7% of cultivated lands (or ca. on	Not estimated	n/a	n/a	ac. 277 (2010-2014) (source CAPMU Progress Report I sem:2014) Separate figure for Axis 2 is unavailable

DRAFT Danube River Basin District Management Plan – Update 2015

0	Land use develop	Land use development assessment (% change)			Inergenie fertilieere engliestion	Nitrogen (N) surplus	Nitrates Direct	ive implementation	Rural Development Programmes (Axis 2) (mil
Country	Cultivated agricultural area	Forestation	Urban area	Livestock trends	Inorganic fertilisers application	(trends)	Year	Vulnerable zones %	Euro)
					20,5 thousand ha in the MD part of the Danube basin)				
Ukraine	-0.05% according State Agency of Land Resources of Ukraine	+0.09% for all Ukraine Forestation by region: Transkarpathi an oblast- 724.6 thous.ha; Ivano- Frankivska oblast- 633 thous.ha ; Chernivetska oblast-257.9 thous.ha Odeska oblast- 223.9 thous.ha	By regions: Transkarpathia n oblast- 25.9 thous.ha; Ivano-	2014 to 2013 (%) Cattle: -2.5% Pigs: +4.5% Sheep: -0.2% Poultry: +7.5%	+ 19% By regions : Transkarpathian - (-6.5%) Ivano-Frankivska– (-9.3%) Chernivetska – +38.2% Odeska – +18.2	Not estimated	n/a	n/a	16,057 - State Special Programme of Rural Development (for period 2007 – 2015)

				MEASU	IRES			
COUNTRY	Afforestation of	Manure storage	Prohibition periods for	Limitation of N and phos	phorous application	Code of Good Agricultural practices	NVZ (ha) comparison with the values from the ND	Restrictions of some
8	adricultural land ha	capacity (months)	applying fertilizer and manure (months)	• kg/ha on agricultural land	• kg/ha on grass land	in line with ND requirements (ha)	implementation, respectively similar areas declared	agricultural activities on slopes (slope in %)
DE	No legal obligation (woodland area increased by 1 % since 1980)	6 months	Ist Nov – 31st Jan of the following year on arable land, 15th Nov – 31st Jan of the following year on grass land. In the time from the harvest of the main crop till winter it is not allowed to apply more manure than the actual need of the following main crop, cover crop or on the field remaining cropstraw is, together not more than 40kg of ammonium-N or 80 kg total-N per hectare	170 kg N/ha from livestock manure in line with ND	170 - 230 kg N/ha from livestock manure in line with ND and EC 2006/1013/EG depending on no. of harvests, balance of N and P	Whole territory approach, code of good agricultural practice is therefore included in the Düngeverordnung (ca. 5 mio. ha)	Whole territory approach according to Article 5 (6) of the ND	On arable land with a mean slope > 10 % in a distance of 20 m to the upper edge of the bank of a surface water the application of N or P containing fertilizers is not allowed within a distance of 3 m to the upper edge of the bank. Otherwise fertilizers can be applied between the distance from 3 until 10 m to the upper edge of the bank if these fertilizers are introduced directly into the soil, or at the remaining part of the area according to the specific provisions.

				MEASU	RES			
COUNTRY	Afforestation of	Manure storage	Prohibition periods for	Limitation of N and phos	phorous application	Code of Good Agricultural practices	NVZ (ha) comparison with the values from the ND	Restrictions of some
8	agricultural land ha /year (2007-2015)	capacity (months)	applying fertilizer and manure (months)	• kg/ha on agricultural land	• kg/ha on grass land	in line with ND requirements (ha)	implementation, respectively similar areas declared	agricultural activities on slopes (slope in %)
AT	No legal obligation; wooded area increased by 8 % since 1961; during the last years the area was almost constant. 4,0 million ha woodland, 48 % of the state territory	At least 6 months. Certificates of leak proves tests are required	15th Oct - 15th Feb of the following year on agricultural land in general, 15th Nov - 15th Feb, if following crop is sawn until 15th October 30th Nov - 28th Feb of the following year on grassland, 30th Nov - 28th Feb of the following year on grassland, 30th Nov - 15th February for manure, compost within the period -from harvest till the beginning of the respective prohibition period and -for grassland from 1st Oct till the beginning of the respective prohibition period it is not allowed to apply fertilizers containing more than 60 kg of N per hectare	60 - 240 kg N/ha depending on crop requirement (expected crop yield) and soil potential in total (170 kg N/ha from livestock manure in line with ND)	40 - 280 kg N/ha depending on no. of cuts	Whole territory approach, code of good agricultural practice is therefore included in the Nitrates Action Programme (ca. 3.2 mio. ha)	Whole territory approach according to Article 5 (6) of the ND	The application of N containing fertilizers including sewage sludge on agricultural fields with average slope of more than 10% within distance of 20m towards surface waters has to comply with the following obligations: the application of N containing fertilizers – with the exception of solid manure and compost - has to be split in all cases where more than 100 kg/ha of N is foreseen to be applied; in case of crops with a late start of the growing season in spring, the slope has to be subdivided with horizontal sowing stripes with soil covering plants, or between arable land foreseen for fertilization and surface waters a buffer strip of 20 m, or fields have to be vegetated over winter period.

				MEASU	RES			
COUNTRY	Afforestation of agricultural land ha	Manure storage capacity (months)	Prohibition periods for applying fertilizer and	Limitation of N and phos		Code of Good with Agricultural practices	NVZ (ha) comparison with the values from the ND implementation,	Restrictions of some agricultural activities on
	/year (2007-2015)		manure (months)	• kg/ha on agricultural land	• kg/ha on grass land	requirements (ha)	respectively similar areas declared	slopes (slope in %)
CZ	385 ha/year (2,5 % from agri area of NVZ for the actual period). During the whole programming time, the measure is implemented with the necessity of 18 years commitment for the HRDP and 15 years commitment for the RDP. In accordance with period of implementation of this measure, the annual number of new afforested hectares has a downward trend (2010 – 236 ha). Concerning the first results of mid-term evaluation there is more over importance for local ecosystems and regional benefits.	The capacity of storage spaces for manure must be sufficient for storing of manure during the period of ban for the fertilization. The deposition of solid manure and solid organic fertilizers on agricultural land is permissible for 12 months at longest. The deposition at the same place can be repeated after 4 years of land cultivation. Since 01.01.2014 the capacity of storage spaces for manure will have to correspond to the need for storage of their six-month production.	Use of fertilizers with a slow releasable N on arable land is prohibited between 1. 6. – 31. 7. (this provision does not apply in the case of subsequent cultivation of winter crops and catch crops) and in period between 15.12 - 15.2. Use of fertilizers with slow releasable N on grassland is prohibited between 15.12 15.2. Periods of fertilization ban are not applicable for faeces and urine left on the land by livestock during grazing or their other stay on agricultural land and for fertilizing covered areas (greenhouses).	The quantity of total N kg/ha applied anually on agricultural land in organic and combined organic/inorganic fertilizers and manure cannot exceed on average in total area of agricultural land of farm entreprise 170 kg . ha-1, while including agricultural land appropriate for fertilization.	Application of N fertilizing substances is restricted to 80 kg of total N/ha. The calculation of used N dose per ha shall be carried out on the basis of data on total N input in organic and combined organic / inorganic fertilizers and manure.	Code of Good Agricultural practices application is obligatory in the whole area – area of 3 531 370,65 ha (35 313,7 km2), in line with ND. ND requirements are obligatory for NVZ defined. For the rest of agricultural areas are implemented on the voluntary bases.	Area of NVZ designated for ND in 2011 – 1 759 883,73 ha (arable land – 1 476 534,04 ha and grass land - 256 198,78 ha) – 49,83 % of total agricultural area. Quality monitoring report in 2012.	Appropriate agrotechnical erosion control measures which are in the conformity with site conditions shall be carried out on agricultural plots with arable land on erosion endangered soils, delimited in accordance with main soil unit (limit of 7 or 12 degrees). Appropriate agrotechnical erosion control measures are especially: contour line cultivation, soil protective cultivation with retaining of organic residues on soil surfaces, mulching, sowing into protective crop and/or stubble, sowing into rough cut or discontinuous ridging.

				MEASU	RES			
COUNTRY	Afforestation of agricultural land ha /year (2007-2015)	Manure storage capacity (months)	Prohibition periods for applying fertilizer and manure (months)	Limitation of N and phos • kg/ha on agricultural land	phorous application • kg/ha on grass land	Code of Good Agricultural practices in line with ND requirements (ha)	NVZ (ha) comparison with the values from the ND implementation, respectively similar	Restrictions of some agricultural activities on slopes (slope in %)
SK	To 31th December 2013, first afforestation of the agricultural land, supported from RDP 2007-2013, was realized on 255 ha (0.013% of UAA).	In national legislation (MoA Decree No 338/2005) is embedded the requirement for 6-12 months storage capacity for solid manure and 3-4 months for liquid manure. Because legally defined storage capacities for animal manures in NVZs are insufficient, the relevant AP is under revision. With regard to 6 months storage capacity for solid and liquid animal manure there is still indicated some deficit which can be solved via completion of them or via contracting external storage.	In revised AP in VZs there is assumed more stringent definition of period with prohibition of manures containing nitrogen as it is at present (15th November to 15th February).	Besides ND limit (170 kg N/ha from animal manures in VZs) N inputs are limited via maximum single N rate. In the revised AP in NVZs there will be defined also the maximum fertilizer N rate for individual crops. P application is long term under the crop demands.	Soil with slope above 70 : 80 kg N/ha. Phosphorous is not limited	Code of Good Agricultural practices application is obligatory in vulnerable areas – area of 1,461,646 ha (14616.46 km2) and recommended - outside of vulnerable zones (total agricultural land in the whole SR with manure application: 1,939,275 ha (19392.75 km2).	areas declared Since 2004, the area of NVZs was unchanged and represents 60% of agricultural land.	 Whole territory of Slovakia on recommended base (through Code of Good Agricultural practices) a. Land with slope above 12% should not be used as arable land Whole territory of Slovakia – obligation:
HU	During the period 2007/13, the average afforestation in HU was in ha/year 2007: 18.948	In accordance with The Code of Good Agricultural Practice the capacity of the farmyard manure	No manure shall be applied between 31 Okt and 15 Feb, except for the top dressing of winter cereals where	The annual volume of N applied through organic manure on agricultural areas may not exceed 170 kg/ha. Whether it	No special limit value for grass land in Hungary.	HU transposed the ND. The rules of the Code of Good Agricultural Practices are obligatory on the	The designation entered into force by the Government Decree No. 27/2006. (II.7.) on the	As for plantations on slopes more than 15 %, fertilizers may be applied only if the anti- erosion measures

				MEASU	RES			
COUNTRY	Afforestation of	Manure storage	Prohibition periods for applying fertilizer and	Limitation of N and phos	phorous application	Code of Good Agricultural practices	NVZ (ha) comparison with the values from the ND	Restrictions of some agricultural activities on
ö	agricultural land ha /year (2007-2015)	capacity (months)	manure (months)	• kg/ha on agricultural land	• kg/ha on grass land	in line with ND requirements (ha)	implementation, respectively similar areas declared	slopes (slope in %)
	2008: 7332 2009: 5168 2010: 5096; 2011: 2803; 2012: 4537; 2013: 2531;	storage facility shall be sufficient for the storage of 6 months' volume of farmyard manure.	manure application will be permitted from the 1st of Feb. The post-harvest application of manure containing readily soluble nitrogen is prohibited if no new crop is sown in autumn. The application of fertilizers is not allowed on frozen soil and on lands saturated with water or covered with snow	originates from grazing or from livestock farms, the volume of N applied shall be calculated by using the values in the rules of the action programme. On NVZ areas the maximum volume of total (organic+inorganic) N kg/ha allowed for major crops during the vegetation period by soil category and soil nutrient supply is set.		NVZ's (6,5 million ha). Outside the NVZ's, the agri environmental measures assist the implementation of GAP on voluntary basis.	protection of waters against pollution caused by nitrates of agricultural sources. The designation was carried out according to the ND. The revision of the NVZ's is fullfilled.	specified in the soil protection plan to be compiled pursuant to separate legislation are fulfilled. The application of slurry will not be allowed on slopes above 6%, except if done with the sliding hose (hose curtain) procedure that may be used on slopes of maximum 12%. If applied on slopes above 12%, the chemical fertilizers shall be promptly incorporated into the soil except for top dressing. The application of fertilizers will not be allowed on slopes above 17%. On slopes more than 2 % for the hindering of erosion such cultivation method shall be used which enhances the absorption of rainwater in the soil due to the conservation of the soil structure and the hindering or elimination of soil compaction.

				MEASU	RES			
COUNTRY	Afforestation of	Manure storage	Prohibition periods for	Limitation of N and phos	phorous application	Code of Good Agricultural practices	NVZ (ha) comparison with the values from the ND	Restrictions of some
00	agricultural land ha /year (2007-2015)	capacity (months)	applying fertilizer and manure (months)	• kg/ha on agricultural land	• kg/ha on grass land	in line with ND requirements (ha)	implementation, respectively similar areas declared	agricultural activities on slopes (slope in %)
SI	2012 - 13945 ha, 2014 - 23391 ha (Dejanska raba MKGP, Kmetijsko zemljišče v zaraščanju - 1410)	15th of Nov till 15th of Feb; some areas from 1st of December till 31th of Jan. On areas higher than 800 m from 15th Nov till 1st March. (Uradni list RS, št. 113/09 in 5/13)	Manure: 15th of Nov till 15th of Feb; some areas from 1st of December till 31th of Jan. On areas higher than 800 m from 15th Nov till 1st March Fertilizers: 15th of Nov till 1st of March; except for fertilizing crops in greenhouse. For winter crops prohibition is from 1st of Dec till 15th of Feb. (Uradni list RS, št. 113/09 in 5/13)	Nitrogen 60 - 320 kg N/ha per year depending on crop; table 4 of Annex 1 of Decree (Uradni list RS, št. 113/09 in 5/13)	Nitrogen 170 - 320 kg N/ha per year depending on no. of harvests; table 4 of Annex 1 of Decree (Uradni list RS, št. 113/09 in 5/13)	Whole territory approach, code of good agricultural practice is therefore included in the Nitrates Action Programme (agricultural land in use – ca. 460.000 ha)	Whole territory approach according to Article 5 (6) of the ND	On slopes greater than 20%. Nitrates Action Programme: The application of manure on land has to be split in separate applications, only up to 80 kg/ha per single application of N are allowed to be spread. (Uradni list RS, št. 113/09 in 5/13)
HR	Ministry of Agriculture does not collect data on aforestation of agricultural land.	According to the 1st Action Programme the requirement for storage capacity is 6 months.	According to the Ist Action Programme fapplicaiton of manure is prohibited from 15th of November untill 15th of February. Also the application of fertilisers and manure is prohibited on water saturated, floded, frozen or snow covered agricultural land.	In the period 2013 2017. yearly limit for application of nitrogen is 210 kgN/ha. After this period, the appplication limit will be minimized to 170 kgN/ha/year. Moreower, in Ist Action Programme the limits for application of nitrogen according to the agricultural plant species.	Limits for application of nitrogen on grassland is 240 kg N/ha	The Brochure Codes of Good Agricultural Practice has been issued in 2009 by Croatian Ministry of Agriculture in cooperation with Croatian Advisory Service. The Brochure consists of Codes of Good Agricultural Practice in usage of Land, Air, Water and Animal Welfare.	NVZ in Croatia are established through the Governmental Deccision on designation of vulnerable zones, OG 130/12. Vulnerabla zones in Croatia cover 9 % of land teritorry (75 local municipalities and cities).	Accorting to the Ordinance on Cross compliance, OG 32/14, agricultural activity on slopes with inclination 15 % or more must be conducted perpendicular to the slope.

				MEASU	IRES			
COUNTRY	Afforestation of	Manure storage	Prohibition periods for	Limitation of N and phos	sphorous application	Code of Good Agricultural practices	NVZ (ha) comparison with the values from the ND implementation, respectively similar areas declared	Restrictions of some
S	agricultural land ha /year (2007-2015)	capacity (months)	applying fertilizer and manure (months)	• kg/ha on agricultural land	• kg/ha on grass land	in line with ND requirements (ha)		agricultural activities on slopes (slope in %)
BA	No data regarding afforestation of agricultural land.	In Republika Srpska is not adopted any regulation regarding Codes of Good Agricultural practice.	There is no regulation in Republika Srpska which prohibits the periodic applying of fertilizers on agricultural land during the year. In Republika Srpska is not adopted any regulation regarding Codes of Good Agricultural practice.		In Republika Srpska is not adopted regulation regarding Codes of Good Agricultural practice or any other law or by-law which regulate limitation of N and P fertilizers application.	The implementation of ND and harmonization with Codes of Good Agricultural practice is not finished.	According to Water Law, there is obligation for detections, methodologies, obligations and restrictions of activities in NVZ and monitoring of NVZ, which will be proclimed by Ministry of agriculture, forestry and watermanagement in cooperation with Ministry in charge of ecology, but no by- law or decision, yet.	
ME	-	-	-	-	-	-	-	-

				MEASU	RES			
COUNTRY	Afforestation of agricultural land ha /year (2007-2015)	Manure storage capacity (months)	Prohibition periods for applying fertilizer and manure (months)	Limitation of N and phos	phorous application	Code of Good Agricultural practices in line with ND requirements (ha)	NVZ (ha) comparison with the values from the ND implementation, respectively similar areas declared	Restrictions of some agricultural activities on slopes (slope in %)
CO				• kg/ha on agricultural land	• kg/ha on grass land			
RS	During the period 2010/2012, the average afforestation in Serbia was 2386 ha /year. By 2015 it is expected that aforestation area will be enlarged to 3000ha/year.	Legal framework for manure storage capacity is in preparation. Recommendation for storage capacity is 6 months, and will be implemented via transpositon of ND.	There is no regulation in Serbia which prohibits the periodic applying of fertilizers on agricultural land during the year. Traditionaly, fertilizers are not applying on a frost or snow covered land.	n/a	n/a	Activities for transposition of ND with Code of Good Agricultural have been initiated. CGA published in 2010 though the project DREPR is now in the proces of updating.	NVZ areas according to ND are not designated. Proposal for designation of VZ in Serbia is expected in 2015 through the cooperation Project with Swedish EPA (Designation of sensitive and vulnerable zones according to the ND and UWWD).	According to Low on Agricultural land (2009) agicultural area with a slope greater than 10% has to be cultivated parallel to contour lines and area with a slopes greater than 25% should not be used as arible land. Responsibility for implementation these restrictions is under local government.

