DANUBE RIVER BASIN MANAGEMENT PLAN UPDATE 2021

ANNEX 8

Groundwater in the DRBD

GWB	Nat.	Area	Aqı charact	uifer eristics		Overlving			
	part	[km²]	Aquifer Type	Confined	Main use	strata [m]	Cittena for importance		
1	AT-1	1,650	TZ IZ	N		100 1000	T / ·		
	DE-1	4,250	K	Yes	SPA, CAL	100-1000	Intensive use		
2	BG-2	13,034	БV	Vac	DDW ACD IND	0.600	> 4000 1rm2		
	RO-2	11,340	Г, К	res	DRW, AGR, IND	0-000	> 4000 KIII ²		
3	MD-3	9,662	D	Vas		0.150	> 4000 km ² , GW use, GW		
	RO-3	12,646	г	168	DKW, AGK, IND	0-150	resource		
4	BG-4	3,308	К,	No		0.10	> 4000 1?		
	RO-4	2,187	F-K	Yes	DRW, AGR, IND	0-10	> 4000 km ²		
5	HU-5	4,989	р	No		2 20	> 4000 km ² , GW resource		
	RO-5	2,227	P	INO	DKW, IKK, IND	2-30	DRW protection		
6	HU-6	1,034	п	No	DDW ACD IDD	5 20	GW resource, DRW		
	RO-6	1,459	P	INO	DKW, AGK, IKK	3-30	protection		
7	HU-7	7,098		No					
	RO-7	11,355	Р	Yes	DRW, AGR, IND,	0-125	> 4000 km ² , GW use, GW		
	RS-7	10,506		No	ПЛК		resource, DR w protection		
8	HU-8	1,152			DRW IRR ACR		GW resource, DRW		
	SK-8	2,186	Р	No	IND	2-5	protection, dependent ecosystems		
9	HU-9	750		No			GW resource, DRW		
	SK-9	1,470	Р	Yes	DRW,IRR	2-10	protection, dependent ecosystems		
10	HU-10	493	K				GW resources, DRW		
	SK-10	598	K, F	No	DRW, OTH	0-500	protection, dependent ecosystem		
11	HU-11	3,337	K	Vas	DDW SDA CAL	0.2500	Thermal water reserves		
	SK-11	563	F, K	res	DKW, SPA, CAL	0-2300	Thermal water resource		
12	HU-12 SK-12	146 198	Р	No	DRW, AGR	0-10	DRW protection, dependent ecosystems, GW resource		

Table	1:1	Nominated	transbour	dary	GWBs	of	Danube	basin	wide	importar	ICe
-------	-----	-----------	-----------	------	------	----	--------	-------	------	----------	-----

3

Table 2: Nominated transbounda	y GWBs of Danube basin wide importance
--------------------------------	--

Transboundary GWB	Nat. part	National GWB Codes	Area [km²]	Area [km²]	Adui chara sati	ifer cteri- ion Coutined	Main use	Overlying strata	Criteria for importance
1:	AT-1	ATGK100158	5,900	1,650	K	Yes	SPA, CAL	100-	Intensive use
Deep Thermal	DE-1	DEGK1110		4,250				1000	
2:	BG-2	BG1G0000J3K051	24,374	13,034	F, K	Yes	DRW, AGR,	0–600	>4000 km²
Upper Jurassic – Lower Cretaceous	RO-2	RODL06		11,340			IND		
3:	MD-3	MDPR01	22,308	9,662	Р	Yes	DRW, AGR,	0–150	>4000 km ² ,
Middle Sarmatian - Pontian	RO-3	ROPR05		12,646			IND		GW use, GW resource
4:	BG-4	BG1G00000N049	5,495	3,308	К,	No /	DRW, AGR,	0–10	>4000 km ²
Sarmatian	RO-4	RODL04		2,187	F-K	Yes	IND		
5: Mures / Maros	HU-5	HU_AIQ605 HU_AIQ604 HU_AIQ594 HU_AIQ593	7,216	4,989	Р	No	DRW, IRR, IND	2-30	>4000 km ² , GW resource, DRW protection
	RO-5*	ROMU20 ROMU22		2,227 1,774					
6: Somes / Szamos	HU-6	HU_AIQ649 HU_AIQ648 HU_AIQ600 HU_AIQ601	2,493	1,034	Р	No	DRW,AGR, IRR	5–30	GW resource, DRW protection
	RO-6*	ROSO01 ROSO13		1,459 1,392					
7: Upper Pannonian- Lower Pleistocene / Vojvodina / Duna- Tisza köze déli r.	HU-7 RO-7 RS-7	HU_AIQ528 HU_AIQ523 HU_AIQ532 HU_AIQ532 HU_AIQ590 HU_AIQ529 HU_AIQ522 HU_AIQ533 HU_AIQ486 HU_AIQ591 ROBA18 RS_TIS_GW_I_1 RS_TIS_GW_I_2 RS_TIS_GW_I_2 RS_TIS_GW_I_3 RS_TIS_GW_I_3 RS_TIS_GW_I_4 RS_TIS_GW_I_4 RS_TIS_GW_I_7 RS_TIS_GW_I_1 RS_D_GW_I_1 RS_D_GW_I_1	28,959	7,098 11,355 10,506	P	No / Yes / No	DRW, AGR, IND, IRR	0-125	> 4000 km², GW use, GW resource, DRW protection
8: Podunajska Basin, Zitny Ostrov /	HU-8	HU_AIQ654 HU_AIQ653 HU_AIQ573	3,338	1,152	Р	No	DRW, IRR, AGR, IND	2–5	GW resource, DRW protection,

Transboundary GWB	Nat. part	National GWB Codes	Area [km²]	Area [km²]	Adnifer Type	ifer cteri- ion Coutined	Main use	Overlying strata	Criteria for importance
Szigetköz, Hanság- Rábca	SK-8	SK1000300P SK1000200P		2,186					dependent ecosystems
9: Bodrog	HU-9	HU_AIQ495 HU_AIQ496	2,220	750	Р	No / Yes	DRW,IRR	2–10	GW resource, DRW
	SK-9	SK1001500P		1,470					dependent ecosystems
10:	HU-10	HU_AIQ485	1,091	493	К	No	DRW, OTH	0–500	GW resource,
Slovensky kras / Aggtelek-hgs.	SK-10	SK200480KF		598	K, F				DRW protection, dependent ecosystems
11: Komarnanska Kryha / Dunántúli-khgs. északi r.	HU-11	HU_AIQ558 HU_AIQ552 HU_AIQ564 HU_AIQ660	3,900	3,337	K	Yes	DRW, SPA, CAL	0– 2,500	Thermal water resource
	SK-11	SK300010FK SK300020FK		563	F, K				
12:	HU-12	HU_AIQ583	344	146		No	DRW, AGR	0–10	DRW
Ipel / Ipoly	SK-12	SK1000800P		198	Р				protection, dependent ecosystems, GW resources

*...GWBs overlying

Explanation to Table 1 and 2

Transboundary GWB	ICPDR GWB code which is a unique identifier and the name
Nat. part	Code of national shares of ICPDR GWB
National GWB Codes	National codes of the individual GWBs forming the national part of a transboundary GWB of basin wide importance.
Area	Whole area of the transboundary GWB covering all countries concerned / Area of national shares in $\rm km^2$
Aquifer characterisation	Aquifer Type: Predom. \mathbf{P} = porous/ \mathbf{K} = karst/ \mathbf{F} = fissured. Multiple selections possible: Predominantly porous, karst, fissured and combinations are possible. Main type should be listed first.
	Confined: Yes / No
Main use	DRW = drinking water / AGR = agriculture / IRR = irrigation / IND = Industry / SPA = balneology / CAL = caloric energy / OTH = other. Multiple selection possible.
Overlying strata	Indicates a range of thickness (minimum and maximum in metres)
Criteria for importance	If size < 4 000 km ² criteria for importance of the GW body have to be named, they have to be bilaterally agreed upon.