				MEASU	RES			
COUNTRY	Afforestation of agricultural land ha	Manure storage	Prohibition periods for applying fertilizer and	Limitation of N and phos	phorous application	Code of Good Agricultural practices		Restrictions of some agricultural activities on
ö	/year (2007-2015) capacity (months)	manure (months)	• kg/ha on agricultural land	• kg/ha on grass land	in line with ND requirements (ha)	implementation, respectively similar areas declared	slopes (slope in %)	
RO	According to the data of National Statistics Institute the afforestation has registered a slight increasing less than 1% (2007-2012).	The capacity of manure facilities must be at least 6.5 months for liquid manure and 5.5 months for solid manure.	According to the third Action Program, the prohibition periods are as follows: - For solid manure: 1'st Nov – 15'st March. - Liquid manure and mineral fertilizers are splited in 3 categories of prohibition periods as follows: * For autumn crops the prohibition is from 1'st Nov – 1'st March, * for other crops the prohibition is from 1'st Oct – 15'st March, * for pastures the prohibition is from 1'st Oct – 15'st March.	Third AP allows maximum 170 kg of nitrogen of organic fertilizer per hectare. Also, in the sanitary and hydrogeological safeguard zone, the fertilizers are forbidden to be applied or handled.	Third AP allows maximum 170 kg of nitrogen of organic fertilizer per hectare. Also, in the sanitary and hydrogeological safeguard zone, the fertilizers are forbidden to be applied or handled.	In the process of implementation of the Nitrates Directive, the Code of Good Agricultural Practices (CGAP) has been elaborated and harmonized with ND. The provisions of the CGAP are mandatory on whole territory of Romania (23 mil. ha).	For the first Action Program (2005 – 2008), a surface of 16,000 skm (6.7 % from the total surface) was designated as NVZ. Since December 2008, the NVZ surface increased at 137,500 skm (13,750,000 ha), which was representing 57.7 % from the total surface. For the third AP Romania adopted whole territory approach - art 3 (5) ND. (23,839 mil. ha, 100% of the total surface).	The third Action Programme stipulates the following: (1) fertilizers are to be incorporated into the soil taking into account weather forecasts (it is forbiden to apply fertilizers, especially liquid manure when intense precipitation are forecasted). (2) On the arable land with slopes between 2% - 8%, it is recomended the preservation of autumn crops and winter cover crops at minumu 20% from the farm arable land comprised in this category of slope area. (3) On the arable land with slope between 8 and 15 %, it is recommended the preservation of automn crops and winter cover crops at minumu 25% from the farm arable land comprised in this category of slope area. In this area it is recomandet that the fertilizers to be incorporated into the soil in maximum 24 hours. (4) On the arable land

				MEASU	RES			
COUNTRY	Afforestation of	Manure storage	Prohibition periods for	Limitation of N and phos	phorous application	NVZ (ha) comparison Code of Good with the values from Agricultural practices the ND		Restrictions of some
8	agricultural land ha /year (2007-2015)	in line (months) apprying ternitizer and in line (months) apprying ternitizer and in line (months) apprying ternitizer and in line (months) approximation (month		in line with ND implementation, requirements (ha) respectively similar areas declared		agricultural activities on slopes (slope in %)		
								with slope > 15 %, it is obligatory the preservation of automn crops and winter cover crops at minumum 30% from the farm arable land comprised in this category of slope area. On these areas, the application of fertilizers is made only by incorporation into the soil immediately after application (no later than 24 hours) with slope > 15 %, it is obligatory the preservation of automn crops and winter cover crops at minumum 30% from the farm arable land comprised in this category of slope area. On these areas, the application of fertilizers is made only by incorporation into the soil immediately after application (no later than 24 hours)
BG	A total of 592,3 ha of afforestation of agricultural land for the period 2007- 2012 was realized within the Bulgarian part of the Danube	In line with ND, a PoM to reduce and prevent nitrate pollution from agricultural sources in the NVZ and Rules for good agricultural	For NVZ, the importation of nitrogenous fertilizers (organic and mineral) is prohibited during the following periods: - From 1 November to	In the area of NVZ for all crops, meadows and permanent pasture, the imported quantity of Nitrogen from organic fertilizer during the year must not exceed 170 kg	Complying with the same requirements as on agricultural land	Bulgaria transposed the ND. The rules of the Code of Good Agricultural practices are obligatory within the NVZ, for the Bulgarian part of the	The NVZ was designated by the Decree 930/25.10.2010 of the Minister of Environment and Water. In 2010 the	For NVZ measures are foreseenfor the use of N fertilizers (mineral and organic / inorganic) on land with slopes greater than 6° such as: treatment of soil should

				MEASU	RES			
COUNTRY	Afforestation of agricultural land ha /year (2007-2015) Manure storage capacity (months)	Manure storage	Manura storage Prohibition periods for		phorous application	Code of Good Agricultural practices	NVZ (ha) comparison with the values from the ND	Restrictions of some
00		applying fertilizer and manure (months)	• kg/ha on agricultural land	• kg/ha on grass land	in line with ND requirements (ha)	implementation, respectively similar areas declared	agricultural activities on slopes (slope in %)	
	River District. According to the annual report of the Executive Forest Agency for 2013 the total area of the forest territories for the whole county has increased with 16 706 ha in 2013 compared to 2012. Afforested area increased with 15 788 ha in 2013 compared to 2012.	practices were developed and implemented. The period of manure storage is 6 months.	 25 February for North Bulgaria (regions of Varna, Vratsa, Veliko Tarnovo, Gabrovo, Dobrich, Lovech, Montana, Pleven, Razgrad, Ruse, Silistra, Targovishte and Shumen). From 1 November to 25 February for free areas and areas occupied by permanent crops From 15 November to 25 February in case of creation of new fruit plants. In these cases, entry of manure is exceptionally allowed to 15 November. 	N/ha. When more than 12 kg active substance Nitrogen per ha is imported, the fertilizer rate should be split into two - one third of the norm must be imported before sowing or before planting, and the difference of the norm to be left for feeding up.		Danube River Basin it is 2,153 million ha; for whole country is 3,835 million ha. For agricultural lands, which are not falling within NVZ, application of the Rules of good agricultural practice (GAP) from farmers is voluntary.	area of the North NVZ was 3.08 million ha. In 2012 there were changes, and now the NVZ for the Bulgarian part of the Danube River Basin is 2,153 million ha; for the whole country NVZ is 3,835 million ha.	be contour (horizontal) or across the slope, establishment of perennial crops, the rows should be oriented in the direction of the slope and between the rows to plant grass, no fertilization of areas with a slope greater than 6°, if the distance to surface water bodies (rivers, streams, canals, lakes, reservoirs, sea, etc.) is less than 50 meters. At terrains with a slope greater than 12° the importation of fertilizer is prohibited. For arable lands, outside the NVZ, there are general precautions for the use of N fertilizers such as: limitation period for importation, according to soil type and mechanical composition, the physical condition of soils, appropriate allocation of fertilizer norm and more.

				MEASU	RES			
COUNTRY	Afforestation of	Manure storage	Prohibition periods for	Limitation of N and phos	phorous application	Code of Good Agricultural practices	NVZ (ha) comparison with the values from the ND	Restrictions of some
8	agricultural land ha /year (2007-2015)	applying fertilizer and manure (months)	• kg/ha on agricultural land	• kg/ha on grass land	in line with ND requirements (ha)	implementation, respectively similar areas declared	agricultural activities on slopes (slope in %)	
MD	Project "Creation of forests under the jurisdiction of local public administration" - 2006-2009, reforested 10589 ha of eroded and degraded agricultural lands, through planting 2653,91 ha; in 2007 – 3861,75 ha; in 2008 – 2818,74 ha, and in 2009 – 1254,21 ha. Forest plantation activities were implemented in in many areas. The goal is to maintain, regenerate, and, where possible, expand current forests. The cost of reforestation and maintenance was approximately US\$1,000/ha for the first few years until forest cover has been established	The provision is not included in any of the laws and regulations. Manure storage is allowed in specialized storage houses. The total estimated quantity of manure stored at the platforms is of 82,530 tn which represent 794 t of nutrients reduced. Adoption of manure management practices in middle Prut basin contributed to a reduction of nutrient discharges up to 40 kg N/ha/year and 36 kg P/ha/year.	National regulations are in place to monitor the timing and amount of fertilizer applications so as to minimize nutrient runoff. A key government program on using new land and increasing soil fertility includes specific soil protection measures, including fertilizer application techniques and financial assistance for soil protection activities. There is no legal restriction for applying of manure. The recommendations: chemical fertilizers containing N should be applied to the land shortly before the start of the growing season, i.e. March, provided ground and weather conditions are suitable, and others.	According to Code of Good Agricultural Practice, 10 kg of mineral fertilizers containing N /ha should be applied in order to prevent mineral N depletion. Also, 8-10 t manure /ha/year should be applied to non-eroded soils, 14-15 t/ha /year to eroded soils, 10-12 t/ha/year to irrigated soils.	This provision is not included in the Code of Good Agricultural Practice. The main sources of pollution are runoff from agricultural fields and inappropriate manure management. Although pesticide and fertilizer use has shown a stable declining trend for the last 4-5 years, approximately 30 percent of agricultural lands currently lack P, which seriously affects soil fertility.	Moldova has already completed a Code of Good Agricultural Practice which was developed in accordance with European normative acts and Moldovan legislation, it does not represent a mandatory document, but just a set of recommendation The Code was widely considered as too technical/scientific to be effective and a revuion is planned.	The designation of NVZ is not provided by the Moldovan legislation, and that provision was not included in any of the laws and regulations. In this case, action programs should be implemented on the entire territory. In undertaking a revision of the Code of Good Agricultural Practice the following steps should be undertaken.	No legal provisions for restriction of agricultural activities on slopes but just recommendations. Nevertheless, crops are still mainly grown without consideration to proper relief and soil type in terms of soil conservation. The excessive transformation of hilly pastures and meadows into land for annual crops, without any attention paid to relief, physical or biological monitoring is a case. Overall eroded area increases by 0.86% a year. The annual loss of fertile soil particles amounts to about 22 x 106 t year-1, with maximum erosion rates greater than 30 t ha-1 year-1. The economic value of eroded soil corresponds to an estimated annual loss of 45-55 \in MIO.

				MEASU	RES			
COUNTRY	Afforestation of agricultural land ha /year (2007-2015)	Manure storage capacity (months)	Prohibition periods for applying fertilizer and manure (months)	Limitation of N and phos • kg/ha on agricultural land	phorous application • kg/ha on grass land	Code of Good Agricultural practices in line with ND requirements (ha)	NVZ (ha) comparison with the values from the ND implementation, respectively similar areas declared	Restrictions of some agricultural activities on slopes (slope in %)
UA	According to data of the State Forest Resources Agency were reforested eroded and degraded agricultural lands: 2012 – 55.4 thou. ha 2013 – 57.6 thou. ha In Ukraine forest management is provided according the State Programme "Forests of Ukraine"for 2010- 2015, adopted by 16.09.09 № 977. Budget for 2015 will be 4520.7 million UA hryvna. According the Programme 107700 ha will be added in year 2015.	Manure storage is regulated by the Law about waste. According this Law manure storage is allowed in specialized storage places, authorized in conformity with an established procedure. The large agricultural enterprises store manure both liquid and solid forms. Household manure storage are only as solid. The total quantity of produced manure in Ukraine was 12136 thousand t in 2013.	There is no legal restriction for applying of manure. Norms of fertilizers are established depends on the content of N or P in soil and volumes of application of organic fertilizers. Appropriate recommendation nitrogen fertilizers are applied only in spring (if soils are sandy or sandy loam – directly before planting). 20 % of phosphorus are recommended to apply in spring and 80 % – in autumn.	Doses of fertilizers depend on soil, crop and a plant-forecrop. Dose is defined by 3 methods: calculation, field, complex. Limitation: Nitrogen 30 - 180 kg N/ha per year Phosphorus – 45-90 kg P/ha her year Manure – 20-60 t/ha.	Nitrogen 80- 120kg/ha, phosphorus 45-60 kg/ha. In year 2010 had been applied nitrogen fertilizers: Tizsa basin – 980 t; Prut basin – 4790 t in Ivano-Frankivska region and 5530 t in Chernivetska region; Lower Danube pare – 41620 t in Odeska region.	Scientific bases and technology of optimum cultivation of separate cultures are developed. It is not a mandatory document just a set of recommendation.	The designation of NVZ is not provided by the Ukrainian legislation, and that provision was not included in any of the laws and regulations.	There exists no legal provisions for restriction of agricultural activities on slopes but just recommendations. Agricultural activities depends of slope: < 3% - cultivation of all cultures is allowed; 3–9% - soil-protective crop rotations are applied; >9–15% - the contour- strips organisation of territory and soil- protective crop rotations are applied; >15% - only grass is allowed. By the general estimations about 31,7 % of the lands are eroded in Ukraine. Amount of eroded lands annually increases by 80-90 thousand ha.

				MEASURES		
COUNTRY	Area with organic production (ha)	Measures against erosion: buffer stripes (river in km, m of width)	Erosion-minimizing cultivation systems (catch crops) (ha of arable land)	Establishment of wetlands (ha of new wetlands or rehabilitated ones)	Nutrient Balances (% of farmers obliged to do the nutrient balances)	On Farm Advice/Extension Services (no of farmers trained)
DE	336.300 hectares (= 7,4 % of the utilised agricultural area in whole Baden- Württemberg and Bavaria) – are managed according to the criteria of organic farming (2013). No legal obligation	Whole territory 10 m (rivers, slope >10%): see column 9; optional (financial support) Bavaria: on arable land buffer stripes with a width of 10 - 30 m to the water pollution control and soil conservation. On application of fertilisers containing N or P, the direct discharge of nutrients into surface waters has to be avoided, and the run-off into surface waters has to be prevented.	Optional (financial support) Bavaria 2013: ca. 125.800 ha (6,1 % of arable land); Optional (financial support) Baden- Württemberg 2013: ca. 34.900 ha (18 % of arable land)	No relevant	100 % according to Düngeverordnung	Bavarian water protection advisory service: 11 consultants especially for implementation of the WFD; ca 6.600 consultations p.a. Water protection advisory service Baden- Württemberg: 6 consultants with focus on water protection

				MEASURES		
COUNTRY	Area with organic production (ha)	Measures against erosion: buffer stripes (river in km, m of width)	Erosion-minimizing cultivation systems (catch crops) (ha of arable land)	Establishment of wetlands (ha of new wetlands or rehabilitated ones)	Nutrient Balances (% of farmers obliged to do the nutrient balances)	On Farm Advice/Extension Services (no of farmers trained)
AT	533.230 hectares not including alpine pastures (= 20 % of the utilised agricultural area) – are managed according to the criteria of organic farming (2012). No legal obligation	Whole territory (ca. 100,000 km rivers) During fertilization of agricultural land the direct discharge of nutrients into surface waters has to be avoided by keeping a distance between the border of the spreading- width of fertilizers and the upper edge of the bank of the respective surface water. Furthermore, run-off into surface waters has to be prevented. The minimum distance must be 5m (rivers) 10m (rivers, when areas within distance of 20m to rivers have average slopes >10%) 20m (stagnant waters) In cases of permanently vegetated buffer stripes between agricultural field and surface waters or application using soil injection the distances can be halved (with exception of areas with average slope >10% within distance of 20m towards stagnant waters).	Financial support from the subsidy program "ÖPUL". In 2012: 47.464 farms with 426.539 ha participated in measures on catch crops; 4.249 farms with 156.007 ha participated in measure on precautinary soil conservation and water protection; in total 110.274 farms (76%) participated the Austrian RDP "ÖPUL" with in total € 526 million subsidies.	National parks "Lake Neusiedl-Seewinkel" (9.064 ha) and "Donau-Auen" (9.323 ha). Nature and landscape protection area	Nutrient balances with obligatory documentation for all farms > 5 ha agricultural area (> 15 ha agricultural area, if more than 90 % is grassland) or > 2 ha vegetable gardening or > 2 ha vineyards; in total 110.000 farms (60 % of all farms). From 2015 onwards: obligation to document the amount of fertilizers applied; this is necessary for any control;	Austrian Water Protection Advisory Service: 17.000 consultations p.a.; 500 trainings and lectures; 7 consultants, 44 specially trained farmers as working group leaders, ca. 2.130 working group members (farmers) + several Soil Protection Advisory Services in Austria

				MEASURES		
COUNTRY	Area with organic production (ha)	Measures against erosion: buffer stripes (river in km, m of width)	Erosion-minimizing cultivation systems (catch crops) (ha of arable land)	Establishment of wetlands (ha of new wetlands or rehabilitated ones)	Nutrient Balances (% of farmers obliged to do the nutrient balances)	On Farm Advice/Extension Services (no of farmers trained)
CZ	435 165,5 ha (11,8 % from agri area of NVZ; or 12,3 % from agri area of the whole CZ). The percentage of area overlapping reflects the geographical position of land plots designated or in organic farming evidence.	For reasons of soil protection from erosion and waters from pollution, wide-row crops (maize, sunflower, soya, bean, potatoes etc.) cannot be cultivated on agricultural plots with the slope above 7 degrees and in the distance less than 25 m. There are 6 160, 96 ha of arable land with slope over 7 degrees nearby watercourses or water bodies. The water protection and protection against erosion is also under GAEC covered by special protection technologies. The protection activities are also implemented under AEM in RDP implemented.	Agricultural plots threatened by soil erosion must be cultivated in accordance with GAEC practice (no wide-row crops). Plots protected under ND requirements Over 7°- 23 030,42 ha of NVZ There are also some measures under RDP concerning the problematic of erosion (expect of Afforestation mentioned above) in AEM. C1 Conversion of arable land to grassland -46 995 ha C2 Growing of catch crops – 80 712 ha C3 Bio – belts 2 117 ha.	Negligible in CZ Permanently waterlogged and peat land meadows – 1 652 ha under special management of AEM commitment.	100% Keeping evidence on fertilizer consumption and calculation nutrient balance (first of all the nitrogen balance) is an obligation for all farmers (base on the national legislation – using also for RDP controls) Act No. 156/1998 Coll., on fertilizers, as last amended.	MoA. Regional agencies for agriculture and countryside – no. 63 www.mze.cz The Network of Ministry of Agriculture has been built on providing necessary information to agricultural practice. Accredited consultants are taking part in regular courses and training to help farmers, not only in practical matters, crops, livestock and forestry, but today mainly related to subsidies. There is close cooperation with all researches' institutes. www.nitrate.cz www.agroporadenstvi.cz www.vuv.cz Control bodies Central Institute for Supervising and Testing in Agriculture (CISTA) ensure controls of farmers for Cross Compliance system Czech Environmental Inspection from the point of water protection. There is also consulting system under RDP Axis I – information programmes organization. Private sector participation

				MEASURES		
COUNTRY	Area with organic production (ha)	Measures against erosion: buffer stripes (river in km, m of width)	Erosion-minimizing cultivation systems (catch crops) (ha of arable land)	Establishment of wetlands (ha of new wetlands or rehabilitated ones)	Nutrient Balances (% of farmers obliged to do the nutrient balances)	On Farm Advice/Extension Services (no of farmers trained)
SK	To 31th December 2013, organic farming was supported from RDP 2007-2013 on area 148 988 ha (7.72% of UAA).	Whole territory (61,147 km rivers). Fertilizers are prohibited to apply, in minimum width of 10 m from surface waters (rivers, reservoirs, fish ponds, wetlands)	To 31th December 2013, protection of the soil against erosion was (within Agri-environmental payments) supported from RDP 2007-2013 on area 3 697 ha (0.19% of UAA)	Negligible	100% Keeping evidence on fertilizer consumption and calculation nutrient balance (first of all the nitrogen balance) is an obligation for all farmers (according to MP SR Regulation Nr. 338/2005 (§ 16) issued to the Act on fertilizers)	Agricultural advice service in SR provides Agroinštitút Nitra. To 31th December 2013, 338 farmers received support from RDP 2007-2013 within on farm advisory services. Utilization of agricultural services will be suported also by Rural Development Programme SR 2014 – 2020.
HU		The establishment of buffer stripes has been legislated, the implementation starts from the 1st of Jan 2012.	The Agri Environmental Program between 2009- 2014 (5-year program) cultivation of catch crops is compulsory on 750 thousand hectares of arable lands. Catch crop must be applied at least once in 5 ys in these areas.	The establishment of new wetlands is not foreseen. The remediation of the existing wetlands are subsidised by the frame of the Environment and Energy Operational Programme (KEOP) as subprograms e.g.: Complex Water protection investments, and habitat-related infrastructure development The implementation is going on.	At the time of planning the nutrient management of agricultural areas, the volume of nutrients to be applied shall be calculated in view of the nutrient supply of the soil and the nutrient demand of the crop that is necessary for a crop yield adjusted to the conditions of the actual. Soil analysis in every 5 year is an important element of this assessment.	The institutional structure of the Hungarian 73/2007. (July 27th) FVM Decree of the Ministry of Agriculture gives the Common Agricultural Policy support schemes to assist the functioning of agricultural advisory system. The agricultural extension system of duties: a) The National Advisory Centre, b) the regional advisory centers, c) the regional advisory centers, d) of professional counseling centers, and e) the National Advisory Committee There are no figures available on the number of farmers trained.
SI	38897 ha (SURS, 2013 - zemljišča z ekološkim kmetovanjem in zemljišča v preusmeritvi v ekološko kmetovanje)	Buffer stripes for Rivers 1st order 15 m of width and Rivers 2nd order 5 m of width	Optional (financial support)	Most actions for keeping exsisting wetlands with sustainable management. BioMura project establishing of old canal distributaries	All farmers who use mineral fertilizers are obliged to make nutrient balances and farmers who participate in Agri- Environment Climate Measures	Slovenian chamber for agriculture and foresty (KGZS) organizes trainings and advisory through regional units. Farmers who apply for Agri-Environment Climate Measures must attend training.

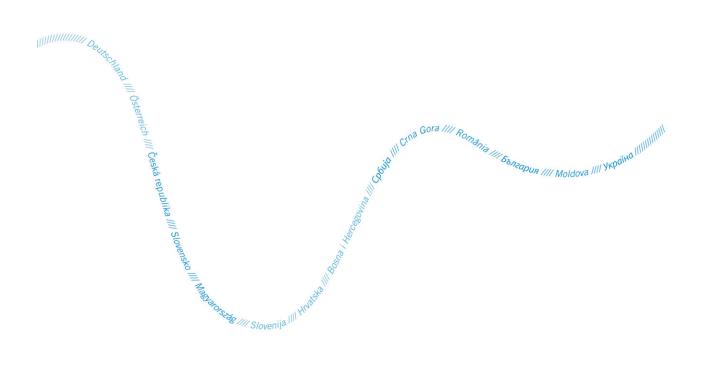
				MEASURES		
COUNTRY	Area with organic production (ha)	Measures against erosion: buffer stripes (river in km, m of width)	Erosion-minimizing cultivation systems (catch crops) (ha of arable land)	Establishment of wetlands (ha of new wetlands or rehabilitated ones)	Nutrient Balances (% of farmers obliged to do the nutrient balances)	On Farm Advice/Extension Services (no of farmers trained)
HR	In 2013 there were 1609 agricultural producers doing organic production on 3,12% of agricultural land in Croatia.	Buffer stripes are desiganted through Ist Action Programme and are as follows: – at 20 m distance from the outer edge of a lake bed, or other standing water,– at 3 m distance from the outer edge of water course beds having a width of 5 meters or more,– on slanted terrains along the water courses, having a slope greater than 10% within a distance of less than 10 m from the outer edge of the water course bed. Buffer stripes are also obligatory GAEC 1 according to the Ordinance on Cross compliance.	Problems with soil erosion should be settled through minimal soil cover. On agricultural parcels with slopes of 15% or more, ploughing should be performed only perpendicular to the slope. All GAEC standards prescribed in Ordinance are obligatory for farmers in use of direct payments in Croatia.	In 2012. there is 74.000 ha of wetlands and this number is slightly increased (+2.000 ha) from 1990.	Farmers are not obliged to do the nutrient balance on their farms.	The Agricultural Advisory Service in Croatia employs 239 employees, mostly Agricultural Engineers. It has offices in each Croatian county and Zagreb.

				MEASURES		
COUNTRY	Area with organic production (ha)	Measures against erosion: buffer stripes (river in km, m of width)	Erosion-minimizing cultivation systems (catch crops) (ha of arable land)	Establishment of wetlands (ha of new wetlands or rehabilitated ones)	Nutrient Balances (% of farmers obliged to do the nutrient balances)	On Farm Advice/Extension Services (no of farmers trained)
BA	No valuable data. (till the date of filling in this table)	Measures against erosion are prohibition of: a) Perform operations in the area and in the way that intensify erosion and creation of flood flows b) Bare-denudate surface, c) Clear forest areas which prevent slide of soil and snow deposit, flatten the flows or protect in other way downstream territories against harmful erosion influence, d) Obstruct the springs, e) Collect or divert collected water through erosive or sliding territories without supervision, and other activities.	No data.	There is no organized establishment of new or revitalization of old wetlands in Republika Srpska.		
ME	-	-	-	-	-	-
RS	Area of organic production covers about 0,5%, or 11.000 ha of total 5.000.000 ha of agricultural lands.	Measures against erosion are organised locally. Buffer strips are not regulated by low.	Technical measures against erosion are applied on ~ 160000 ha/year and biological measures on ~120000 ha/year. Due to extremely developed erosion, every biological work was done simultaniously with the technical work and administrative measures against erosion are applied on ¼ of Serbian territory.	There is no organized establishment of new, or revitalization of old wetlands in Serbia.	About 150 farmers (who owns at the most 50 000 ha and 18 to 1000 cows) went through training for nutrient balances implementation. The number of farmers who went through the training is presented in promiles.	In accordance with the Low on the performance of advisory and professional work in the field of agriculture (OG.RS 30/10) agricultural advisory and extension services are organised in 34 municipalities.

				MEASURES		
COUNTRY	Area with organic production (ha)	Measures against erosion: buffer stripes (river in km, m of width)	Erosion-minimizing cultivation systems (catch crops) (ha of arable land)	Establishment of wetlands (ha of new wetlands or rehabilitated ones)	Nutrient Balances (% of farmers obliged to do the nutrient balances)	On Farm Advice/Extension Services (no of farmers trained)
RO	In 2013, the area of organic production covered 301148 ha, representing over 2% of the agricultural area. (source: Ministry of Agriculture and Rural Development)	The third AP requires additional buffer strips besides the ones stipulated in Romanian Water Law 107/1996 with further amendments (where the buffer strips must have a width between 2 m to 50 m, depending by the width of water courses, type and use of water resources or hydrotechnical works). The additional buffer strips must have a width: a) 1 m for land with slope < 12%; b) 3 m for land with slope > 12%.	Applied being considered an important measure for prevention of soil erosion	There are measures and studies proposed in the Program of Measures of the River Basin Management Plan, which will be implemented particularly in the second and the third planning cycle.	100 % according to the tird AP	In Romania there are 2 main institutions which conduct training for farmers, Ministry of Environment and Climate Change (MECC) and Ministry of Agriculture and Rural Development (MARD). From 2012 - middle 2014 MECC trained 6020 farmers, 2415 specialists who work in the structures and organizations involved in environmental issues, 1452 people from several institutions such as local authorities, agronomists, doctors and veterinarians, teachers and others. In the same period, MARD trained 1301 young farmers in 50 training sessions and 17307 farmers who practice subsistence agriculture in 692 sessions. In parallel County Agricultural Chambers, which are under the technical coordination of MARD, conducted in 2012 - middle 2014 over 3900 information/training sessions in 1700 localities with the participation of over 60000 farmers.

					MEASURES		
	COUNTRY	Area with organic production (ha)	Measures against erosion: buffer stripes (river in km, m of width)	Erosion-minimizing cultivation systems (catch crops) (ha of arable land)	Establishment of wetlands (ha of new wetlands or rehabilitated ones)	Nutrient Balances (% of farmers obliged to do the nutrient balances)	On Farm Advice/Extension Services (no of farmers trained)
I	3G	At the end of 2013 the total number of organic products registered in the Ministry of Agriculture and Food, organic producers, processors and retailers was 3123, in 2012 the number is 2016, in 2011 the number is 1054. In 2013, the areas with organic production in the National system of control (areas in transition period) and areas passed the transition period) reached 56 287.05 ha. <i>Source: Ministry of</i> <i>Agriculture and Food</i> , <i>based on data from</i> <i>annual reports of the</i> <i>controlling persons of</i> <i>organic production</i> .	National standards introducing Conditions for keeping land in good agricultural and environmental condition (GAEC) are obligatory for all farmers, owners and / or users of agricultural land, which receive support under various schemes of the CAP, complementary national payments and the following measures from the Programme for Rural Development: payments to farmers for environmental constraints in mountain areas; Agricultural environmental payments; Natura 2000 payments for lands; forests, etc. It is mandatory the establishment of buffer strips with a minimum width of 5 meters along the surface water bodies (rivers, reservoirs, lakes, sea), with the exception of rice cells by natural vegetation (grass, trees, shrubs) or maintained in sod. The application of mineral and organic N fertilizers in the buffer strips is prohibited.	Measures include the enforcement of the implementation of the National standards to protect the soil from erosion. The feature 'catch crops' is not observed in arable land. Associated crops "meadows - orchards" in the utilized agricultural area: during 2011- 19 196 ha of meadows, orchards; Vegetables' production areas are 872 ha. during 2012 - 19 097 ha of meadows, orchards; during 2013 - 15 945 ha of meadows, orchards; during 2014 - 15 868 ha of meadows, orchards. <i>Source: Ministry of</i> <i>Agriculture and Food</i> , <i>Department "Agricultural</i> <i>Statistics", based on data</i> <i>from Survey "Production</i> <i>of vegetables"</i>	In 2011 the National list of wetlands with International importance was extended with "Karst Dragoman marsh complex" with a total area of 14,967 ha, which includes some of the last preserved karst marshes in Bulgaria. A project for two wetlands Restoration (activities on physical restoration of the wetlands in the two protected areas) was implemented and completed. Three projects are under implementation, financed by the Operational Programme Environment 2007-2013, Priority Axis 3: Biodiversity - habitat restoration through the hydraulic measures, restoration of priority habitats type wetlands.	The National Agricultural Advisory Service (NAAS) conducts regular free information and training seminars for agricultural producers. Part of the measures include training of the agricultural producers on fertilizer rates. Rates should be determined based on the collected and analyzed soil samples for soils' reserves with nitrogen, phosphorus and potassium, organic carbon, etc., which will help to determine the amount of imported fertilizers.	The National Agricultural Advisory Service (NAAS) implemented 4 projects, financed by Operational Programme Rural Development 2007 - 2013, Measure 111 "Professional training, information activities and dissemination of knowledge". The aim of the projects is to provide consulting, training and information services to farmers. In the frame of the project a total of 1784 farmers were trained.

				MEASURES		
COUNTRY	Area with organic production (ha)	Measures against erosion: buffer stripes (river in km, m of width)	Erosion-minimizing cultivation systems (catch crops) (ha of arable land)	Establishment of wetlands (ha of new wetlands or rehabilitated ones)	Nutrient Balances (% of farmers obliged to do the nutrient balances)	On Farm Advice/Extension Services (no of farmers trained)
MD	Inn 2006, the organically farmed area amounted from 11000 to 12.392 hectares. By 2015, area under organic farming has to increased up to 31.100 ha. The production volume shall be increased to about 75.000 tons (mainly, wine, sunflower oil, walnuts, lavender oil, honey, and dried and frozen fruits) – these data were provided by three certification bodies.	From 2009 till 2012, area under forest ptotection strips has decreased by 3%. In August 2014, GoM ratified Program for Soil Ferility Improvement and Increase 2011-2020 which stipulates applying of mitigation measures against erosion. In January 2014, GoM approved National Plan on extending the forest vegetation areas for 2014- 2018. The proposed measures provide for afforestation of the degraded lands, the strips for the protection of rivers and water basins, as well as the strips for protection of farmlands over an area of at least 13,000 hectares. The national plan also aims at protecting the soil against erosion and improving the water balance. The estimated cost of the actions envisaged in the plan amounts to about 295 million lei, with the money earmarked from the state budget, National Ecological Fund and external donations	Systems are being appled, but precise data are unavailabe. Estimate data 433000 ha of arable land in the MD part of the Put River basin)	Ca. 200 ha (Middle & Low Prut)	There exists no legal provisions to keep the Nutrient Balance by farmers.	Agricultural extension services are well developed through a network of non-state institutions, private companies, technical assistance projects, and farmer organizations. The foundations for the extension system are offered by the non- governmental organization National Rural Development Agency (ACSA), which includes a network of 35 Regional Centres Service Providers, 425 consultants (350 local, and 75 – regiona). On an annual basis, the network provides over 250 thousand advisory services, including around 3500 seminars and training programs, approximately 3000 written recommendations, 2500 round tables and meetings, over 45 thousand on-site visits and approximately 200 thousand individual consultations. From 2010 till 2014, total number of trained farmers is ca. 4000 (all MD)


				MEASURES		
COUNTRY	Area with organic production (ha)	Measures against erosion: buffer stripes (river in km, m of width)	Erosion-minimizing cultivation systems (catch crops) (ha of arable land)	Establishment of wetlands (ha of new wetlands or rehabilitated ones)	Nutrient Balances (% of farmers obliged to do the nutrient balances)	On Farm Advice/Extension Services (no of farmers trained)
UA	According to various estimates the organically farmed area amounted 280 000 hectares. The Law on organic manufacture is accepted on April, 21st 2011. Besides, the Law about safety and quality of food operates in the country. The Government Programme on development of organic farming is accepted. According the Programme area under organic farming has to take 2% of arable lands in 2012 and 7% – in 2015. Ukraine took 20 place in the world on manufacture of organic products. Certification bodies have been created with the help of Switzerland. Three fairs on organic products have taken place in Lviv during years 2009–2011.	According the Item 87 of the Water Code buffer stripes for small rivers are 2.5 m of width, for middle rivers– 50 m, for big rivers – 100 m. On slopes the width of buffer strips doubles. Other measures against erosion: crop rotation, crop nutrient management with soil testing, the use of organic fertilizer, avoiding of deep plowing, contour plowing, strip cropping, livestock grazing practices, etc.	Environment-friendly practices which included erosion-minimizing cultivation system (crop rotation, crop nutrient management with soil testing, the use of organic fertilizer, avoiding of deep plowing, contour plowing, strip cropping,) are stimulated by State (financial support).	Black See region of Ukraine has 600 thausand ha of wetlands. One has the status of the international importance (Danube plavni). Programs of rehabilitated systems in Lower Danube (irelands Tatarin, Ermakov, lakes Katlabukh, Saf'yany) are ongoing in cooperation with Wild World Fund. About 12 000 ha (33 objects) will be restored at performance of the Tizsa RBMP.	There exists no legal provisions to keep the Nutrient Balance	The Low on Farm Advice activity has been adopted on 17.06.2004, some changes have been brought in 2010. The three-level system of advisory services is created. Public National association of Advisory services has been registered: www.dorada.org.ua. Agricultural extension services are well developed through a network of non-state institutions, private companies, technical assistance projects, and farmer organizations. The foundations for the extension system were established with the technical assistance of a number of the European countries. In Tisza basin (Zakarpatska region) operate 3 Regional Centres, in Prut basin - 7 Regional Centres, in Lower Danube part – 2 Regional Centres.

Progress on measures addressing hydromorphological alterations

ANNEX 12

Draft DRBM Plan – Update 2015

This Annex includes information on progress in measures implementation for the following hydromorphological alterations for each country and on the basin-wide scale:

- Interruption of river and habitat continuity
- Disconnection of adjacent floodplains / wetlands
- Impoundments
- Water abstractions

It provides further detailed information on data already provided in the JPM Chapter 8.1.4 of the DRBM Plan – Update 2015. The data on the implementation status is largely referring to the end of 2012, updated by AT, DE, HU and RO with latest information from 2015.

	Meas	ures on res	toratior	n of rive	r contir	nuity for	fish mi	gration			
		EASURES TO BE	IMPLEMENTATION STATUS								
	IMPLEMEN	TED BY 2015			(reference to	measures as	s agreed on I	national leve	I)		
COUNTRY	As indicated the 1st DRBM	Updated information as	Not s	tarted	Planning	on-going		ction on- ing	Completed		
	Plan	agreed on national level	[No.]	[%]	[No.]	[%]	[No.]	[%]	[No.]	[%]	
DE	8	24	0	0	13	54	3	13	8	33	
AT	71	103	0	0	0	0	40	39	63	61	
CZ^1	2	5	2	40	2	40	0	0	1	20	
SK	16	16	0	0	16	100	0	0	0	0	
HU	9	9	2	22	1	11	1	11	5	55	
SI	0	6	3	50	2	33	1	17	0	0	
HR	0	0	0	-	-	-	-	-	-	-	
BA	0	0	0	-	-	-	-	-	-	-	
ME	-	-	-	-	-	-	-	-	-	-	
RS	1	1	0	0	0	0	0	0	1	100	
RO^2	1	4	0	0	2	50	0	0	2	50	
BG	0	0	0	-	-	-	-	-	-	-	
MD	0	0	0	-	-	-	-	-	-	-	
UA	0	0	0	-	-	-	-	-	-	-	
TOTAL	108	168	7	4	36	21	45	27	80	48	

¹ Czech Republic, a national prioritisation concept for river continuity restoration was under development and further decisions on concrete measures therefore took place at a later stage of the planning process. Three continuity interruptions were displayed in the national RBM Plan and will be made passable for fish by 2015. Two of them on the Morava River are according to the Conception of River Continuity Restoration except the completed measure on the Dyje River.

² The measure proposed in the DRBMP was consisting in checking the functionality of the existing fish pass located on the water body Medias-Copsa Mica sector - Tarnava River, with the goal of establishing the necessary measures. After that, the monitoring results showed the presence of migratory species in the both sides of the dam (upstream and downstream), therefore the conclusion was that the fish pass is functionally and there was not necessary to include this measure in the Mures River Basin Management Plan which is part of the National Management Plan. Also, additionally, there are other 4 measures for ensuring the longitudinal continuity, which were proposed after the DRBMP data collection process finalisation and were included in the Banat River Basin Management Plan. These measures are consisting in removing obstacles located on Bega and Timis River.

	Measure	s on disco	nnecte	d adja	cent fl	oodpla	iins / w	etland	s - NU	MBE	3			
	NUMBER OF AGREED MEASURES TO BE IMPLEMENTED BY 2015				IMPLEMENTATION STATUS (reference to measures as agreed on national level)									
COUNTRY	As indicated in the 1st	Updated information as agreed on	Not s	Not started		Not started Planning on- going				ction on- ing	Comp		oleted total	V 70-
	DRBM Plan	national level								ected	conn			
	[N	o.]	[No.]	[%]	[No.]	[%]	[No.]	[%]	[No.]	%	[No.]	%		
DE	2	2	0	0	0	0	0	0	1	50	1	50		
AT	1	1	0	0	0	0	0	0	1	100	0	0		
CZ	0	0	-	-	-	-	-	-	-	-	-	-		
SK	0	0	-	-	-	-	-	-	-	-	-	-		
HU	3	3	0	0	0	0	1	33	2	66	0	0		
SI	1	1	0	0	0	0	0	0	0	0	1	100		
HR	0	0	-	-	-	-	-	-	-	-	-	-		
BA	0	0	-	-	-	-	-	-	-	-	-	-		
ME	-	-	-	-	-	-	-	-	-	-	-	-		
RS	4	4	0	0	0	0	1	25	2	50	1	25		
RO	0	0	-	-	-	-	-	-	-	-	-	-		
BG	0	0	-	-	-	-	-	-	-	-	-	-		
MD	0	0	-	-	-	-	-	-	-	-	-	-		
UA	0	0	-	-	-	-	-	-	-	-	-	-		
TOTAL	11	11	0	0	0	0	2	18	6	55	3	27		

	Measu	res on disc	connec	cted ad	djacen	t flooc	Iplains	s / wet	ands -	AREA	1	
	ADDRESSED I	OODPLAINS / DS TO BE BY MEASURES - 2015		IMPLEMENTATION STATUS (reference to measures as agreed on national level)								
COUNTRY	As indicated in the 1st DRBM Plan	Updated information as agreed on national level	Not si	Not started		Planning on- going		Construction on-going		Com partially re- connected		ly re- ected
	[h	a]	[ha]	[%]	[ha]	[%]	[ha]	[%]	[ha]	%	[ha]	%
DE	5,964	5,964	0	0	0	0	0	0	2,926	49	3,038	51
AT	9,554	9,554	0	0	0	0	0	0	9,554	100	0	0
CZ	0	0	-	-	-	-	-	-	-	-	-	-
SK	0	0	-	-	-	-	-	-	-	-	-	-
HU	13,330	13,330	0	0	0	0	330	2	13,000 ³	98	0	0
SI	1,520	1,520	0	0	0	0	0	0	0	0	1,520	100
HR	0	0	-	-	-	-	-	-	-	-	-	-
BA	0	0	-	-	-	-	-	-	-	-	-	-
ME	-	-	-	-	-	-	-	-	-	-	-	-
RS	31,932	31,932	0	0	0	0	9,895	31	21,064	66	973	3
RO	0	0	-	-	-	-	-	-	-	-	-	-
BG	0	0	-	-	-	-	-	-	-	-	-	-
MD	0	0	-	-	-	-	-	-	-	-	-	-
UA	0	0	-	-	-	-	-	-	-	-	-	-
TOTAL	62,300	62,300	0	0	0	0	10,225	16	46,544	75	5,531	9

³ Measures for 13,000ha of floodplains / wetlands were started to be implemented in HU, whereas the actually reconnected area is 2.888ha by end 2012.

		Γ	Measure	es on in	npound	ments					
		OUNDMENTS TO ED BY 2015	IMPLEMENTATION STATUS (reference to measures as agreed on national level)								
COUNTRY	As indicated in the JPM of the	Updated information as	Not s	tarted	Planning	on-going		ction on- ing	Completed		
	1st DRBM Plan	agreed on national level	[No.]	[%]	[No.]	[%]	[No.]	[%]	[No.]	[%]	
DE	1	1	0	0	0	0	0	0	1	100	
AT	30	30	-	-	21	70	-	-	9	30	
CZ	0	0	-	-	-	-	-	-	-	-	
SK	2	0	-	-	-	-	-	-	-	-	
HU	17	15	-	-	1	5	1	5	15	90	
SI	0	6	0	0	5	83	1	17	0	0	
HR	0	0	-	-	-	-	-	-	-	-	
BA	0	0	-	-	-	-	-	-	-	-	
ME	-	-	-	-	-	-	-	-	-	-	
RS	0	0	-	-	-	-	-	-	-	-	
RO^4	2	0	-	-	-	-	-	-	-	-	
BG	0	0	-	-	-	-	-	-	-	-	
MD	0	0	-	-	-	-	-	-	-	-	
UA	0	0	-	-	-	-	-	-	-	-	
TOTAL	52	52	0	0	27	52	2	4	25	44	

	Measures on water abstractions										
	ABSTRACT	OF WATER IONS TO BE D BY 2015		IMPLEMENTATION STATUS (reference to measures as agreed on national level)							
COUNTRY	As indicated in the 1st DRBM	Updated information as	Not s	tarted	Planning	on-going		itation on- ing	Completed		
	Plan	agreed on national level	[No.]	[%]	[No.]	[%]	[No.]	[%]	[No.]	[%]	
DE	2	2	0	0	0	0	0	0	2	100	
AT	21	16	0	0	-	-	-	-	16	100	
CZ	0	1	0	0	0	0	0	0	1	100	
SK	6	6	0	0	6	100	0	0	0	0	
HU	12	12	0	0	2	17	2	17	8	67	
SI	0	0	-	-	-	-	-	-	-	-	
HR	0	0	-	-	-	-	-	-	-	-	
BA	0	0	-	-	-	-	-	-	-	-	
ME	-	-	-	-	-	-	-	-	-	-	
RS	0	0	-	-	-	-	-	-	-	-	
RO ⁵	1	0	-	-	-	-	-	-	-	-	
BG	0	0	-	-	-	-	-	-	-	-	
MD	0	0	-	-	-	-	-	-	-	-	
UA	0	0	-	-	-	-	-	-	-	-	
TOTAL	42	37	0	0	8	22	2	5	27	73	

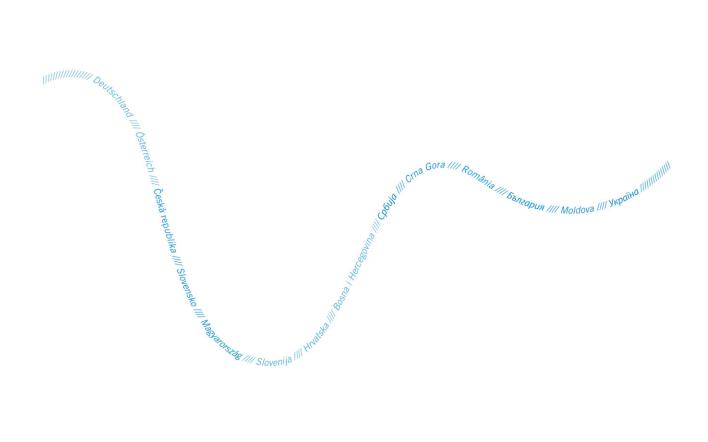
⁴ The measures proposed in the DRBMP were related to the establishment of the hydrological regime for Fantanele –Belisand Gilau dams. In the period between the elaboration of the DRBMP (2009) and the finalization of the Somes - Tisa River Basin Management Plan (2010), the water bodies have been analysed taking into consideration the HMWB designation test and ecological potential assessment. The analysis shows that the good ecological potential has been achieved for both water bodies and therefore the measures were not included in the Somes - Tisa River Management Plan and further in the National Management Plan.