Table 3: Number of monitoring stations and density per GWB

			CHEMIC	4L		Associated to QUAN			QUANTITY			Associated to	
Transboundary GWB	Nat. part	Area [km²]	Sites	km²/ site	Sites bilaterally agreed for data exchange	Drinkin g water protect ed areas	Eco- system s	Sites	km²/ site	Sites bilaterally agreed for data exchange	Drinkin g water protect ed areas	Eco- system s	
	AT-1	1,650	4	413	_2	-	-	3	550	_2	-	-	
1	DE-1	4,250	4	1,063	_2	-	-	4	1,063	_2	-	-	
Deep Thermal	Σ	5,900	8	738				7	843				
2	BG-2	13,034	9	1,448	2	yes	-	10	1,303	2	yes	-	
Upper Jurassic –	RO-2	11,340	26	436	4		-	1	11,340	4	0	-	
Cretaceous	Σ	24 374	35	696				11	2 216				
3	MD-3	9,662	6	1.610				7	1,380				
Sarmatian –	RO-3	12,646	19	666	0	-	_	. 17	744	0	0	_	
Pontian	Σ	22.308	25	892				24	930				
	BG-4	3.308	7	473	2	ves	-	5	662	2	ves	-	
4	RO-4	2.187	18	122	4	, ,	-	18	122	4	0	-	
Sarmatian	Σ	5,495	25	220				23	239				
	HU-5	4,989	125	40	6	94	5	110	45	5	20	8	
		2,227	20	111				16	139				
5	RO-5*	1,774	3	591	5	0	-	3	591	5	0	-	
Mures/Maros	Σ	7,216	148	48				129	56				
	HU-6	1,034	25	41	5	12	4	18	57	1	2	2	
		1,459	33	44				115	13				
6	RO-6*	1,392	6	232	2	0		7	199	2			
Somes/Szamos	Σ	2,493	64	39				141	18				
7	HU-7	7,098	159	45	0	105	14	151	47	0	22	15	
Upper Pannonian	RO-7	11,355	44	258		0	-	24	473		0	-	
- Lower Pleisto-	RS-7	10,506	11	955	0	yes	**	93	113	0	**	**	
/ Duna-Tisza													
köze deli r.	Σ	28.959	214	135				268	108				
8	HU-8	1.152	59	20	0	24	18	108	11	24	31	22	
Podunajska	SK-8	2,186	133	16	0	**	**	274	8	136	**	**	
Basin, Zitny													
Ostrov /													
Szigetköz,	_												
Hansag-Rabca	Σ	3,338	192	1/	0		0	382	9	40		0	
	HU-9	/50	12	62	0	6 **	0	16	47	12	0 **	2	
9 Dedres	5K-9	1,470	93	10	U			92	10	ð			
Boarog		2,220	105	21	0	10	6	108	21	0	6	6	
10 Clavanalus knaa		493	13	30 95	0	10	0 **	10	27	9	0 **	0 **	
Agatolok bog	SN-10	1 001	20	55	U			22	21	5			
11		3 337	20	167	0	20	1	/8	23 70	10	5	0	
Komarnanska	SK-11	563	23 4	107	0	**	**	-0	188	10	**	**	
Kryha /	01(-11	505		171	0			5	100	_			
Dunántúli-khgs.													
Északi r.	Σ	3,900	27	144				51	76				
	HU-12	146	6	29	0	6	3	7	21	1	0	2	
12	SK-12	198	26	8	0	**	**	19	10	7	**		
Ipel / Ipoly	Σ	344	32	11				26	13				

*...GWBs overlying; ** no information; ² unrestricted data exchange on demand; + will be updated

Explanation to Table 3

Transboundary GWB	ICPDR GWB code which is a unique identifier and the name						
Nat. part	Code of national shares of ICPDR GWB						
A 1999	Area of the whole transboundary ICPDR GWB covering all countries concerned and of						
Area	the national shares of the ICPDR GWB in km ² .						
CHEMICAL / QUANTITY							
Sites	Number of monitoring sites – Reference year (AT/DE 2018/19, BG 2016/19, RO						
Sites	2017/19, SK 2018)						
km ² /site	Area in km ² represented by each site – Reference year (AT/DE 2018/19, BG 2016/19,						
KIII-/Site	RO 2017/19, SK 2018)						
Number of sites bilaterally	Number of monitoring sites for which transboundary data exchange is bilaterally						
agreed for data exchange	agreed.						
Associated to							
Drinking water protected areas	Number of monitoring sites associated to drinking water protected areas						
Ecosystems	Number of monitoring sites associated to ecosystems						