⁵ The measure of ensuring the minimum ecological flow downstream Tileagd dam (Crisul Repede River) proposed in the DRBMP was not included as such in the National Management Plan due to the fact that the good ecological status of the downstream water body was achieved. However, the condition of ensuring the ecological flow is included in the water management permit, issued in 2013 according to the Water Law 107/1996 with subsequent amendments.

Update of the ecological prioritization of measures to restore river and habitat continuity in the DRBD

> ANNEX 13 DRAFT DRBM Plan – Update 2015

icpdr iksd


iver

International Commission for the Protection

of the Danube

Internationale

Kommission zum Schutz der Donau

Table of Contents

1	Introdu	ction	3
2	Objecti	ve	3
3	Distribu	ition of long- and medium-distant migrants in the DRB	5
	3.1 3.2	Methodology (LDM and MDM in the DRB) Results (LDM and MDM in the DRB)	5 6
4	Update	of the Prioritisation approach of the Danube river basin	8
	4.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.1.7 4.2 4.3 4.4	Criteria Application area Continuity interruptions Main migration routes Location of the barrier (distance from mouth) Reconnected habitat length Protected site (Natura2000) or national protection site Anthropogenic pressures Methodology Results References	8 8 9 9 10 10 10 11 11 11 13

1 Introduction

In order to enable a sound estimation of where to target measures most effectively at the basin-wide scale, an *ecological prioritisation of measures to restore river and habitat continuity* in the DRBD has been carried out. A respective study has already been performed for the first DRBM Plan in 2009 which was now further developed and updated.

At the Danube Ministerial Meeting 2010, the Danube Declaration was adopted, inter alia reconfirming the commitment "to further develop and make full use of the ecological prioritisation approach for measures to restore river and habitat continuity in order to ensure that they are ecologically most efficient". In order to take a step in the further development of the approach, discussions have been conducted in the frame of the ICPDR, considering different criteria and rankings. Following data provisions for the DRBM Plan – Update 2015 and further input from Danube countries, the prioritisation index was updated.

2 Objective

All fish species of the Danube River Basin (DRB) are migratory to some extent, however, the importance of migrations for the viability of fish populations considerable vary among species. Migrations are different in terms of migration distances, migration direction (upstream, downstream, lateral), spawning habitats, seasons, life stages, etc.. In general, in the DRB migratory requirements are more distinct in lowland than in head water fish communities (Figure 1).

Long-distance-migrants (LDM) such as beluga (*Huso huso*) migrated up to several thousand kilometres from the Black Sea to the barbel zone in the DRB. Medium-distance-migrants (MDM, so called potamodromous fish species) like nase (*Chondrostoma nasus*) and barbel (*Barbus barbus*) migrate within the river over distances of 30 to 200 km (Waidbacher & Haidvogl 1998). A significant number of lowland fish species depend on floodplain spawning habitats during spring season. Contrarily, headwater fish species migrate comparable short distances as living and spawning habitats are mostly not far away. Nevertheless, in the long term all species need an open continuum for e.g. re-colonisation after catastrophic events and for genetic exchange. To ensure the achievement or the maintenance of the good ecological status on a long term, all species need an open continuum for e.g. recolonization after catastrophic events and genetic exchange.

With reference to the Vision stated in the DRBM Plan – Update 2015 that "anthropogenic barriers and habitat deficits do not hinder fish migration and spawning anymore", the overall goal of continuity restoration in the DRBD should be free fish migration routes within the entire DRB. However, due to the high number of barriers and limited resources a prioritisation of measures is necessary. The ecological prioritisation approach provides indications on a step-wise and efficient implementation of restoration measures on the basin-wide scale. It provides useful information on the estimated effects of the national measures in relation to their ecological effectiveness on the basin-wide scale. The approach could serve as a supportive tool for future measure implementation. Therefore, it also supports the feedback from the international to the national level and vice versa in the DRB. Therefore, the ecological prioritisation approach represents an important component for River Basin Management Planning and could constitute an important basis for discussions on measures addressing river and habitat continuity interruptions within the Joint Programmes of Measures (JPM).

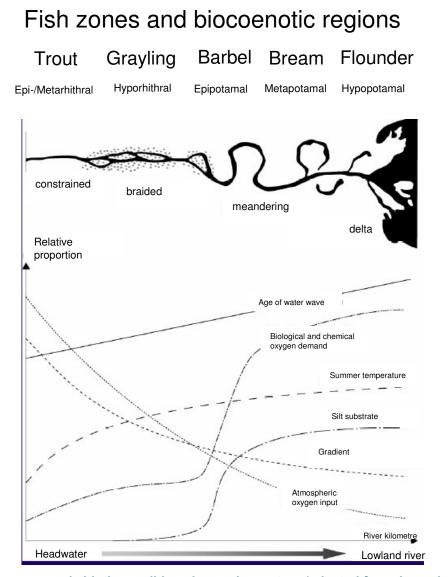


Figure 1: Fish zones and abiotic conditions in running waters (adapted from Jungwirth et al. 2003)

3 Distribution of long- and medium-distant migrants in the DRB

3.1 Methodology (LDM and MDM in the DRB)

Historic upstream occurrence of long-distance migrants (LDM) in the DRB is dominated by sturgeon species as those species are known to have migrated long distances within the Danube catchment. A sturgeon migration map provided by the ICPDR was compared and updated with recent literature reviews and results of the EU-project EFI+ (Evaluation and improvement of the European Fish Index, http://efi-plus.boku.ac.at).

The potential distribution (habitat) of MDM was modelled using data from EU-project EFI+ including data from the DRB and other catchments in Europe.

Within the frame of the EU-project EFI+ most of the European fish species have been classified according to their migratory behaviour, i.e. long-distance-migrants (LDM see Table 1), medium-distance-migrants (MDM) and resident species (RS). Out of the 58 fish species classified as MDM 9 key species were selected occurring in the DRB (Tab. 2).

Table 1: Examples for long distance migrants (LDM) in the DRB (based on EFI+ guild classification, see http://efi-plus.boku.ac.at)

2Acipenser guldenstaedtiRussian sturgeon3Acipenser nudiventrisShip sturgeon4Acipenser stellatusStellate sturgeon5Alosa caspiaCaspian shad	Nr.	Sientific name	English name
3Acipenser nudiventrisShip sturgeon4Acipenser stellatusStellate sturgeon5Alosa caspiaCaspian shad	1	Huso huso	Great stugeon, beluga
4 Acipenser stellatus Stellate sturgeon 5 Alosa caspia Caspian shad	2	Acipenser guldenstaedti	Russian sturgeon
5 Alosa caspia Caspian shad	3	Acipenser nudiventris	Ship sturgeon
	4	Acipenser stellatus	Stellate sturgeon
	5	Alosa caspia	Caspian shad
6 Alosa immaculate (pontica) Pontic shad	6	Alosa immaculate (pontica)	Pontic shad

Table 2: List of medium-distance migrants (MDM) in the DRB (based on EFI+ guild classification, see http://efi-plus.boku.ac.at) used for modelling habitat of MDM in the DRB

Nr.	Scientific name	English name
1	Abramis brama	Common bream
2	Abramis sapa	Danubian bream
3	Acipenser ruthenus	Sterlet
4	Aspius aspius	Asp
5	Barbus barbus	Barbel
6	Chondrostoma nasus.	Nase
7	Hucho hucho	Danube salmon
8	Lota lota	Burbot
9	Vimba vimba	Vimba

The consolidated EFI+ database comprises about 10,000 sites all over Europe. About 1,000 sites are located in the DRB. Unfortunately, the number of sites from the Danube catchment with occurrence of MDM is small (379 sites) and not sufficient for model calibration. Therefore, data from additional European catchments comparable with the DRB was used. By restricting the selection of data to Illies's ecoregions 3 to 16 we tried to avoid a bias from Mediterranean (Iberian) and Nordic (Scandinavia) influences, as the distribution of MDM might follow different rules in those areas. Out of the resulting 3,800 sites we selected all sites (1,268 sites) where MDM were recorded and randomly a similar sized set of data from sites where MDM did not occur. In total, about 2,500 sites were used to calibrate the model.

Regression Tree techniques were used for modelling MDM occurrence as this technique allows using also non-normally distributed data. All modelling was done with the open source software $R^{\text{(B)}}$. The Regression Tree function of $R^{\text{(B)}}$ (rpart) includes an internal validation as the variable selection and splitting process is repeated 500 times. The results were additionally validated by using only data from the DRB.

For calculating predictive environmental variables such as catchment size, elevation and river gradient the CCM river model was used developed by the JRC in Ispra (Vogt et al. 2007) which had been also used for the EFI+ project. The CCM is a modelled river network and hence there are slight deviations between the modelled river courses and the real ones. This is mainly true in the headwaters where the CCM sometimes selects different tributaries compared to other maps. Another problem may occur in lowland rivers with very low gradient in plain terrain where the actual and modelled river course may deviate. The deviations do not significantly affect the results as environmental variables used for the modelling are quite stable against river course deviations.

3.2 Results (LDM and MDM in the DRB)

Information on of the natural distribution of LDM sturgeon species in the DRB served as a basis (Hensel & Holcik, 1997). According to additional data from the EFI+ project and information received from national fish experts of the DRB contacted via the ICPDR slight changes of the original ICPDR maps have been made for the first approach in 2009: The occurrence of sturgeon species in the Isar river (Bavaria) was restricted to the lower part of the river. LDM sturgeons occurrence has been added to the lower Inn river and lower Salzach river (Austria).

The modelled distribution of the MDM in the DRB using Regression-Tree analyses shows that the presence and absence of medium-distance migrants (MDM) is mainly determined by the size of the catchment (Figure 2). River segments with upstream catchment areas (AREA_ctch) less than 284 km² have a very low probability of MDM. In addition, river segments with an upstream catchment size of less than 1,401 km² and a mean elevation of the upstream catchment (ELEV_MN_du) of more than 819 m have also a low probability of MDM. All other river segments have a high probability of occurrence of MDM. The model explains the variability of probability of occurrence by about 42 %. Applying the model to the data, presence and absence can be explained by about 82 % and 78 %. Applying the model to the data from the DRB only reveals similar predictions of presence (78 %) and absence (81 %) approving the applicability of the model to the DRB. Figure 2 clearly shows the separation between the habitat of the LDM, MDM and the head waters above the MDM in the DRB.

Results of modelled MDM habitat were checked by the countries of the DRB and only minor deviations from the real conditions were reported and included in the final map.

The MDM habitat, however, was only modelled for rivers with a catchment >4000 km². It is most likely that the MDM habitat extends also in smaller rivers. Therefore, if this criterion is applied on a national level considering also smaller rivers, all MDM-habitats have to be identified.

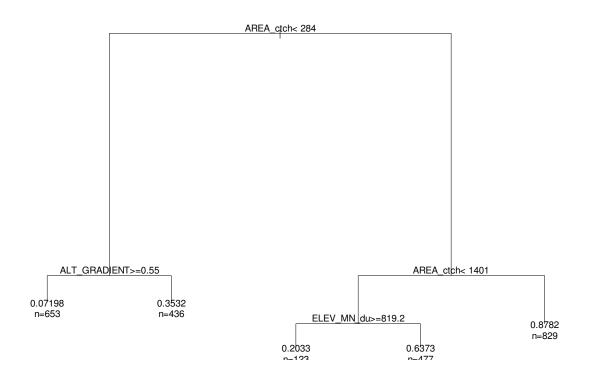


Figure 2: Regression-Tree model for medium-distance migrants using data from the EFI+ project: Probability of occurrence and number sites of each branch (upstream catchment areas: AREA_ctch, mean elevation of the upstream catchment: ELEV_MN_du, gradient of river segment: ALT_GRADIENT).

4 Update of the Prioritisation approach of the Danube river basin

Although the application of different methodologies (GIS approach, optimisation approach) was discussed, the scoring and ranking method (as used in the 1st DRBM Plan 2009) was again applied in the updated version. It has the advantage of transparency and comprehensibility and allows a direct comparison with the results included in the 1st DRBM Plan.

For the updated version, several new criteria were discussed with regard to their availability and suitability. Besides ecological criteria, also other economically / technical criteria were discussed with the result, that such criteria can be incorporated on a national level but the basin-wide prioritisation approach should focus on ecological criteria. These were extended, including now also hydromorphological pressures (impoundments, hydropeaking stretches and residual flow stretches).

4.1 Criteria

The following datasets were used for the updated approach.

Table 3: Used criteria and datasets

Used data	Dataset (name)
Continuity interruptions Barriers*	longcontinterr
River network river water bodies >4000km ^{2*} LDM-/MDM-habitat*	rw-body4000_trans
Protected areas water-relevant habitat protection areas (FFH)* water-relevant bird protection areas* other Nature protection areas for water-dependent species and water-related habitats (WFD Art. 5)*	pa_habitat pa_bird_trans pa_oth_a_trans
Hydro-morphological pressures (new!) segment with impoundment** segment with hydro peaking** segment with water abstraction**	rwbody_hydroaltimp_trans rwbody_hydroalthpeak_trans rwbody_hydroaltabs_trans

* Original criteria already used for the DRBM Plan 2009

** Additional criteria

4.1.1 Application area

The prioritisation approach is only applied for rivers with catchment areas larger than 4.000 km², which is the river network addressed in the frame of ICPDR assessments. Smaller catchments are subject for the national level.

4.1.2 Continuity interruptions

The dataset (longcontinterr) includes a total of 1,085 barriers. However, only barriers relevant for the level A (rivers with catchment areas larger 4.000 km2) were considered (i.e. 1,005 barriers). For the prioritisation index, all impassable barriers within the LDM and MDM were defined as relevant.

	No fish aid (0; 8; G, N, U)	Fish aid (Y)	Total
LDM Danube	14*	8	22
LDM tributary	62*	10	72
MDM	424*	250	674
headwater	209	28	237
total	296	709	1,005

Table 4: Identification of barriers relevant for PI-calculation

* barriers relevant for PI calculation (n = 500)

Although it has to be assumed that barriers classified as passable ("Y") within the LDM-habitat are not passable for large sturgeons, these barriers were not considered for PI-calculation. Since there are no standardised fish pass solutions for these species, individual measures have to be taken. The adaptation of existing fish passes in Austria and Germany to allow the passage of large sturgeons will be necessary when these species are able to reach the respective barriers, which means, when the Iron Gates and Gabcikovo are passable. A respective step-wise approach for continuity restoration is described in the DRBM Plan – Update 2015.

4.1.3 Main migration routes

In case of the approach applied in the 1st Danube River Basin Management Plan, the main migration routes of migratory species were considered. Therefore, the distribution of long and medium-distant migratory species was modelled (see chapter 3). This criterion was already modelled for the first approach. The model predicts a low probability of MDM for segments with upstream catchment area (AREA-ctch) <284 km² or upstream catchment <1401 and mean elevation of upstream catchment (ELEV_MN_du) >819 m. Besides that, the LDM-habitat was adapted unmodified for the updated approach compared to the information which was used for the DRBM Plan 2009. In case of downscaling (i.e. change the actual classification from LDM-habitat to non-LDM-habitat), detailed proof is required that the species was not present in the respective river section.

The LDM- and MDM-habitat information was furthermore transferred to the river body network of the ICPDR (rw-body4000_trans).

As in the first DRBM Plan, the prioritisation principle follows the idea that LDM within the Danube receive the highest priority followed by LDM within the tributaries. MDM receive less priority and head waters typical habitats for short distance migrators are excluded from the prioritisation process. Therefore, priorities are considered as follows:

- Long distance migrants habitat in Danube (rating = 4)
- Long-distance migrants habitat in Danube tributaries (rating = 2)

- Medium-distance migrants habitat (rating = 1)
- Short-distance migrants (head waters) (rating = 0)

4.1.4 Location of the barrier (distance from mouth)

With regard that fish usually migrate from downstream to upstream, obstacles at the mouth of a river receive higher priority than upstream obstacles and giving more emphasis on the main river (e.g. Danube) than on the tributaries. The more distant an obstacle is located from the river mouth the less priority is given to the obstacle. The two criteria "obstacle in first river segment upstream of river mouth" and "distance from mouth" were already included in the 1st approach and are combined to one criterion in the updated approach. By adding up the individual rankings per criterion, the following rankings are applied:

- Obstacle in first river segment including barriers upstream of Danube delta (rating = 5)
- Obstacle in first river segment upstream of mouth (rating = 4)
- Obstacle in second river segment upstream of mouth (rating = 2)
- Obstacle in third river segment upstream of mouth (rating = 1)
- Obstacle in segment upstream of third river segment (rating = 0)

Segments classification is based on the CCM-river network (Vogt et al. 2006). River segments are defined as the river stretch between two tributaries. The highest priority is given to the barriers at Iron Gate, since these barriers represent the most downstream barriers within the Danube itself.

4.1.5 Reconnected habitat length

In order to achieve the highest ecological effects, higher weight is given to river stretches that are less fragmented by continuity interruptions. The reconnected habitat for each barrier was calculated by adding up the distance to the next up- and downstream barrier, whereby only relevant (i.e. impassable) barriers were considered. The distance was only calculated within the river, where the barrier was located. For the most downstream barrier within a tributary or the Danube (e.g. Iron Gate), the distance to the confluence/delta was used instead of the distance to the next downstream barrier.

For this criterion different river length classes for the Danube and the tributaries were defined. Based on experiences in the Danube, the following thresholds were defined by expert judgement:

- >50 km (>100 km Danube) (rating = 2)
- 20-50 km (40 100 km Danube) (rating = 1)
- <20 km (<40 km Danube) (rating = 0)

Also this criterion was only adopted and recalculated with the updated barrier-information.

4.1.6 Protected site (Natura2000) or national protection site

Apart from the WFD relevant criteria, additional criteria stemming from EU legislation like Council Directive 92/43/EEC on the Conservation of natural habitats and of wild fauna and flora was used, requiring to achieve a favourable conservation status in Natura 2000 areas. Taking into account that fish species and habitats are also part of the Natura 2000 goals it is reasonable that the protection status also should be considered in the prioritisation approach.

Obstacles within a distance of 500 m of water-relevant Natura 2000 areas which are important for fish receive higher priority as it is more likely that those river segments are maintained in good habitat status and will be restored to a larger degree than un-protected river segments, thus providing good habitat quality. For non-EU member states, other protected areas are used as a substitute for Natura 2000 areas. Therefore, higher priority is given to barriers located within or close to a water-relevant protection site.

- Barrier within/close to protected area (water-relevant Natura 2000 or other) (rating = 1)
- Barrier in area without protection status (rating = 0)

4.1.7 Anthropogenic pressures

Additional criteria are included in the updated version which consider anthropogenic pressures. With regard to impoundments, hydro peaking and water abstraction, data was used whether a water body is impacted by these pressures or not¹. However, more detailed information (e.g. the exact location and length of the respective pressures) was not available. Also the pressure "morphological alteration" was considered as relevant for the PI, however, at the moment, there is no uniform classification scheme in the Danube catchment. While some countries classified the hydro-morphological condition of their river water bodies with "1" (i.e. high) and "2-5" (i.e. good-bad) others used a more detailed classification of "1-2" (i.e. high-good), "3" (i.e. moderate) and "4-5" (i.e. poor-bad). Therefore, in total, three pressure types were used for the updated PI calculation.

4.2 Methodology

For calculating the PI again the CCM river network (Vogt et al. 2006) was used. Rivers with more than 4.000 km² catchment size were extracted from the CCM. River segments are defined as the river stretch between two tributaries. 1,085 locations of barriers were reported by the Danube countries (status March 2015). Only those barriers relevant for the level A were considered (i.e. 1,005). Then, those barriers were select which are not passable for fish in 2015 (FISH_AID \neq YES; N= 709). Using various GIS tools the first obstacle upstream the mouth, the distance from the mouth, the length of reconnected habitat, and proximity of protected areas is calculated and the PI computed.

In summary, the following ratings were used for the calculation of the old and new PIs.

Table 5: Criteria and their rating for considered PIs

	Criteria	Rating
1.	Migratory habitat	
	 Long-distance migrants habitat (Danube) Long-distance migrants habitat (tributary) Medium-distance migrants habitat Short-distance migrants habitat (head waters) 	4 2 1 0
2.	River Segment	
	 First river segment in Danube First river segment upstream of mouth (tributary) 	5 4

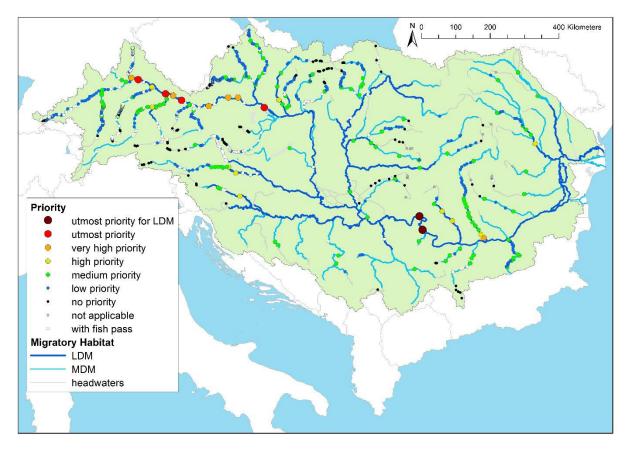
¹ For Slovenia, data on hydro peaking and water abstraction were not reported yet and therefore cannot be considered for PI calculation.

	 Second river segment upstream of mouth Third river segment upstream of mouth River segments upstream of third river segment 	2 1 0
3.	Length of reconnected habitat (Danube/tributary)	
	 >100 km / >50 km (tributary) 40-100 km / 20-50 km (tributary) <40 km / <20 km (tributary) 	2 1 0
4.	Protected site	
	- Yes - No	1 0
5.	Pressures*	
	 0 pressures 1 pressure 2 pressures 3 pressures 	3 2 1 0

As in the first prioritisation approach, the selection of prioritisation criteria for continuity restoration was mainly based on the migratory behaviour of LDM and MDM in the DRB. The prioritisation principle follows the idea that LDM within the Danube receive the highest priority (weight 4) followed by LDM within the tributaries (weight 2). MDM receive less priority (weight 1) and head waters are excluded from the prioritisation process (weight 0). Within this prioritisation framework obstacles at the mouth of a river receive higher priority than upstream obstacles and giving more emphasis on the Danube than on the tributaries. The more distant an obstacle is located from the river mouth the less priority is given to the obstacle. In order to give higher weight to river segments that are less fragmented by continuity interruptions, the length of the reconnected habitat depending on the length of river segments was weighted. For this criterion different river lengths classes for the Danube and the tributaries were defined to consider the river size. The final criterion is related to the protection status. Obstacles within water-related protected areas of the NATURA2000 network and other protected areas for non-EU Member States receive higher priority as it is more likely that those river segments are maintained in good habitat status and will be restored to a larger degree than un-protected river segments. Finally, the new PI also considers anthropogenic pressures, whereby barriers in un-impacted water bodies (0 pressures) received the highest rating while barriers in impacted water bodies received less or no scoring (3 pressure types).

Again, the criteria are combined by computing a prioritisation index (PI) by weighting the first criteria (migratory habitat) by the cumulated weight of the other criteria. At first, the old formula and old criteria-rankings were applied with the updated database. Then, also new criteria (i.e. anthropogenic pressures) were included in the PI:

 PI_{new} = migratory habitat x (1 + barrier location + reconnected habitat length + protected site + anthropogenic pressures)


For the new PI, several versions with different pressure-scorings were calculated to check the sensibility of the index. The decision on the final method was made at the 14th HYMO Task Group Meeting in February 2015.

ICPDR / International Commission for the Protection of the Danube River / www.icpdr.org

4.3 Results

The downstream – upstream prioritisation concept is clear visible in the map of prioritisation (Figure 3). Since some barriers were reported twice (i.e. those where the rivers flow between two countries), the barriers with the lower PI were excluded (n=9). The following table shows the results of the classification.

In total, out of 995 barriers, 295 barriers already are equipped with a fish pass and 16 were excluded since the PI was not applicable. For the remaining 684 barriers, PIs were calculated. The results show that according to the defined prioritisation criteria continuity disruptions in the lower Danube (Iron Gates, 2 barriers) receive the highest priority with values ≥ 30 . Those barriers are considered of utmost priority for LDM species. Also in the upper Danube four barriers with utmost priority for LDM- and MDM-species are found (21-39 points). Furthermore, 6 barriers are considered of very high priority, 13 of high priority, 125 of medium and 341 of low priority. The remaining 193 barriers are located in the headwaters (i.e. outside of LDM-/MDM-habitats) and therefore received a PI of zero.

Figure 3: Updated Prioritisation Index

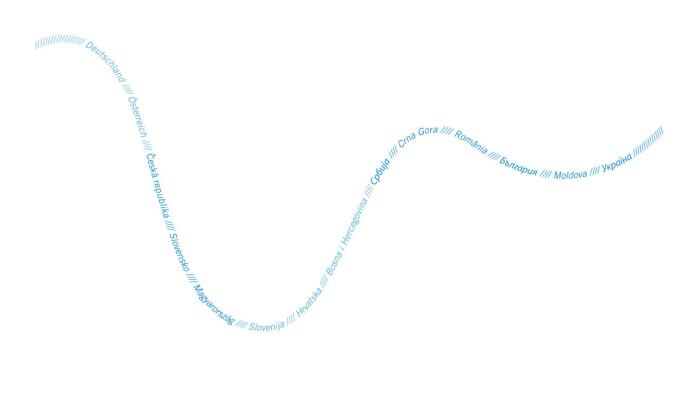
The maximum possible value of the PI is 44 and the minimum is 0 (only in head waters). The PI was grouped into 6 classes: utmost priority for LDM (>30), utmost priority (21-30), very high priority (16-20), high priority (11-15), medium priority (6-10), low priority (1-5).

PI	barriers	Priority				
1	296	with fish pass				
-	16	not applicable				
0	193	no priority				
1	4					
2	44					
3	51	low priority				
4	124					
5	118					
6	56					
7	20					
8	16	medium priority				
9	3					
10	30					
12	9	high priority				
14	4					
16	2					
18	1	very high priority				
20	3	1				
24	4	utmost priority				
44	2	utmost priority for LDM				

Table 6: Results of different PI calculations

Table 7: Number of barriers per criterion (only barriers with PI > 0)

	5	4	3	2	1	0
Habitat	-	LDM Danube	-	LDM Trib.	MDM	headwater
number of barriers		11		57	423	0
Segment	1 Danube	1 Trib.	-	2 Trib.	3 Trib.	>3 Trib.
number of barriers	2	11		5	19	454
Recnonnected length Danube	-	-	-	>100 km	40-100 km	<40 km
number of barriers				8	5	31
Reconnected length Tributary	-	-	-	>50 km	20-50 km	<20 km
number of barriers				90	124	233
Protected site	-	-	-		yes	no
number of barriers					289	202
Pressures	-	_	0	1	2	3
number of barriers			172	204	108	7


4.4 References

- Jungwirth, M., Haidvogl, G., Moog, O., Muhar, S., Schmutz, S. (2003): Angewandte Fischökologie an Fließgewässern. p552; Facultas Universitätsverlag, Wien; ISBN 3-8252-2113-X.
- Vogt, J.V. et al. (2007): A pan-European River and Catchment Database. European Commission JRC, Luxembourg, (EUR 22920 EN) 120 pp.
- Waidbacher, H. & G. Haidvogl (1998): Fish migration and fish passage facilities in the Danube: Past and present. -In: Jungwirth, M., Schmutz, S. & Weiss, S. (eds.): Fish Migration and Fish Bypasses. Oxford, -Fishing News Books: pp.85-98.
- Schmutz S. and Trautwein C. (2009): Ecological prioritization of measures to restore river and habitat continuity in the DRBD, Annex 18 of the DRBMP.
- Hensel K. & Holcik J. (1997): Past and current status of sturgeons in the upper and middle Danube River. Environmental Biology of Fishes 48: 184-200.

Detailed list on hydrological alterations in the DRBD

ANNEX 14 DRAFT DRBM Plan – Update 2015

Explanations

n.a. = Not Applicable

In each table hydrological alterations are listed separately. One water body can have more than one hydrological alterations.

List of Water Abstractions

Country	River	RWB code	Residual water discharge	First usage	Second usage	Third usage	Restored 2015	Measure 2021
AT	Drau	ATOK903540003	Yes	Hydropower	n.a.	n.a.	Not yet	Yes
AT	Enns	ATOK400240106	Yes	Hydropower	n.a.	n.a.	Not yet	Yes
AT	Enns	ATOK411250012	Yes	Hydropower	n.a.	n.a.	Not yet	Yes
AT	Enns	ATOK411250012	Yes	Hydropower	n.a.	n.a.	Not yet	Yes
AT	Enns	ATOK411250012	Yes	Hydropower	n.a.	n.a.	Not yet	Yes
AT	Inn	ATOK304980003	Yes	Hydropower	n.a.	n.a.	Yes	
AT	Inn	ATOK304980010	Yes	Hydropower	n.a.	n.a.	Yes	
AT	Inn	ATOK305850011	Yes	Hydropower	n.a.	n.a.	Yes	
AT	Isar	ATOK301860008	Yes	Hydropower	n.a.	n.a.	Not yet	No due to exemption Art 4.4
AT	Lech	ATOK301500004	Yes	n.a.	n.a.	n.a.	Not yet	No due to exemption Art 4.4
AT	Lech	ATOK302370006	Yes	Hydropower	n.a.	n.a.	Yes	
AT	Lech	ATOK302370010	Yes	Hydropower	n.a.	n.a.	Yes	
AT	Lech	ATOK307080000	Yes	Hydropower	n.a.	n.a.	Yes	
AT	Mur	ATOK801180007	Yes	Hydropower	n.a.	n.a.	Not yet	No due to exemption Art 4.4
AT	Mur	ATOK801180008	Yes	Hydropower	n.a.	n.a.	Not yet	No due to exemption Art 4.4
AT	Mur	ATOK802710002	Yes	Hydropower	n.a.	n.a.	Yes	
AT	Mur	ATOK802710002	Yes	Hydropower	n.a.	n.a.	Not yet	No due to exemption Art 4.4
AT	Mur	ATOK802710008	Yes	Hydropower	n.a.	n.a.	Yes	
AT	Mur	ATOK802710009	Yes	Hydropower	n.a.	n.a.	Not yet	Yes

Country	River	RWB code	Residual water discharge	First usage	Second usage	Third usage	Restored 2015	Measure 2021
AT	Mur	ATOK802710009	Yes	Hydropower	n.a.	n.a.	Yes	
AT	Mur	ATOK802710009	Yes	Hydropower	n.a.	n.a.	Not yet	Yes
AT	Mur	ATOK802710009	Yes	Hydropower	n.a.	n.a.	Yes	
AT	Mur	ATOK802720005	Yes	Hydropower	n.a.	n.a.	Not yet	No due to exemption Art 4.4
AT	Mur	ATOK802720005	Yes	Hydropower	n.a.	n.a.	Not yet	No due to exemption Art 4.4
AT	Mur	ATOK802720005	Yes	Hydropower	n.a.	n.a.	Not yet	No due to exemption Art 4.4
AT	Mur	ATOK802720006	Yes	Hydropower	n.a.	n.a.	Not yet	No due to exemption Art 4.4
AT	Raab	ATOK1000960015	Yes	Hydropower	n.a.	n.a.	Not yet	Yes
AT	Raab	ATOK1000960019	Yes	Hydropower	n.a.	n.a.	Not yet	No due to exemption Art 4.4
AT	Raab	ATOK1000960019	Yes	Hydropower	n.a.	n.a.	Not yet	No due to exemption Art 4.4
AT	Raab	ATOK1000960020	Yes	Hydropower	n.a.	n.a.	Not yet	No due to exemption Art 4.4
AT	Raab	ATOK1001040108	Yes	Hydropower	n.a.	n.a.	Not yet	No due to exemption Art 4.4
AT	Raab	ATOK1001040108	Yes	Hydropower	n.a.	n.a.	Not yet	Yes
AT	Raab	ATOK1002160000	Yes	Hydropower	n.a.	n.a.	Not yet	Yes
AT	Salzach	ATOK304690001	Yes	Hydropower	n.a.	n.a.	Yes	
AT	Salzach	ATOK304690006	Yes	Hydropower	n.a.	n.a.	Not yet	No due to exemption Art 4.4
AT	Salzach	ATOK304690078	Yes	Hydropower	n.a.	n.a.	Not yet	No due to exemption Art 4.4
AT	Salzach	ATOK305360002	Yes	Hydropower	n.a.	n.a.	Yes	

Country	River	RWB code	Residual water discharge	First usage	Second usage	Third usage	Restored 2015	Measure 2021
AT	Thaya	ATOK500010030	Yes	n.a.	n.a.	n.a.	Not yet	Yes
AT	Thaya	ATOK500010030	Yes	Hydropower	n.a.	n.a.	Not yet	Yes
AT	Thaya	ATOK500010031	Yes	Hydropower	n.a.	n.a.	Not yet	Yes
AT	Thaya	ATOK500010036	Yes	Hydropower	n.a.	n.a.	Yes	
AT	Thaya	ATOK500010036	Yes	Hydropower	n.a.	n.a.	Yes	
AT	Thaya	ATOK500010043	Yes	Hydropower	n.a.	n.a.	Yes	
AT	Thaya	ATOK500010043	Yes	Hydropower	n.a.	n.a.	Yes	
AT	Traun	ATOK409920001	Yes	Hydropower	n.a.	n.a.	Not yet	Yes
AT	Traun	ATOK411980001	Yes	Hydropower	n.a.	n.a.	Not yet	No due to exemption Art 4.4
AT	Traun	ATOK411980001	Yes	Hydropower	n.a.	n.a.	Not yet	Yes
AT	Traun	ATOK411980002	Yes	Hydropower	n.a.	n.a.	Not yet	No due to exemption Art 4.4
AT	Traun	ATOK412090013	Yes	Hydropower	n.a.	n.a.	Not yet	Yes
AT	Traun	ATOK412090027	Yes	Hydropower	n.a.	n.a.	Not yet	Yes
AT	Traun	ATOK412090042	Yes	Hydropower	n.a.	n.a.	Yes	
AT	Traun	ATOK412090042	Yes	Hydropower	n.a.	n.a.	Yes	
BG	Dunav	BG1DU000R001	No	Production of electricity (cooling)	n.a.	n.a.	Not necessary	
BG	Dunav	BG1DU000R001	No	Irrigation	n.a.	n.a.	Not necessary	
BG	Dunav	BG1DU000R001	No	Irrigation	n.a.	n.a.	Not necessary	
BG	Dunav	BG1DU000R001	No	Manufacturing industry	n.a.	n.a.	Not necessary	
BG	Dunav	BG1DU000R001	No	Manufacturing industry	n.a.	n.a.	Not necessary	
BG	Dunav	BG1DU000R001	No	Manufacturing industry	n.a.	n.a.	Not necessary	
BG	Dunav	BG1DU000R001	No	Manufacturing industry	n.a.	n.a.	Not necessary	
BG	Dunav	BG1DU000R001	No	Manufacturing industry	n.a.	n.a.	Not necessary	

Country	River	RWB code	Residual water discharge	First usage	Second usage	Third usage	Restored 2015	Measure 2021
BG	Dunav	BG1DU000R001	No	Manufacturing industry	n.a.	n.a.	Not necessary	
BG	Dunav	BG1DU000R001	No	Irrigation	n.a.	n.a.	Not necessary	
BG	Dunav	BG1DU000R001	No	Manufacturing industry	n.a.	n.a.	Not necessary	
BG	Dunav	BG1DU000R001	No	Manufacturing industry	n.a.	n.a.	Not necessary	
BG	Dunav	BG1DU000R001	No	Irrigation	n.a.	n.a.	Not necessary	
BG	Dunav	BG1DU000R001	No	Manufacturing industry	n.a.	n.a.	Not necessary	
BG	Dunav	BG1DU000R001	No	Manufacturing industry	n.a.	n.a.	Not necessary	
BG	Dunav	BG1DU000R001	No	Manufacturing industry	n.a.	n.a.	Not necessary	
BG	Dunav	BG1DU000R001	No	Manufacturing industry	Production of electricity (cooling)	n.a.	Not necessary	
BG	Iskar	BG1IS100R1027	No	Manufacturing industry	n.a.	n.a.	Not necessary	
BG	Iskar	BG1IS100R1027	No	Irrigation	n.a.	n.a.	Not necessary	
BG	Iskar	BG1IS135R1026	No	Hydropower	n.a.	n.a.	Not necessary	
BG	Iskar	BG1IS135R1126	Yes	Hydropower	n.a.	n.a.	Not yet	No due to exemption Art 4.4
BG	Iskar	BG1IS135R1126	No	Agriculture, forestry and fishing (including fish farms) canals	n.a.	n.a.	Not necessary	
BG	Iskar	BG1IS135R1226	Yes	Hydropower	n.a.	n.a.	Not yet	No due to exemption Art 4.4
BG	Iskar	BG1IS135R1226	No	Manufacturing industry	n.a.	n.a.	Not necessary	
BG	Iskar	BG1IS135R1226	Yes	Hydropower	n.a.	n.a.	Not yet	No due to exemption Art 4.4
BG	Iskar	BG1IS135R1226	No	Hydropower	n.a.	n.a.	Not necessary	
BG	Iskar	BG1IS135R1226	No	Manufacturing industry	n.a.	n.a.	Not necessary	
BG	Iskar	BG1IS135R1226	Yes	Hydropower	n.a.	n.a.	Not yet	No due to exemption Art 4.4
BG	Iskar	BG1IS135R1426	No	Manufacturing industry	n.a.	n.a.	Not necessary	

Country	River	RWB code	Residual water discharge	First usage	Second usage	Third usage	Restored 2015	Measure 2021
BG	Iskar	BG1IS135R1726	No	Irrigation	n.a.	n.a.	Not necessary	
BG	Iskar	BG1IS789R1104	No	Agriculture, forestry and fishing (including fish farms) canals	n.a.	n.a.	Not necessary	
BG	Iskar	BG1IS900R1003	No	Agriculture, forestry and fishing (including fish farms) canals	Irrigation	n.a.	Not necessary	
BG	Ogosta	BG10G307R1013	No	Irrigation	n.a.	n.a.	Not necessary	
BG	Ogosta	BG10G307R1013	No	Irrigation	n.a.	n.a.	Not necessary	
BG	Ogosta	BG10G307R1013	No	Irrigation	n.a.	n.a.	Not necessary	
BG	Ogosta	BG10G307R1213	No	Manufacturing industry	n.a.	n.a.	Not necessary	
BG	Ogosta	BG10G307R1213	No	Manufacturing industry	n.a.	n.a.	Not necessary	
BG	Yantra	BG1YN307R1027	No	Irrigation	n.a.	n.a.	Not necessary	
BG	Yantra	BG1YN307R1027	No	Irrigation	n.a.	n.a.	Not necessary	
BG	Yantra	BG1YN307R1027	No	Irrigation	n.a.	n.a.	Not necessary	
BG	Yantra	BG1YN307R1127	No	Manufacturing industry	n.a.	n.a.	Not necessary	
BG	Yantra	BG1YN307R1127	No	Manufacturing industry	n.a.	n.a.	Not necessary	
BG	Yantra	BG1YN700R1017	Yes	Hydropower	n.a.	n.a.	Not yet	No due to exemption Art 4.4
BG	Yantra	BG1YN900R1015	Yes	Hydropower	n.a.	n.a.	Not yet	No due to exemption Art 4.4
BG	Yantra	BG1YN900R1015	No	Hydropower	n.a.	n.a.	Not necessary	
BG	Yantra	BG1YN900R1015	No	Hydropower	n.a.	n.a.	Not necessary	
BG	Yantra	BG1YN900R1015	No	Hydropower	n.a.	n.a.	Not necessary	
BG	Yantra	BG1YN900R1015	No	Manufacturing industry	n.a.	n.a.	Not necessary	
BG	Yantra	BG1YN900R1015	No	Hydropower	n.a.	n.a.	Not necessary	
BG	Yantra	BG1YN900R1215	No	Public water supply	n.a.	n.a.	Not necessary	
BG	Yantra	BG1YN900R1415	No	Manufacturing industry	n.a.	n.a.	Not necessary	