	AT/DE	BG	RS	HU	MD	RO	SK				
Transboundary GWB	1	2,4	7	5-12	3	2 - 7	8-12				
CHEMICAL (with estimation of frequency)											
Oxygen	1/a	>1/a	1/a	1/6; <1/a		1/a***	>1/a				
pH-value	1/a	>1/a	1/a	>1/a*		1/a	>1/a				
Electrical conductivity	1/a (cont. DE)	>1/a	1/a	>1/a*		1/a	>1/a				
Nitrate	1/a	>1/a	1/a	>1/a*		1/a	>1/a				
Ammonium	1/a	>1/a	1/a	>1/a*		1/a	>1/a				
Temperature	cont.	>1/a	1/a	>1/a*		1/a	>1/a				
Further parameters, e.g. major ions	X**	Х	1/a	х		Х	х				
operational		Х		х		Х	х				
Q	UANTITY (with e	stimatio	n of fre	equency)							
GW levels/well head pressure	х	Х	Х	х		Х	х				
spring flows		Х		х		Х	х				
Flow characteristics							x				
Extraction (not obligatory)	Х										
Reinjection (not obligatory)	х										

Table 4: Parameters and frequency for the surveillance monitoring program

Remarks:

Transboundary GWB:	Code of transboundary GWB of Danube basin wide importance
>1/a:	More than 1 per year
x:	Parameter is measured
*	In the starting year
**	A yearly program and a five year monitoring program were established. Further parameters in
	DE are chloride, sulphate and total hardness
***	Monitoring frequency is according to surveillance monitoring program. The frequency is
	>1/year (2/y) in case of operational monitoring program

GWB	Nat. part			Da	nube RBM Pla	n 2015			Danube RBM Plan 2021							
		Chemical Status 2015	Status Pressure Types 2015	Significant upward trend (parameter)	Trend reversal (parameter)	Risk 2013 → 2021	Risk Pressure Types →2021	Exemptions from 2021	Chemical Status 2021	Status Pressure Types 2021	Significant upward trend (parameter)	Trend reversal (parameter)	Risk 2019 → 2027	Risk Pressure Types →2027	Exemptions (Year of achievement)	
GWB-1	AT-1 DE-1	Good	-	-	-	-	-	-	Good	-	-	-	-	-	-	
GWB-2	BG-2 RO-2	Good	-	-	-	-	-	-	Good	-	-	- Cl	-	-	-	
GWB-3	MD-3 RO-3	Good	-	-	-	Risk -	PS, DS, WA -	-	Good	-	-	-	-	-	-	
GWB-4	BG-4	Good	-	_	-	-	_	-	Good	-	-	-	-	-	-	
	RO-4								Poor	DS			Risk	DS	2027	
GWB-5	HU-5	Poor	DS	SO4	-	Risk	DS	2027	Poor	DS	NO3, NH4, EC, SO4		Risk	DS	2027+	
	RO-5			NH4							-	Cr, Pb			2027	
GWB-6	HU-6 RO-6	Good	-	-	-	-	-	-	Good	-	-	-	-	-	-	
	HU-7	Poor	DS	NO ₃	-	Risk	DS	2027	Poor	DS	-	-	Risk	DS	2027+	
GWB-7	RO-7	Good	-	-	-	-	-	-	Good	-	-	PO4, CI	-	-	-	
	RS-7	Good*	-			-	-	-	Good	-	-	-	-	-	-	
	HU-8	Good		-			-	-			-		-	-	-	
GWB-8	SK-8	Good	-	NH4, NO3, Cl, As, SO4	-	-	PS, DS	-	Good	-	PO ₄	NH4 ^{, ***} , CI***, SO4, TOC	Risk	PS, DS	-	
	HU-9	Cood							Good		NH₄	-	Diak	DC		
GWD-9	SK-9	Good	-	-	-	-	-	-	Poor	DS, PS	PO ₄	NH4 [,]	RISK	03	2027+	
GWB-10	HU-10 SK-10	Good	-	-	-	-	-	-	Good	-	-	-	Risk	PS	-	
GWB-11	HU-11 SK-11	Good Unknown	-	- Unknown*	-	-	-	-	Good	-	-	-	-	-	-	
	HU-12	Good	DS	NO ₃		Risk			Good	-	-	-	-	-	-	
GWB-12	SK-12	Poor	DS	SO4	-		-	-	Poor	DS	-	-	Risk	DS	2027+	

Table 5: Groundwater QUALITY: Risk and Status Information of the ICPDR GW-bodies over a period of 2013 to 2027

'-' means 'No'; * The status information is of low confidence as it is based on risk assessment; ** Not yet discussed; *** The trend was partially reversed, it means for some sites identified with significant upward trends in the 2nd RBMP. TOC - total organic carbon

Explanation: see next page

GWB	Nat. part			Danube RBM Pla	n 2015				Danube RBM Plan 2	2021	
	·	Quantitative Status 2015	Status Pressure Types 2015	Risk 2013 → 2021	Risk Pressure Types → 2021	Exemptions from 2021	Quantitative Status 2021	Status Pressure Types 2021	Risk 2019 -→ 2027	Risk Pressure Types →2027	Exe (Year of
GWB-1	AT-1 DE-1	Good	-	-	-	-	Good	-	-	-	
GWB-2	BG-2 RO-2	Good	-	-	-	-	Good	-	-	-	
GWB-3	MD-3 RO-3	Good	-	-	-	-	Good	-	-	-	
GWB-4	BG-4 RO-4	Good	-	-	-	-	Good	-	-	-	
GWB-5	HU-5 RO-5	Poor Good	WA -	Risk -	WA -	2027	Poor Good	WA -	Risk -	WA -	
GWB-6	HU-6 RO-6	Good	-	-	-	-	Good	-	-	-	
	HU-7	Poor	WA	Risk	WA	2027	Poor	WA	Risk	WA	
GWB-7	RO-7	Good	-	-	-	-	Good	-	-	-	
	RS-7	Poor*	WA	Risk	WA	**	Poor	WA	Risk	WA	
GWP 9	HU-8	Poor	WA	Risk	WA	2027	Good				
GWD-0	SK-8	Good	-	-	-	-	Guu	-	-	-	
GWB-9	HU-9 SK-9	Good	-	-	-	-	Poor Good	OP -	Risk -	OP -	
GWB-10	HU-10 SK-10	Good	-	-	-	-	Good	-	- Risk	- WA	
GWB-11	HU-11 SK-11	Good Unknown	-	-	-	-	Good	-	-	-	
GWB-12	HU-12 SK-12	Good	-	-	-	-	Good	-	-	-	

Table 6: Groundwater QUANTITY: Risk and Status Information of the ICPDR GW-bodies over a period of 2013 to 2027

- ... no / not applicable; * ... Status information is of low confidence as it is based on risk assessment; ** ... not yet discussed; ***... information will be provided, when the Plan is officially adopted.

Explanation to Table 5 and Table 6

GWB	ICPDR GWB code which is a uni	que identifier.			
Nat. part	Code of national shares of ICPDR	GWBs			
Danube RBM Plan 2015	Danube RBM Plan 2021				
[Chemical/Quantitative] Status 2015	Status 2021	Good / Poor / Unknown			
Status Pressure Types 2015	Status Pressure Types 2021	Indicates the significant pressures causing poor status in 2015. $AR =$ artificial recharge, $DS =$ diffuse sources, $PS =$ point sources, $OP =$ other significant pressures, $WA =$ water abstractions			
Significant upward trend (parameter)	Significant upward trend (parameter)	Indicates for which parameter a significant sustained upward trend has been identified.			
Trend reversal (parameter)	Trend reversal (parameter)	Indicates for which parameter a trend reversal could have been achieved.			
Risk 2013→2021	Risk 2019→2027	Risk / - (which means 'no risk')			
Risk Pressure Types →2021	Risk Pressure Types →2027	Indicates the significant pressures causing risk of failing to achieve good status in 2021. \mathbf{AR} = artificial recharge, \mathbf{DS} = diffuse sources, \mathbf{PS} = point sources, \mathbf{OP} = other significant pressures, \mathbf{WA} = water abstractions			
Exemptions from 2021	Exemptions (Year of achievement)	Indicates the year by when good status is expected to be achieved.			