Country	River	RWB code	Residual water discharge	First usage	Second usage Third usage		Restored 2015	Measure 2021
BG	Yantra	BG1YN900R1415	No	Manufacturing industry	n.a.	n.a. n.a.		
DE	Donau	DEDEBW_6-01	Unknown	Hydropower	n.a.	n.a.	Not yet	Yes
DE	Donau	DEDEBW_6-02	Unknown	Hydropower	n.a.	n.a.	Not yet	Yes
DE	Donau	DEDEBW_6-03	Unknown	Hydropower	n.a.	n.a.	Not yet	Yes
DE	Donau	DEDEBW_6-04	Unknown	Hydropower	n.a.	n.a.	Not yet	Yes
DE	Donau	DEDEBW_6-05	Unknown	Hydropower	n.a.	n.a.	Not yet	Yes
DE	Isar	DEDEBY_1_F373	Unknown	Other major abstractions	n.a.	n.a.	Not necessary	
DE	Isar	DEDEBY_1_F402	Unknown	Other major abstractions	n.a.	n.a.	Not yet	Yes
DE	Lech	DEDEBY_1_F128	Unknown	Other major abstractions	n.a.	n.a.	Not yet	Yes
DE	Naab	DEDEBY_1_F273	Unknown	Other major abstractions	n.a.	n.a.	Not yet	Yes
HU	Duna, Szentendrei-Duna	HUAEP444	No	Production of electricity (cooling)	n.a.	n.a.	Not necessary	
HU	Duna, Szentendrei-Duna	HUAEP444	No	Production of electricity (cooling)	n.a.	n.a.	Not necessary	
HU	Duna, Szentendrei-Duna	HUAEP444	No	Production of electricity (cooling)	n.a.	n.a.	Not necessary	
HU	Hármas-Körös	HUAEP567	No	Irrigation	Other major abstractions	Agriculture, forestry and fishing (including fish farms) canals	Not necessary	
HU	Rába	HUAEP898	No	Other major abstractions	n.a.	n.a.	Not necessary	
HU	Rába	HUAEP900	No	Hydropower	n.a.	n.a.	Not necessary	
HU	Rába	HUAEP900	No	Hydropower	n.a.	n.a.	Not necessary	
HU	Rába	HUAEP901	No	Hydropower	n.a.	n.a.	Not necessary	
HU	Rába	HUAEP903	No	Hydropower	n.a.	n.a.	Not necessary	
HU	Tisza	HUAEQ056	No	Irrigation	n.a.	n.a.	Not necessary	
HU	Tisza	HUAEQ056	No	Irrigation	n.a.	n.a.	Not necessary	
HU	Tisza	HUAEQ059	No	Other major abstractions	Agriculture, forestry and fishing (including fish farms) canals Public water supply		Not yet	

Country	River	RWB code	Residual water discharge	First usage	Second usage	Third usage	Restored 2015	Measure 2021
HU	Tisza	HUAIW389	No	Other major abstractions	Irrigation	Agriculture, forestry and fishing (including fish farms) canals	Not necessary	
HU	Tisza	HUAIW389	No	Agriculture, forestry and fishing (including fish farms) canals	Irrigation	gation n.a.		
RO	Arges	ROLW10.1_B1	Yes	Hydropower	n.a.	n.a.	Not necessary	
RO	Arges	ROLW10.1_B2	No	Hydropower	Public water supply	n.a.	Not necessary	
RO	Arges	ROLW10.1_B3	No	Hydropower	Public water supply	n.a.	Not necessary	
RO	Arges	ROLW10.1_B4	No	Hydropower	Manufacturing industry	n.a.	Not necessary	
RO	Arges	ROLW10.1_B5	No	Public water supply	n.a.	n.a.	Not necessary	
RO	Arges	ROLW10.1_B6	No	Public water supply	n.a.	n.a.	Not necessary	
RO	Arges	ROLW10.1_B7	No	Hydropower	n.a.	n.a.	Not necessary	
RO	Arges	RORW10.1_B2	No	Hydropower	n.a.	n.a.	Not necessary	
RO	Crisul Repede	RORW3.1.44_B2	No	Hydropower	n.a.	n.a.	Not necessary	
RO	Crisul Repede	RORW3.1.44_B4	No	Hydropower	n.a.	n.a.	Not necessary	
RO	Crisul Repede	RORW3.1.44_B6	No	Hydropower	n.a.	n.a.	Not necessary	
RO	Olt	RORW8.1_B2	No	Public water supply	Agriculture, forestry and fishing (including fish farms) canals	Other major abstractions	Yes	
SK	Váh	SKV0006	Yes	Hydropower	Other major abstractions	n.a.	Not necessary	
SK	Váh	SKV0007	Yes	Hydropower	Other major abstractions	n.a.	Not necessary	
SK	Váh	SKV0007	Yes	Hydropower	Other major abstractions	n.a.	Not necessary	
SK	Váh	SKV0007	Yes	Hydropower	Other major abstractions	n.a.	Not necessary	
SK	Váh	SKV0007	Yes	Hydropower	Other major abstractions	n.a.	Not necessary	
SK	Váh	SKV0007	Yes	Hydropower	Other major abstractions	n.a.	Not necessary	
SK	Váh	SKV1002	Yes	Hydropower	Other major abstractions	n.a.	Not necessary	

List of Impoundments

Country	River	RWB code	Length in km	Restored 2015	Measure 2021
AT	Donau	ATOK303070000	38.79	Not yet	Yes
AT	Donau	ATOK303070000	19.956	Not yet	Yes
AT	Donau	ATOK409040011	26.284	Not yet	No due to exemption Art 4.4
AT	Donau	ATOK409040011	30.315	Not yet	No due to exemption Art 4.4
AT	Donau	ATOK409040012	26.284	Not yet	No due to exemption Art 4.4
AT	Donau	ATOK409040013	30.315	Not yet	No due to exemption Art 4.4
AT	Donau	ATOK409040013	26.385	Not yet	No due to exemption Art 4.4
AT	Donau	ATOK410360002	21.935	Not yet	No due to exemption Art 4.4
AT	Donau	ATOK410360003	38.79	Not yet	Yes
AT	Donau	ATOK410360003	15.656	Not yet	Yes
AT	Donau	ATOK410360005	15.656	Not yet	Yes
AT	Donau	ATOK410360007	26.914	Not yet	Yes
AT	Donau	ATOK410360009	24.37	Not yet	Yes
AT	Donau	ATOK410360009	34.574	Not yet	No due to exemption Art 4.4
AT	Donau	ATOK410360012	21.935	Not yet	No due to exemption Art 4.4
AT	Donau	ATOK410360012	34.574	Not yet	No due to exemption Art 4.4
AT	Drau	ATOK900470003	10.27	Not yet	No due to exemption Art 4.4
AT	Drau	ATOK900470003	9.82	Not yet	No due to exemption Art 4.4
AT	Drau	ATOK900470003	17.21	Not yet	No due to exemption Art 4.4
AT	Drau	ATOK900470003	6.3	Not yet	No due to exemption Art 4.4
AT	Drau	ATOK900470055	20.78	Not yet	No due to exemption Art 4.4
AT	Drau	ATOK900470055	14.31	Not yet	No due to exemption Art 4.4
AT	Drau	ATOK900470055	10.73	Not yet	No due to exemption Art 4.4
AT	Drau	ATOK900470055	24.57	Not yet	No due to exemption Art 4.4
AT	Drau	ATOK900470057	20.78	Not yet	No due to exemption Art 4.4

Country	River	RWB code	Length in km	Restored 2015	Measure 2021
AT	Drau	ATOK900470057	17.21	Not yet	No due to exemption Art 4.4
AT	Drau	ATOK900470058	24.57	Not yet	No due to exemption Art 4.4
AT	Drau	ATOK900470058	5.5	Not yet	No due to exemption Art 4.4
AT	Drau	ATOK900470058	16.52	Not yet	No due to exemption Art 4.4
AT	Enns	ATOK400240106	0.1	Not yet	No due to exemption Art 4.4
AT	Enns	ATOK411250006	2.991	Not yet	No due to exemption Art 4.4
AT	Enns	ATOK411250008	2.598	Not yet	No due to exemption Art 4.4
AT	Enns	ATOK411250008	1.317	Not yet	No due to exemption Art 4.4
AT	Enns	ATOK411250012	2.827	Not yet	No due to exemption Art 4.4
AT	Enns	ATOK411250012	2.598	Not yet	No due to exemption Art 4.4
AT	Enns	ATOK411250012	11.952	Not yet	Yes
AT	Enns	ATOK411250012	3.064	Not yet	No due to exemption Art 4.4
AT	Enns	ATOK411250014	5.304	Not yet	Yes
AT	Enns	ATOK411250014	4.823	Not yet	Yes
AT	Enns	ATOK411250016	5.605	Not yet	Yes
AT	Enns	ATOK411250018	8.687	Not yet	Yes
AT	Enns	ATOK411250020	8.687	Not yet	Yes
AT	Enns	ATOK411250021	4.956	Not yet	Yes
AT	Enns	ATOK411250023	7.325	Not yet	Yes
AT	Enns	ATOK411250025	7.348	Not yet	Yes
AT	Enns	ATOK411250027	8.548	Not yet	Yes
AT	Enns	ATOK411250029	12.61	Not yet	Yes
AT	Enns	ATOK411250031	11.952	Not yet	Yes
AT	Enns	ATOK411250031	9.021	Not yet	Yes
AT	Enns	ATOK411250036	4.823	Not yet	Yes
AT	Enns	ATOK411250036	2.991	Not yet	No due to exemption Art 4.4

Country	River	RWB code	Length in km	Restored 2015	Measure 2021
AT	Inn	ATOK304980003	12.14	Not yet	No due to exemption Art 4.4
AT	Inn	ATOK304980003	6.431	Not yet	No due to exemption Art 4.4
AT	Inn	ATOK304980003	2.674	Not yet	No due to exemption Art 4.4
AT	Inn	ATOK305340005	16.346	Not yet	No due to exemption Art 4.4
AT	Inn	ATOK305340007	12.346	Not yet	No due to exemption Art 4.4
AT	Inn	ATOK305340009	12.075	Not yet	No due to exemption Art 4.4
AT	Inn	ATOK305340010	7.527	Not yet	No due to exemption Art 4.4
AT	Inn	ATOK305340012	14.336	Not yet	No due to exemption Art 4.4
AT	Inn	ATOK305850011	3.259	Not yet	No due to exemption Art 4.4
AT	Inn	ATOK307030000	7.311	Not yet	No due to exemption Art 4.4
AT	Inn	ATOK307030000	12.14	Not yet	No due to exemption Art 4.4
AT	Lech	ATOK302370010	1.761	Not yet	No due to exemption Art 4.4
AT	Mur	ATOK801180007	0.481	Not yet	No due to exemption Art 4.4
AT	Mur	ATOK801180008	0.32	Not yet	No due to exemption Art 4.4
AT	Mur	ATOK801180029	1.594	Not yet	No due to exemption Art 4.4
AT	Mur	ATOK801180029	2.458	Not yet	No due to exemption Art 4.4
AT	Mur	ATOK802710002	0.995	Not yet	No due to exemption Art 4.4
AT	Mur	ATOK802710002	0.691	Not yet	No due to exemption Art 4.4
AT	Mur	ATOK802710002	1.175	Not yet	No due to exemption Art 4.4
AT	Mur	ATOK802710002	0.58	Not yet	No due to exemption Art 4.4
AT	Mur	ATOK802710002	1.148	Not yet	No due to exemption Art 4.4
AT	Mur	ATOK802710008	2.258	Not yet	No due to exemption Art 4.4
AT	Mur	ATOK802710009	3.053	Not yet	No due to exemption Art 4.4
AT	Mur	ATOK802710009	1.587	Not yet	No due to exemption Art 4.4
AT	Mur	ATOK802710009	3.033	Not yet	No due to exemption Art 4.4
AT	Mur	ATOK802710009	2.266	Not yet	No due to exemption Art 4.4

Country	River	RWB code	Length in km	Restored 2015	Measure 2021
AT	Mur	ATOK802710009	4.999	Not yet	No due to exemption Art 4.4
AT	Mur	ATOK802710009	0.869	Not yet	No due to exemption Art 4.4
AT	Mur	ATOK802710009	2.368	Not yet	No due to exemption Art 4.4
AT	Mur	ATOK802710012	2.258	Not yet	No due to exemption Art 4.4
AT	Mur	ATOK802710014	2.984	Not yet	No due to exemption Art 4.4
AT	Mur	ATOK802710014	4.197	Not yet	No due to exemption Art 4.4
AT	Mur	ATOK802710014	7.218	Not yet	Yes
AT	Mur	ATOK802710014	5.233	Not yet	Yes
AT	Mur	ATOK802710014	3.621	Not yet	Yes
AT	Mur	ATOK802710014	5.29	Not yet	No due to exemption Art 4.4
AT	Mur	ATOK802710015	2.688	Not yet	No due to exemption Art 4.4
AT	Mur	ATOK802710015	3.579	Not yet	No due to exemption Art 4.4
AT	Mur	ATOK802720001	0.812	Not yet	No due to exemption Art 4.4
AT	Mur	ATOK802720003	2.396	Not yet	No due to exemption Art 4.4
AT	Mur	ATOK802720005	3.132	Not yet	No due to exemption Art 4.4
AT	Mur	ATOK802720005	0.567	Not yet	No due to exemption Art 4.4
AT	Mur	ATOK802720005	4.537	Not yet	No due to exemption Art 4.4
AT	Raab	ATOK1000960015	0.386	Not yet	No due to exemption Art 4.4
AT	Raab	ATOK1001040042	0.96	Not yet	No due to exemption Art 4.4
AT	Raab	ATOK1001040098	0.76	Not yet	No due to exemption Art 4.4
AT	Raab	ATOK1001040098	0.23	Not yet	No due to exemption Art 4.4
AT	Raab	ATOK1001040098	1.1	Not yet	No due to exemption Art 4.4
AT	Raab	ATOK1001040098	1.286	Not yet	No due to exemption Art 4.4
AT	Raab	ATOK1001040098	0.822	Not yet	No due to exemption Art 4.4
AT	Raab	ATOK1001040098	0.267	Not yet	No due to exemption Art 4.4
AT	Raab	ATOK1001040098	0.409	Not yet	No due to exemption Art 4.4

Country	River	RWB code	Length in km	Restored 2015	Measure 2021
AT	Raab	ATOK1001040098	1.097	Not yet	No due to exemption Art 4.4
AT	Raab	ATOK1001040105	0.654	Not yet	No due to exemption Art 4.4
AT	Raab	ATOK1001040105	2.312	Not yet	No due to exemption Art 4.4
AT	Raab	ATOK1001040105	1.43	Not yet	No due to exemption Art 4.4
AT	Raab	ATOK1001040105	1.316	Not yet	No due to exemption Art 4.4
AT	Raab	ATOK1001040108	0.197	Not yet	No due to exemption Art 4.4
AT	Raab	ATOK1001040108	0.398	Not yet	No due to exemption Art 4.4
AT	Salzach	ATOK304690002	4.503	Yes	
AT	Salzach	ATOK304690002	1.2	Not yet	No due to exemption Art 4.4
AT	Salzach	ATOK304690003	4.503	Yes	
AT	Salzach	ATOK305350001	4.07	Yes	
AT	Salzach	ATOK305350001	2.73	Yes	
AT	Salzach	ATOK305350001	4.3	Yes	
AT	Salzach	ATOK305350001	3.96	Yes	
AT	Salzach	ATOK305350003	2.39	Yes	
AT	Salzach	ATOK305350003	1.63	Not yet	No due to exemption Art 4.4
AT	Salzach	ATOK305350004	4	Yes	
AT	Salzach	ATOK305350004	0.34	Not yet	No due to exemption Art 4.4
AT	Salzach	ATOK305350004	5.29	Yes	
AT	Salzach	ATOK305350006	2.39	Yes	
AT	Salzach	ATOK305350006	5.29	Yes	
AT	Salzach	ATOK305360002	1.51	Not yet	No due to exemption Art 4.4
AT	Salzach	ATOK305360002	2.97	Not yet	No due to exemption Art 4.4
AT	Salzach	ATOK305360002	3.07	Yes	
AT	Salzach	ATOK305360002	3.96	Yes	
AT	Salzach	ATOK307200001	5.061	Not yet	No due to exemption Art 4.4

Country	River	RWB code	Length in km	Restored 2015	Measure 2021
AT	Thaya	ATOK500010030	1.289	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010030	1.789	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010030	0.946	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010030	0.587	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010030	0.473	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010030	1.655	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010030	0.347	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010030	0.978	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010030	0.78	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010030	0.939	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010030	0.857	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010030	1.11	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010031	0.556	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010031	1.218	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010031	1.11	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010031	0.143	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010031	1.577	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010036	1.427	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010036	0.821	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010036	1.085	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010036	3.251	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010036	0.476	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010036	0.844	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010036	1.464	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010036	1.424	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010036	0.995	Not yet	No due to exemption Art 4.4

Country	River	RWB code	Length in km	Restored 2015	Measure 2021
AT	Thaya	ATOK500010036	0.203	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010036	0.999	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010036	1.287	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010036	0.29	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010038	0.544	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010038	0.104	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010038	0.191	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010038	0.178	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010038	0.637	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010038	1.065	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010038	0.15	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010038	0.636	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010038	0.556	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010038	0.483	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010038	0.089	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010038	0.157	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010043	1.541	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010043	1.261	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010043	1.181	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010043	1.071	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010043	0.432	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010043	0.197	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010043	1.084	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010043	0.806	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010043	1.094	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010043	0.117	Not yet	No due to exemption Art 4.4

Country	River	RWB code	Length in km	Restored 2015	Measure 2021
AT	Thaya	ATOK500010043	0.943	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010043	0.547	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010043	1.226	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010043	0.334	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010043	1.823	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010043	0.946	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500010043	1.723	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500040002	0.198	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500040002	0.203	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500040002	0.338	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500040002	0.208	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500040002	0.2	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500040002	0.21	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500040002	0.208	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500040002	0.2	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500040002	0.2	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500040002	0.2	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500040002	0.199	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500040002	0.2	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500040002	0.199	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500040002	0.202	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500040002	0.221	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK500040002	0.201	Not yet	No due to exemption Art 4.4
AT	Traun	ATOK401220012	0.2	Not yet	Yes
AT	Traun	ATOK409920001	0.2	Not yet	Yes
AT	Traun	ATOK409920001	0.16	Not yet	Yes

Country	River	RWB code	Length in km	Restored 2015	Measure 2021
AT	Traun	ATOK411970000	0.08	Not yet	No due to exemption Art 4.4
AT	Traun	ATOK411980001	0.417	Not yet	No due to exemption Art 4.4
AT	Traun	ATOK411980002	0.107	Not yet	No due to exemption Art 4.4
AT	Traun	ATOK412090013	5	Not yet	Yes
AT	Traun	ATOK412090014	9.942	Not yet	Yes
AT	Traun	ATOK412090016	7.603	Not yet	Yes
AT	Traun	ATOK412090020	0.779	Not yet	Yes
AT	Traun	ATOK412090027	3.499	Not yet	Yes
AT	Traun	ATOK412090030	1.072	Not yet	Yes
AT	Traun	ATOK412090031	3	Not yet	Yes
AT	Traun	ATOK412090032	1.191	Not yet	Yes
AT	Traun	ATOK412090042	1.467	Not yet	Yes
AT	Traun	ATOK412090042	0.614	Not yet	Yes
AT	Traun	ATOK412090042	0.236	Not yet	Yes
AT	Traun	ATOK412090042	0.15	Not yet	Yes
AT	Traun	ATOK412090042	1.383	Not yet	Yes
AT	Traun	ATOK412090042	0.344	Not yet	Yes
AT	Traun	ATOK412100002	1.7	Not yet	Yes
BG	Iskar	BG1IS135R1126	3.437	Not yet	No due to exemption Art 4.5
BG	Iskar	BG1IS135R1126	1.513	Not yet	No due to exemption Art 4.5
BG	Iskar	BG1IS135R1226	2.513	Not yet	No due to exemption Art 4.4
BG	Iskar	BG1IS135R1226	1.499	Not yet	No due to exemption Art 4.4
BG	Iskar	BG1IS135R1226	1.282	Not yet	No due to exemption Art 4.4
BG	Iskar	BG1IS135R1226	1.062	Not yet	No due to exemption Art 4.4
BG	Iskar	BG1IS135R1326	2.126	Not yet	No implementation foreseen (only applicable for non-EU countries)