10

Table 7: Groundwater QUALITY: Status 2021 - Reasons for failing good groundwater chemical status in 2021 for the ICPDR GW-bodies.

		N. 0. 1	N/ C		140.1.1		0.1			A (7 1 1 1 1 1)
GWB	GWB Name	National	Year of	Chemical	Which parameters	Failed general	Saline or	Failed achievement of Article	Significant damage to	Art / drinking water
		part	status	Status	cause poor status	assessment of	other	4 objectives for associated	GW dependent terrestrial	protected area
			assessment	2021		GWB as a whole	intrusion	surface waters	ecosystem	affected
						Yes/-/	Yes/-/	Yes/-/	Yes/-/	Yes/-/
				good /poor	parameter	Unknown	Unknown	Unknown	Unknown	Unknown
				o ,		(parameter)	(parameter)	(parameter)	(parameter)	(parameter)
	Deep CW/P Thermel Weter	AT-1	2020	Cood						
GWD-1	Deep GWB – mermai waler	DE-1	2020	Good	-	-	-	-	-	-
GWR-2	Upper Jurassic – Lower Cretaceous GWB	BG-2	2019	Good	_	_	_	_	_	_
GWD-2	Opper Surassic - Lower Cretaceous OWD	RO-2	2017	0000	-	_	_	_	_	_
GWB-3	Middle Sarmatian - Pontian GWB	MD-3	2018	Good	_	_		_	_	_
0110-5		RO-3	2017	0000				_		_
GWB-4	Sarmatian GW/B	BG-4	2019	Good	-	-		<u>_</u>	_	_
0110-4		RO-4	2017	Poor	NO ₃	Yes	_	_		_
		HU-5				_				Yes (NO ₃ , SO ₄ ,
GWB-5	Mures / Maros	110-0	2020	Poor	1403, 004, 14114, 01,	_	-	-	-	NH ₄ , Cl)
		RO-5	2017		NO₃	Yes				-
GWB-6	Somes / Szamos	HU-6	2020	Good	_	_		_	_	_
0110-0	Comes / Czamos	RO-6	2017	0000	_		_			_
	 Inner Pannonian – Lower Pleistocene /	HU-7	2020	Poor	NO ₃	Yes (NO ₃₎				
GWB-7	Voivodina / Duna-Tisza köze deli r	RO-7	2017	Good	-	-	-	-	-	-
		RS-7	2019	Good	-	-				
GWR-8	Podunajska Basin, Zitny Ostrov /	HU-8	2020	Good	_	_		_	_	_
GWD-0	Szigetköz, Hanság-Rábca	SK-8	2013-2018	0000	-	-	_	_	_	_
GWR-0	Bodrog	HU-9	2020	Good	-					
GWD-3	Bodrog	SK-9	2013-2018	Poor	NH4, PO4	Yes	-	-	-	-
GWR-10	Slovensky kras / Aggtelek-bas	HU-10	2020	Good	_	_		_	_	_
GWB-10	Slovenský krás / Agglelek-ligs.	SK-10	2013-2018	9000	-	-	-	-	-	-
GWR 11	Komarnanska Kryha / Dunántúli-khgs.	HU-11	2020	Good						
	északi r.	SK-11	2013-2018	Guu	-	-	-	-	-	-
GWB-12		HU-12	2020	Good	-	-				
GWD-12		SK-12	2013-2018	Poor	NO ₃ , SO ₄ , PO ₄	Yes	-	-	-	-

'-' means 'No'; * The status information is of low confidence as it is based on risk assessment;

Table 8: Groundwater QUALITY: Risk 2027 - Reasons for risk of failing good groundwater chemical status in 2027 for the ICPDR GW-bodies.