Country	River	RWB code	Length in km	Restored 2015	Measure 2021
BG	Iskar	BG1IS135R1326	1.184	Not yet	No implementation foreseen (only applicable for non-EU countries)
BG	Iskar	BG1IS135R1326	1.417	Not yet	No implementation foreseen (only applicable for non-EU countries)
BG	Iskar	BG1IS135R1326	1.955	Not yet	No implementation foreseen (only applicable for non-EU countries)
BG	Ogosta	BG10G307R1013	3.058	Not yet	No due to exemption Art 4.5
BG	Yantra	BG1YN900R1015	1.277	Not yet	No due to exemption Art 4.4
CZ	Dyje	CZDYJ_0155_J	27.8	Not yet	
CZ	Dyje	CZDYJ_0295_J	9.7	Not yet	
CZ	Dyje	CZDYJ_1195_J	4.1	Not yet	
CZ	Dyje	CZDYJ_1205_J	7.8	Not yet	
CZ	Svratka	CZDYJ_0345_J	8.1	Not yet	
CZ	Svratka	CZDYJ_0485_J	8.5	Not yet	
DE	Donau	DEDEBY_1_F030_BW		Not necessary	
DE	Donau	DEDEBY_1_F062		Not yet	No due to exemption Art 4.4
DE	Donau	DEDEBY_1_F074		Not yet	No due to exemption Art 4.4
DE	Donau	DEDEBY_1_F163		Not yet	No due to exemption Art 4.4
DE	Donau	DEDEBY_1_F223		Not yet	No due to exemption Art 4.4
DE	Donau	DEDEBY_1_F348		Not yet	No due to exemption Art 4.4
DE	Donau	DEDEBY_1_F478		Not yet	No due to exemption Art 4.4
DE	Donau	DEDEBY_1_F633		Not yet	No due to exemption Art 4.4
DE	Inn	DEDEBY_1_F509		Not necessary	
DE	Inn	DEDEBY_1_F556		Not yet	No due to exemption Art 4.4
DE	Inn	DEDEBY_1_F557		Not yet	No due to exemption Art 4.4
DE	Inn	DEDEBY_1_F558		Not necessary	
DE	Inn	DEDEBY_1_F654		Not yet	No due to exemption Art 4.4

Country	River	RWB code	Length in km	Restored 2015	Measure 2021
DE	Inn	DEDEBY_1_F656		Not yet	No due to exemption Art 4.4
DE	Inn	DEDEBY_1_F657		Not yet	No due to exemption Art 4.4
DE	Isar	DEDEBY_1_F375		Not yet	No due to exemption Art 4.4
DE	Isar	DEDEBY_1_F376		Not yet	No due to exemption Art 4.4
DE	Isar	DEDEBY_1_F429		Not yet	No due to exemption Art 4.4
DE	Isar	DEDEBY_1_F430		Not yet	No due to exemption Art 4.4
DE	Lech	DEDEBY_1_F122		Not yet	No due to exemption Art 4.4
DE	Lech	DEDEBY_1_F128		Not yet	No due to exemption Art 4.4
DE	Lech	DEDEBY_1_F131		Not yet	No due to exemption Art 4.4
DE	Lech	DEDEBY_1_F132		Not yet	No due to exemption Art 4.4
DE	Main-Donau-Kanal	DEDEBY_1_F226		Not yet	No due to exemption Art 4.4
DE	Naab	DEDEBY_1_F273		Not yet	Yes
HR	Drava	HRDDRI020005	11.08	Not necessary	
HR	Drava	HRDDRI020005	8.91	Not necessary	
HR	Drava	HRDDRI020007	3.62	Not necessary	
HR	Kupa	HRDSRN020002	0.59	Not necessary	
HU	Berettyó	HUAEP322	6	Not necessary	
HU	Duna, Duna-mellékág	HUAEP443	18.5	Not necessary	
HU	Fehér-Körös	HUAEP471	10	Not necessary	
HU	Hármas-Körös	HUAEP567	68	Yes	
HU	Hortobágy-főcsatorna	HUAEP595	31	Not necessary	
HU	Kettős-Körös	HUAEP668	15	Not yet	
HU	Mosoni-Duna	HUAEP812	5	Yes	
HU	Rába	HUAEP899	5	Yes	
HU	Rába	HUAEP900	6	Yes	
HU	Rába	HUAEP900	4	Yes	

Country	River	RWB code	Length in km	Restored 2015	Measure 2021
HU	Rába	HUAEP903	5	Not yet	
HU	Rába	HUAEP903	1	Not yet	
HU	Rába	HUAEP903	3	Yes	
HU	Rábca	HUAEP904	6	Not necessary	
HU	Rábca	HUAEP904	6	Not yet	
HU	Rábca	HUAEP904	5	Not yet	
HU	Répce	HUAEP920	4.5	Yes	
HU	Sebes-Körös	HUAEP953	10	Not necessary	
HU	Sebes-Körös	HUAEP954	48	Yes	
HU	Sió	HUAEP958	2.1	Not yet	
HU	Sió	HUAEP959	25.4	Not yet	
HU	Tisza	HUAEQ059	75	Not yet	
HU	Tisza	HUAIW389	115	Not necessary	
HU	Zagyva	HUAEQ139	3	Not necessary	
HU	Zagyva	HUAEQ139	3	Not yet	
MD	Prut	MD0201/05	54	Not necessary	
MD	Prut	MD0201/06	54	Not necessary	
RO	Arges	ROLW10.1_B1	19	Not necessary	
RO	Arges	ROLW10.1_B2	36	Not necessary	
RO	Arges	ROLW10.1_B3	16	Not necessary	
RO	Arges	ROLW10.1_B4	13	Not necessary	
RO	Arges	ROLW10.1_B5	6.56	Not necessary	
RO	Arges	ROLW10.1_B6	3.98	Not necessary	
RO	Arges	ROLW10.1_B7	13	Not necessary	
RO	Barcau	ROLW3.1.44.33_B4	4	Not yet	Yes
RO	Bega	RORW5.1_B2	2.361	Not necessary	

21

Country	River	RWB code	Length in km	Restored 2015	Measure 2021
RO	Bega	RORW5.1_B3	0.942	Not yet	Yes
RO	Bega	RORW5.1_B3	5.334	Not necessary	
RO	Bega	RORW5.1_B3	8.43	Not necessary	
RO	Bega	RORW5.1_B4	15.117	Not necessary	
RO	Bega	RORW5.1_B4	15.063	Not necessary	
RO	Bega	RORW5.1_B4	14.533	Not necessary	
RO	Bistrita	ROLW12.1.53_B3	25.9	Not necessary	
RO	Bistrita	ROLW12.1.53_B5	6	Not necessary	
RO	Bistrita	ROLW12.1.53_B5	5	Not necessary	
RO	Bistrita	ROLW12.1.53_B5	9	Not necessary	
RO	Bistrita	ROLW12.1.53_B7	5.1	Not necessary	
RO	Bistrita	ROLW12.1.53_B7	2	Not necessary	
RO	Bistrita	ROLW12.1.53_B7	5	Not necessary	
RO	Bistrita	ROLW12.1.53_B7	3.5	Not necessary	
RO	Bistrita	ROLW12.1.53_B7	2.85	Not necessary	
RO	Buzau	ROLW12.1.82_B1	9.5	Not necessary	
RO	Buzau	ROLW12.1.82_B2	2	Not necessary	
RO	Crisul Repede	ROLW3.1.44_B5	7	Not necessary	
RO	Crisul Repede	ROLW3.1.44_B5	7.5	Not necessary	
RO	Crisul Repede	RORW3.1.44_B7	1.5	Not necessary	
RO	Dunarea	RORW14.1_B1	138.5	Not necessary	
RO	Dunarea	RORW14.1_B2	82.9	Not necessary	
RO	Ialomita	ROLW11.1_B1	2.2	Not necessary	
RO	Ialomita	ROLW11.1_B2	2.3	Not necessary	
RO	Ialomita	ROLW11.1_B3	11	Not necessary	
RO	Jijia	ROLW13.1.15_B2	4	Not necessary	

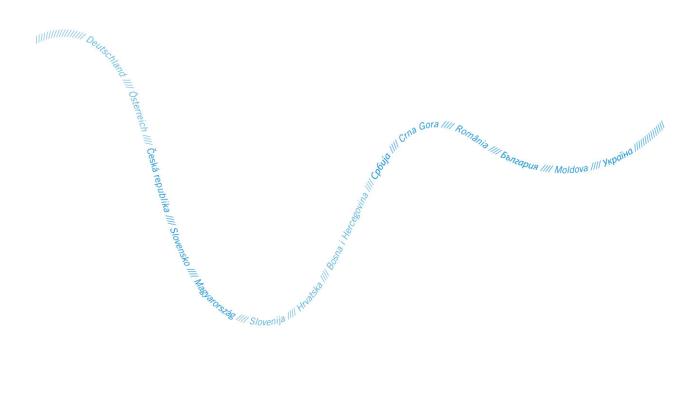
Country	River	RWB code	Length in km	Restored 2015	Measure 2021
RO	Jiu	ROLW7.1_B120	3.646	Not necessary	
RO	Jiu	ROLW7.1_B56	8.095	Not necessary	
RO	Jiu	RORW7.1_B4	0.779	Not necessary	
RO	Olt	ROLW8.1_B10	87	Yes	
RO	Olt	ROLW8.1_B11	40	Yes	
RO	Olt	ROLW8.1_B7	67	Not necessary	
RO	Olt	ROLW8.1_B9	81	Not necessary	
RO	Olt	RORW8.1_B2	1.2	Yes	
RO	Prut	ROLW13.1_B2	42	Not necessary	
RO	Siret	ROLW12.1_B1	13.2	Not necessary	
RO	Siret	ROLW12.1_B3	11.9	Not necessary	
RO	Siret	ROLW12.1_B6	13	Not necessary	
RO	Siret	ROLW12.1_B6	7	Not necessary	
RO	Siret	ROLW12.1_B6	29	Not necessary	
RO	Siret	ROLW12.1_B8	10.44	Not necessary	
RO	Somes	RORW2.1_B3	4.8	Not yet	Yes
RO	Timis	ROLW5.2_B1	1.93	Not necessary	
RO	Timis	RORW5.2_B5	2.987	Not necessary	
RO	Timis	RORW5.2_B5	2.318	Not necessary	
RS	Begej	RSBEG	29.8	Not yet	No implementation foreseen (only applicable for non-EU countries)
RS	Drina	RSDR_2	20.3	Not yet	No implementation foreseen (only applicable for non-EU countries)
RS	Drina	RSDR_4	23.7	Not yet	No implementation foreseen (only applicable for non-EU countries)
RS	Dunav	RSD2	81	Not yet	No implementation foreseen (only applicable for non-EU countries)

Country	River	RWB code	Length in km	Restored 2015	Measure 2021
RS	Dunav	RSD3	136.4	Not yet	No implementation foreseen (only applicable for non-EU countries)
RS	Dunav	RSD4	32.9	Not yet	No implementation foreseen (only applicable for non-EU countries)
RS	Dunav	RSD5	67.5	Not yet	No implementation foreseen (only applicable for non-EU countries)
RS	Dunav	RSD6	44.6	Not yet	No implementation foreseen (only applicable for non-EU countries)
RS	Dunav	RSD7	40.8	Not yet	No implementation foreseen (only applicable for non-EU countries)
RS	Ibar	RSIB_5	25.6	Not yet	No implementation foreseen (only applicable for non-EU countries)
RS	Lim	RSLIM_3	14.8	Not yet	No implementation foreseen (only applicable for non-EU countries)
RS	Sava	RSSA_1	98.9	Not yet	No implementation foreseen (only applicable for non-EU countries)
RS	Tamiš	RSTAM_1	38.8	Not yet	No implementation foreseen (only applicable for non-EU countries)
RS	Tamiš	RSTAM_1	41.5	Not yet	No implementation foreseen (only applicable for non-EU countries)
RS	Tamiš	RSTAM_2	36.4	Not yet	No implementation foreseen (only applicable for non-EU countries)
RS	Tisa	RSTIS_1	60.8	Not yet	No implementation foreseen (only applicable for non-EU countries)
RS	Tisa	RSTIS_2	99.5	Not yet	No implementation foreseen (only applicable for non-EU countries)
RS	Velika Morava	RSVMOR_1	13	Not yet	No implementation foreseen (only applicable for non-EU countries)
RS	Zapadna Morava	RSZMOR_3	30.6	Not yet	No implementation foreseen (only applicable for non-EU countries)

Country	River	RWB code	Length in km	Restored 2015	Measure 2021
SI	Drava	SISI3VT359	10	Not yet	
SI	Drava	SISI3VT359	16	Not yet	
SI	Drava	SISI3VT359	8	Not yet	
SI	Drava	SISI3VT359	13	Not yet	
SI	Drava	SISI3VT359	13	Not yet	
SI	Drava	SISI3VT359	12	Not yet	
SI	Sava	SISI1VT170	7	Not yet	
SI	Sava	SISI1VT170	6	Not yet	
SI	Sava	SISI1VT713	10	Not yet	
SI	Sava	SISI1VT739	9	Not yet	
SI	Sava	SISI1VT739	9	Not yet	
SI	Sava	SISI1VT739	10	Not yet	
SK	Dunaj	SKD0019	17.4	Not yet	No due to exemption Art 4.4
SK	Hornád	SKH0003	1.4	Not yet	No due to exemption Art 4.4
SK	Hornád	SKH0004	1.2	Not yet	No due to exemption Art 4.4
SK	Hornád	SKH1001	2.6	Not yet	No due to exemption Art 4.4
SK	Hornád	SKH1001	20	Not yet	No due to exemption Art 4.4
SK	Hron	SKR0005	2.5	Not yet	No due to exemption Art 4.4
SK	Hron	SKR0005	4	Not yet	No due to exemption Art 4.4
SK	Hron	SKR0005	4	Not yet	No due to exemption Art 4.4
SK	Ipeľ	SKI0004	9.1	Not yet	No due to exemption Art 4.4
SK	Ipeľ	SKI0004	9.2	Not yet	No due to exemption Art 4.4
SK	Ipeľ	SKI0004	3.2	Not yet	No due to exemption Art 4.4
SK	Ipeľ	SKI0004	6.5	Not yet	No due to exemption Art 4.4
SK	Ipeľ	SKI0004	7	Not yet	No due to exemption Art 4.4
SK	Ipeľ	SKI0004	6.2	Not yet	No due to exemption Art 4.4

Country	River	RWB code	Length in km	Restored 2015	Measure 2021
SK	Ipeľ	SKI0004	6.5	Not yet	No due to exemption Art 4.4
SK	Ipeľ	SKI0004	6	Not yet	No due to exemption Art 4.4
SK	Ipeľ	SKI1001	3.7	Not yet	No due to exemption Art 4.4
SK	Laborec	SKB0142	1.2	Not yet	No due to exemption Art 4.4
SK	Laborec	SKB0144	1.6	Not yet	No due to exemption Art 4.4
SK	Nitra	SKN0004	6.3	Not yet	No due to exemption Art 4.4
SK	Nitra	SKN0004	12.2	Not yet	No due to exemption Art 4.4
SK	Nitra	SKN0004	4	Not yet	No due to exemption Art 4.4
SK	Nitra	SKN0004	7.1	Not yet	No due to exemption Art 4.4
SK	Váh	SKV0006	3.7	Not yet	No due to exemption Art 4.4
SK	Váh	SKV0007	10	Not yet	No due to exemption Art 4.4
SK	Váh	SKV0007	7.8	Not yet	No due to exemption Art 4.4
SK	Váh	SKV0007	7.3	Not yet	No due to exemption Art 4.4
SK	Váh	SKV0007	4.4	Not yet	No due to exemption Art 4.4
SK	Váh	SKV0007	10.1	Not yet	No due to exemption Art 4.4
SK	Váh	SKV0027	19.3	Not yet	No due to exemption Art 4.4
SK	Váh	SKV1001	8.4	Not yet	No due to exemption Art 4.4
SK	Váh	SKV1001	3.2	Not yet	No due to exemption Art 4.4
SK	Váh	SKV1002	5.9	Not yet	No due to exemption Art 4.4
SK	Váh	SKV1003	11.8	Not yet	No due to exemption Art 4.4

List of Hydropeaking


Country	River	RWB Code	Water level fluctuation >1m/day	Restored 2015	Measure 2021
AT	Drau	ATOK900470022	Yes	Not yet	No due to exemption Art 4.4
AT	Drau	ATOK903540001	Yes	Not yet	No due to exemption Art 4.4
AT	Drau	ATOK903540002	Yes	Not yet	No due to exemption Art 4.4
AT	Enns	ATOK409970000	Yes	Not yet	No due to exemption Art 4.4
AT	Enns	ATOK411250010	Yes	Not yet	No due to exemption Art 4.4
AT	Enns	ATOK411250020	Yes	Not yet	No due to exemption Art 4.4
AT	Enns	ATOK411250021	Yes	Not yet	No due to exemption Art 4.4
AT	Inn	ATOK304980003	Yes	Not yet	No due to exemption Art 4.4
AT	Inn	ATOK304980006	Yes	Not yet	No due to exemption Art 4.4
AT	Inn	ATOK304980006	Yes	Not yet	No due to exemption Art 4.4
AT	Inn	ATOK304980009	Yes	Not yet	No due to exemption Art 4.4
AT	Inn	ATOK304980009	Yes	Not yet	No due to exemption Art 4.4
AT	Inn	ATOK304980009	Yes	Not yet	No due to exemption Art 4.4
AT	Inn	ATOK304980010	Yes	Not yet	No due to exemption Art 4.4
AT	Inn	ATOK305850011	Yes	Not yet	No due to exemption Art 4.4
AT	Inn	ATOK305850011	Yes	Not yet	No due to exemption Art 4.4
AT	Lech	ATOK307080000	Yes	Not yet	No due to exemption Art 4.4
AT	Mur	ATOK801180004	Yes	Not yet	No due to exemption Art 4.4
AT	Mur	ATOK801180006	Yes	Not yet	No due to exemption Art 4.4
AT	Raab	ATOK1001040108	Yes	Not yet	No due to exemption Art 4.4
AT	Raab	ATOK1002160000	Yes	Not yet	No due to exemption Art 4.4
AT	Salzach	ATOK304690004	Yes	Not yet	No due to exemption Art 4.4
AT	Salzach	ATOK304690005	Yes	Not yet	No due to exemption Art 4.4
AT	Salzach	ATOK305350001	Yes	Not yet	No due to exemption Art 4.4
AT	Salzach	ATOK305350001	Yes	Not yet	No due to exemption Art 4.4
AT	Salzach	ATOK305350001	Yes	Not yet	No due to exemption Art 4.4
AT	Salzach	ATOK305350001	Yes	Not yet	No due to exemption Art 4.4
AT	Salzach	ATOK305350001	Yes	Not yet	No due to exemption Art 4.4
AT	Salzach	ATOK305350003	Yes	Not yet	No due to exemption Art 4.4
AT	Salzach	ATOK305350003	Yes	Not yet	No due to exemption Art 4.4
AT	Salzach	ATOK305350004	Yes	Not yet	No due to exemption Art 4.4
AT	Salzach	ATOK305350004	Yes	Not yet	No due to exemption Art 4.4
AT	Salzach	ATOK305350006	Yes	Not yet	No due to exemption Art 4.4
AT	Salzach	ATOK305350006	Yes	Not yet	No due to exemption Art 4.4
AT	Salzach	ATOK305360002	Yes	Not yet	No due to exemption Art 4.4
AT	Salzach	ATOK305360002	Yes	Not yet	No due to exemption Art 4.4

Country	River	RWB Code	Water level fluctuation >1m/day	Restored 2015	Measure 2021
AT	Salzach	ATOK305360002	Yes	Not yet	No due to exemption Art 4.4
AT	Salzach	ATOK305360002	Yes	Not yet	No due to exemption Art 4.4
AT	Salzach	ATOK307200002	Yes	Not yet	No due to exemption Art 4.4
AT	Salzach	ATOK307200003	Yes	Not yet	No due to exemption Art 4.4
AT	Thaya	ATOK501870001	Yes	Not yet	No due to exemption Art 4.4
DE	Donau	DEDEBY_1_F163	Unknown	Not yet	No due to exemption Art 4.4
DE	Isar	DEDEBY_1_F429	Unknown	Not yet	No due to exemption Art 4.4
DE	Lech	DEDEBY_1_F122	Unknown	Not yet	No due to exemption Art 4.4
DE	Lech	DEDEBY_1_F124	Unknown	Not yet	No due to exemption Art 4.4
DE	Lech	DEDEBY_1_F125	Unknown	Not yet	Yes
DE	Lech	DEDEBY_1_F128	Unknown	Not yet	Yes
DE	Lech	DEDEBY_1_F131	Unknown	Not yet	Yes
DE	Lech	DEDEBY_1_F132	Unknown	Not yet	Yes
HR	Drava	HRDDRI020005	Yes	Yes	
HU	Tisza	HUAIW389	Yes	Not necessary	

Financing the Joint Programme of Measures

Financing Program	Organisation	Description	(Main) Type of pressure (SWMIs)	Other eligibility criteria	Sources/further information regarding application
European Regional Development Fund (ERDF)	EU (European Structural and Investment Funds/ESIF)	The ERDF aims to strengthen economic, social and territorial cohesion in the EU by correcting imbalances between regions. The ERDF supports regional and local development to contribute to all of the thematic objectives, laid down in the CPR ¹ .	TO 5 (climate change adaptation, risk prevention): ecosystem-based approaches for hydromorphological alterations (reconnection of wetlands/floodplains), possibly nutrient pollution (diffuse pollution from agriculture). TO 6 (protecting the environment and promoting resource efficiency): organic pollution (UWWTP, industrial point sources), nutrient pollution (UWWTP, industrial point sources), hazardous substances pollution (UWWTP industrial point sources), hydromorphological alterations (reconnection of wetlands/floodplains).	Only EU Member States eligible MS/regions are classified according to "more developed regions/transition regions/less developed regions" (influencing minimum allocations set for a number of priority areas).	*Common Provisions Regulation ² . *ESIF general: <u>http://ec.europa.eu/contr</u> <u>acts grants/funds en.ht</u> <u>m</u> *Project database: <u>http://ec.europa.eu/regio</u> <u>nal_policy/index.cfm/en</u> /projects/?LAN=EN&pa y=ALL®ion=ALL&t he=97&type=ALL&per =2
European Social Fund (ESF)	EU (European Structural and Investment Funds/ESIF)	The European Social Fund (ESF) is the main financial instrument for investing in employment opportunities, better education, improvement of the situation of the most vulnerable people; capacity building in the environment is also being supported.	No direct linkage to the Danube SWMIs. Possible indirect linkages in all areas regarding capacity building, mainly BAT/BAP.	Only EU Member States eligible	*Common Provisions Regulation (see footnote 3 above) *ESIF general: <u>http://ec.europa.eu/contr</u> <u>acts_grants/funds_en.ht</u> <u>m</u> *Project_database: see link under ERDF

¹ The thematic objectives are: 1. research and development, and innovation; 2. information and communication technologies; 3.competitiveness of SMEs; 4. shift towards a lowcarbon economy; 5. climate change adaptation, risk prevention; 6. protecting the environment and promotion resource efficiency; 7. promoting sustainable transport; 8. employment and labor mobility; 9. social inclusion and poverty; 10. education, and training; 11. institutional capacity and efficiency of public administration. TO 5 and 6 are particularly relevant for water and marine policy.

² More detailed information on eligibility, financial instruments, ex-ante conditionalities and management and control principles, as well as common elements on strategic planning and programming, thematic objectives linked to the Europe 2020 Strategy and visions on the Common Strategic Framework and on the Partnership Agreements to be agreed between the Commission and each Member State can be found in the Common Provisions Regulation/CPR (No 1303/2013 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 17 December 2013), to be found here: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32013R1303.

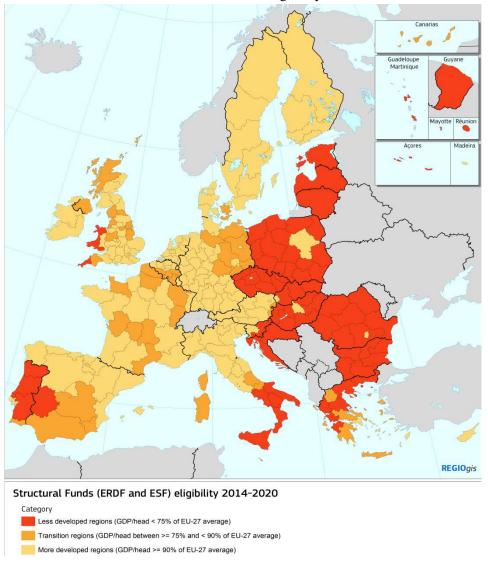
Financing Program	Organisation	Description	(Main) Type of pressure (SWMIs)	Other eligibility criteria	Sources/further information regarding application
(CF)	Structural and Investment Funds/ESIF)	Member States with a GNI ³ per capita of less than 90% of the EU- 27 average to invest in TEN-T transport networks and the environment.	prevention: hydromorphological alterations (reconnection of wetlands/floodplains). <u>Investment in the water and waste sectors, and</u> <u>the urban environment:</u> organic pollution (UWWTP, industrial point sources), nutrient pollution (UWWTP, industrial point sources, urban run-off), hazardous substances pollution (UWWTP, industrial point sources, urban run- off). <u>Investment in energy, provided it has positive</u> <u>environmental benefits:</u> possibly all hydromorphological pressures if linked to hydropower.	States with a GNI per capita of less than 90% of the EU-27 average. For the 2014-2020 period, the Cohesion Fund concerns (in the Danube RB) Bulgaria, Croatia, the Czech Republic, Hungary, Romania, Slovakia and Slovenia (see map at the end of the table). Ex-ante conditionality: Existence of a water pricing policy (with adequate incentives and contributions of different users) Adoption of RBMP	Regulation (see footnote 3 above) *ESIF general: http://ec.europa.eu/contr acts grants/funds en.ht m *Project database: see link under ERDF
European Maritime and Fisheries Fund (EMFF)	EU (European Structural and Investment Funds/ESIF)	The EMFF is the primary financing instrument for the reformed Common Fisheries Policy (CFP) and the Integrated Maritime Policy (IMP), including the Marine Strategy Framework Directive (MSFD).	No direct linkage to the Danube SWMIs. Possible indirect linkages in transitional/coastal water, e.g. with regard to data collection on fish species, or the management, restoration and monitoring of coastal Natura2000 sites.	Only EU Member States eligible	*Common Provisions Regulation (see footnote 3 above) *ESIF general: <u>http://ec.europa.eu/contr</u> <u>acts_grants/funds_en.ht</u> <u>m</u>
CAP/European Agricultural Fund for Rural Development (EAFRD)	EU (European Structural and Investment Funds/ESIF)	The EAFRD is one of the primary financing instruments for the Pillar II of the CAP (Rural Development), which sets a number of environmental objectives, notably: 1: efficient, responsible and	1: efficient, responsible and sustainable use of water resources in agriculture: only indirect links to SWMIs; cooperation and irrigation/water savings possible (Art. 17 investments, linked to irrigation). 2: ensuring that agricultural activities help/do not represent a constraint/to achieve GES and	Only EU Member States eligible	*Common Provisions Regulation (see footnote 3 above) *ESIF general: <u>http://ec.europa.eu/contr</u> <u>acts_grants/funds_en.ht</u> <u>m</u>

³ Gross National Income.

3

Financing Program	Organisation	Description	(Main) Type of pressure (SWMIs)	Other eligibility criteria	Sources/further information regarding application
		sustainable use of water resources in agriculture; 2: ensuring that agricultural activities help/do not represent a constraint/to achieve GES and goals of the WFD; 3: implementation of the ecosystem-based approach when addressing challenges linked to climate change; 4: restoration of natural water cycle and of fresh water ecosystems and ambient ecosystems. 30% of the 95 billion € in 2014- 2020 are earmarked for environment and climate.	goalsof the WFD:organicpollution (animalfeeding/breedinglots),nutrientpollution(diffuseemissionsfromagriculture,animalfeeding/breedinglots),hazardoussubstancespollution(diffusesourcesfromagriculture),hydromorphologicalalterations(reconnectionofwetlands/floodplains).(Art. 28agri-environment-climatepaymentsandArt.29organicfarmingcoverthecomplexissueofinterlinkedwater,soilandbiodiversityelementslinkedtoagriculturaldiffusesources;Art.30paymentscoverdefareasunder strictprotection).3:implementationofthecosystem-basedapproachwhenaddressingchallengeslinkedtoclimatechange:possiblyhydromorphologicalalterations(reconnectionofwetlands/floodplains),organic/nutrient/hazardoussubstancespollution(throughchangesinlanduseintroductionofagriculturalproductionpotentialdamagedbynaturaldisastersandcatastrophicventsiororattrationsgriculturalgriculturalgriculturalgriculturalgriculturalgriculturalgriculturalgricultural <td< td=""><td></td><td>*Agriculture and Rural Development: http://ec.europa.eu/agric ulture/rural- development-2014- 2020/index en.htm *Applications via the national ministries responsible for EAFRD implementation/funding (list of ministries: http://ec.europa.eu/agric ulture/links-to- ministries/index en.htm).</td></td<>		*Agriculture and Rural Development: http://ec.europa.eu/agric ulture/rural- development-2014- 2020/index en.htm *Applications via the national ministries responsible for EAFRD implementation/funding (list of ministries: http://ec.europa.eu/agric ulture/links-to- ministries/index en.htm).

Financing Program	Organisation	Description	(Main) Type of pressure (SWMIs)	Other eligibility criteria	Sources/further information regarding application
LIFE	EU	LIFE is the EU's only financing program entirely devoted to environmental objectives. It has four general objectives: 1. contributing to the shift	intensity or forest cover: Art. 17 investments in non-productive physical assets, such as achieving biodiversity conservation status of species and habitat as well as enhancing the public amenity value of a Natura 2000 area or other high nature value systems). Potentially addresses all SWMIs through the "LIFE Integrated Projects" (organic pollution indirectly). Foci are ecosystem-based approaches: organic pollution (indirectly through natural buffer	EU and non-EU countries (candidate countries and the Western Balkan countries involved in	*General information: http://ec.europa.eu/envir onment/life/ *LIFE regulation (english): http://eur-
		towards a sustainable, low-carbon and climate-resilient economy, as well as to the protection of the environment and of biodiversity; 2: improving the development, implementation and enforcement of EU environmental and climate policy and legislation; 3: improving environmental and climate governance at all levels, including better involvement of civil society, non-governmental organizations (NGOs) and local	zones), nutrient pollution (diffuse sources from agriculture and agricultural atmospheric emissions, urban run-off), hazardous substances pollution (diffuse sources, mainly from agriculture, but potentially also from urban and landfill/mining sites), hydromorphological alterations (longitudinal river continuity, reconnection of wetlands/floodplains, hydrological alterations). Also measures targeting sediments (retention measures) and IAS.	the Stabilisation and Association Process, as well as countries to which the European Neighbourhood Policy applies). Projects must apply to "priority areas" and related specific objectives: Component Environment: "resource	lex.europa.eu/legal- content/EN/TXT/PDF/? uri=CELEX:32013R129 3&from=EN *COM Presentation on LIFE: http://ec.europa.eu/envir onment/life/about/docu ments/life2014-2020.pdf *National contact points: http://ec.europa.eu/envir onment/life/contact/nati
		actors; and 4: supporting the implementation of the 7th Environment Action Programme. LIFE 2014-2020 also incorporates new "LIFE Integrated Projects", larger projects (an average EU contribution of 10 million \in) aiming at contributing to the implementation of some	Through the many links to climate and resilience, synergy effects between climate change adaptation, mitigation and water/biodiversity protection (keywords: NWRM, green infrastructure).	efficiency", "nature and biodiversity" and "environmental governance and information". Component Climate Action: climate change mitigation, adaptation and governance/ information.	onalcontact/index.htm *EP Briefing: http://www.europarl.eur opa.eu/RegData/etudes/ BRIE/2015/548992/EP RS_BRI%282015%295 48992_REV1_EN.pdf


Financing Program	Organisation	Description	(Main) Type of pressure (SWMIs)	Other eligibility criteria	Sources/further information regarding application
		environmental EU policies, in particular the WFD and the MSFD.			
Horizon 2020	EU	Horizon 2020 is the funding program for research and innovation for the period 2014- 2020. It is structured around tackling a series of "Societal Challenges" (SC), of which SC 2 on "Food security, sustainable agriculture and forestry, marine and maritime and inland water research, and the bioeconomy" and SC 5 on "Climate action, resource efficiency and raw materials" are of the greatest relevance for research linked to WFD implementation.	No direct link to Danube SWMIs, but research to support measures/knowledge on any SWMI is possible.	EU and non-EU countries (associated countries). Research program, SME participation possible. Most projects require at least three partners.	*Application process and help: http://ec.europa.eu/progr ammes/horizon2020/en/ how-get-funding *National contact points: http://ec.europa.eu/resea rch/participants/portal/d esktop/en/support/nation al_contact_points.html
INTERREG V/European Territorial Cooperation (ETC)	EU	INTERREG programs are a specific strand of funding possibilities within the cohesion policy funding, under the European Territorial Cooperation (ETC) goal. INTERREG programs typically focus on cooperation between regions and Member States, and are generally aimed at enabling exchange of experience, knowledge and good practices among relevant stakeholders from different MS and/or regions.	No direct link to Danube SWMIs, but enabling exchange of experience, knowledge and good practices can benefit implementation of measures in all areas.	EU and non-EU countries. Programs can be cross- border (along internal EU borders), transnational (cover larger areas of co- operation such as the Danube Basin), and interregional at EU-28 level (between regional and local bodies in different countries belonging also to different regions).	*Information on ETC and INTERREG V: http://ec.europa.eu/regio nal_policy/index.cfm/en /policy/cooperation/euro pean-territorial/ *Project database: http://ec.europa.eu/regio nal_policy/index.cfm/en /projects/?LAN=EN&pa y=ALL®ion=ALL&t he=97&type=ALL&per =2 List of programs: http://www.danube- region.eu/2014-03-21- 07-28-38/etc-ipa-cbc-

Financing Program	Organisation	Description	(Main) Type of pressure (SWMIs)	Other eligibility criteria	Sources/further information regarding application
					and-enpi-cbc- programmes
European Neighbourhood Instrument (ENI)	EU	ENI is providing direct support for the EU's external policies. For environmental actions, target 4 ("encouraging development, poverty reduction, internal economic, social and territorial cohesion, rural development, climate action and disaster resilience") can be of relevance.	Support for non-EU countries participating in cross-border ERDF/INTERREG programs possible. Otherwise, potential link to Danube SWMIs though various funding opportunities; see Handbook for details.	Non-EU (candidates, possible candidates and neighboring countries; in the Danube region: Moldova and Ukraine)	*EU Funding Handbook for the neighborhood: http://www.enpi- info.eu/files/publication s/EU%20funding%20H andbook%20- %20Final%2026Feb.pdf *ENI Regulation: http://eur- lex.europa.eu/LexUriSer v/LexUriServ.do?uri=O J:L:2014:077:0027:0043 :EN:PDF List of programs: http://www.danube- region.eu/2014-03-21- 07-28-38/etc-ipa-cbc- and-enpi-cbc- programmes
Instrument for Pre- Accession Assistance (IPA II)	EU	Since 2007, the Instrument for Pre-Accession Assistance (IPA) replaces a series of EU programs and financial instruments for candidate countries or potential candidate countries (such as PHARE, ISPA, SAPRD etc.). It is organized along five components, which are: 1. assistance for transition and institution building; 2- cross-border cooperation (with EU MS and other countries eligible for IPA);	In the Danube RB, only C1 and C2 are being funded: 1. assistance for transition and institution building; 2- cross-border cooperation (with EU MS and other countries eligible for IPA). Hence, no direct link to Danube SWMIs, although institution building and cross-border cooperation can benefit implementation of measures in all areas.	EU candidate countries (Turkey and FYROM) are eligible for all five components of IPA, potential candidate countries in the Western Balkans (Albania, Bosnia- Herzegovina, Montenegro, Serbia, and Kosovo under UN Security Council Resolution 1244/99) are eligible only for the	*More information: http://www.welcomeuro pe.com/european- funds/ipa-ii-instrument- pre-accession- assistance-2014-2020- 838+738.html#tab=ongl et_details *More information: http://ec.europa.eu/regio nal_policy/index.cfm/E N/funding/ipa/ List_of_programs: http://www.danube-

Financing Program	Organisation	Description	(Main) Type of pressure (SWMIs)	Other eligibility criteria	Sources/further information regarding application
		 regional development (transport, environment, regional and economic development); human resources (strengthening human capital and combating exclusion); rural development. 		first two components.	region.eu/2014-03-21- 07-28-38/etc-ipa-cbc- and-enpi-cbc- programmes
International Bank for Reconstruction and Development (IBRD) International Development Association (IDA)	World Bank (WB)	The World Bank is an international financial institution that provides loans to developing countries. It consists of two agencies (IBRD and IDA) and focuses on the following fields: - human development (e.g. education, health); - agriculture and rural development (e.g. irrigation and rural services); - environmental protection (e.g. pollution reduction, establishing and enforcing regulations); - infrastructure (e.g. roads, urban regeneration, and electricity); - large industrial construction projects; - governance (e.g. anti-corruption, legal institutions development). The IBRD and IDA provide loans at preferential rates to member countries, as well as grants to the poorest countries.	Ni direct link to Danube SWMIs, although a multitude of projects/measures benefitting WFD implementation can be financed by WB loans (see also the examples listed under GEF). It has to be remarked, however, that IBRD provides only loans (though at preferential rates), not grants. IDA also provides grants.	IBRD: middle income and creditworthy low- income countries (all Danube except DE and AT). IDA: Moldova (and Kosovo)	*Products and Services: http://www.worldbank.o rg/en/projects- operations/products- and-services *WB Country Reports: http://web.worldbank.or g/WBSITE/EXTERNA L/PROJECTS/0,.menuP K:64383817~pagePK:6 4387457~piPK:6438754 3~theSitePK:40941,00.h tml
Global Environment Facility (GEF)	GEF	The Global Environment Facility is a partnership for international cooperation where 183 countries work together with international	GEF provides grants to various types of projects (Climate Change Adaptation Projects and Small Grants Programme (SGP) most relevant) ranging from several thousand	Most countries should be eligible, depending on the focal area, eligibility criteria	*Templates and guidelines available at: <u>http://www.thegef.org/g</u> <u>ef/guidelines_templates</u>

Financing Program	Organisation	Description	(Main) Type of pressure (SWMIs)	Other eligibility criteria	Sources/further information regarding application
		institutions, civil society organizations and the private sector, to address global environmental issues.	dollars to several million dollars. Projects are supported in several "focal areas", of which the most relevant are: Biodiversity, Climate Change, Chemicals and Waste. Financing is provided through grants and non-grants. Funding possible with regard to all Danube SWMIs.	established by the relevant COP of the respective convention, and some others (see http://www.thegef.org/ gef/node/1432).	*Project types: http://www.thegef.org/g ef/project_types *Example from Moldova: http://www.worldbank.o rg/projects/P075995/agr icultural-pollution- control-gef- project?lang=en&tab=0 verview *Example from Romania: http://www.worldbank.o rg/projects/P093775/ro mania-integrated- nutrient-pollution- control-project?lang=en
European Investment Bank (EIB)	EU	The EIB is the EU's bank, offering loans (individual for projects over 25 Mio. \in , intermediate to other banks/institutions for SME with projects under 25 Mio. \in). The EIB finances a broad range of projects in all sectors of the economy, adhering to one of the six priority objectives, of which two are of special importance for WFD implementation in the Danube: - Environmental sustainability (climate action and urban/natural environment); - Sustainable, competitive and	No direct link to Danube SWMIs, but the EIB's financing can help to unlock financing from other sources, particularly from the EU budget. It has to be remarked, however, that the EIB provides loans, not grants.	EU and non-EU countries (all Danube countries).	*Applying for a loan: http://www.eib.org/proj ects/cycle/applying loa n/index.htm *Detailed information on products: http://www.eib.org/proj ects/priorities/sme/prod ucts/index.htm *For the Western Balkans, see Western Balkans Investment Framework: http://www.wbif.eu/

Financing Program	Organisation	Description	(Main) Type of pressure (SWMIs)	Other eligibility criteria	Sources/further information regarding application
		secure energy.			
European Bank for Reconstruction and Development (EBRD)	International	The EBRD is a development bank offering loans and other financial products (like equities) in more than 30 countries from central Europe to Central Asia. Although the name suggests European ownership, the biggest shareholder are the United States. The EBRD supports private sector development (meeting the requirements, of which to "satisfy banking and environmental standards" is a part) in the relevant sectors agribusiness, energy efficiency & climate change (see Sustainable Energy Initiative), municipal & environmental infrastructure; power and energy.	No direct link to Danube SWMIs, although a multitude of (mostly private sector) projects/investments can be supported (such as improving animal feeding/breeding lots etc.). The "Sustainable Energy Initiative" (including renewable energy and adaptation projects) finances projects in energy efficiency, renewable energy and climate change adaptation/resilience. It has to be remarked, however, that the EIB provides loans, not grants.	All countries in the Danube RB - except Austria and Germany - are eligible for loans.	*Products and Services: http://www.ebrd.com/w hat-we-do/products-and- services.html *Sustainable Energy Initiative: www.ebrd.com/cs/Satell ite?c=Content&cid=139 5237439462&pagename =EBRD%2FContent%2 FDownloadDocument

Structural Funds Eligibility

Source: EC Commission, DG REGIO (presentation at the 4th EU Water Conference 2015).