		National	Year of risk	,at risk'	Which parameters	Failed general assessment of	Saline or other	Failed achievement of Article 4 objectives for	Significant damage to GW dependent terrestrial	Art 7 drinking water protected area
GWB	GWB Name	part	assessment	2021	cause risk	GWB as a whole	intrusions	associated surface waters	ecosystem	affected
				Risk / -	parameter	Yes / - / Unknown (parameter)	Yes / - / Unknown (parameter)	Yes / - / Unknown (parameter)	Yes / - / Unknown (parameter)	Yes / - / Unknown (parameter)
GWB-1	Deep GWB – Thermal Water	AT-1 DE-1	2020	-	-	-	-	-	-	-
GWB-2	Upper Jurassic – Lower Cretaceous GWB	BG-2 RO-2	2019 2017	-	-	-	-	-	-	-
GWB-3	Middle Sarmatian - Pontian GWB	MD-3 RO-3	2017	-	-	-	-	-	-	-
GWR-4	Sarmatian GWB	BG-4	2019	-	-	-	_	_	_	-
0110-4		RO-4	2017	Risk	NO ₃	Yes			_	
GWB-5	Mures / Maros	HU-5	2018	Risk	NH4, glyphosate*, Cl, SO ₄	Yes (NH4)	-	-	-	Yes (NO ₃ , Cl, SO ₄₎
		RO-5	2017		NO ₃	Yes				-
GWB-6	Somes / Szamos	HU-6 RO-6	2018 2017	-	-	-	-	-	-	-
CWP 7	Upper Pannonian – Lower Pleistocene /	HU-7	2018	Risk	Glyphosate*, EC, NH4, NO3	Yes (NH ₄ , NO ₃)				NO ₃ , EC
GWB-7	Vojvodina / Duna-Tisza köze deli r.	RO-7 RS-7	2017 2019		-		-	-	-	-
GWB-8	Podunajska Basin, Zitny Ostrov /	HU-8	2018	-	-	-	_	_	_	-
0110-0	Szigetköz, Hanság-Rábca	SK-8	2020	Risk	NH4		_	_	_	Yes
GWB-9	Bodrog	HU-9 SK-9	2018 2020	Risk	NH4 NH4, PO4	- Yes	-	-	-	Yes (NH4) -
GWB-10	Slovensky kras / Aggtelek-hgs.	HU-10 SK-10	2018	Risk	TCE	-	-	-	-	TCE
GWB-11	Komarnanska Kryha / Dunántúli-khgs. északi r.	HU-11 SK-11	2018 2020	-	-	-	-	-	-	-
GWP 12	Inel / Inely	HU-12	2018	-	-	-				
GWD-12	iper / ipory	SK-12	2020	Risk	NO3, PO4, SO4	Yes	-	-	-	-

'-' means 'No'; * based on single data after risk assessment period

Table 9: Groundwater QUANTITY: Status 2021 - Reasons for failing good groundwater quantitative status in 2021 for the ICPDR GW-bodies.

GWB	GWB Name	National part	Year of status assessment	Quantitative status 2021	Exceedance of available GW resource	Failed achievement of Article 4 objectives for associated surface waters	Significant damage to GW dependent terrestrial ecosystem	Uses affected (drinking water use, irrigation etc.)	Intrusions detected or to alterations of flow dire level cha
				good / poor	Yes / - / Unknown	Yes / - / Unknown	Yes/-/ Unknown	Yes / - / Unknown If yes, which?	Yes / Unkno
GWB-1	Deep GWB – Thermal Water	AT-1 DE-1	2020	Good	-	-	-	-	-
GWB-2	Upper Jurassic – Lower Cretaceous GWB	BG-2 RO-2	2019 2017	Good	-	-	-	-	-
GWB-3	Middle Sarmatian - Pontian GWB	MD-3 RO-3	2017	Good	-	-	-	-	-
GWB-4	Sarmatian GWB	BG-4 RO-4	2019 2017	Good	-	-	-	-	-
GWB-5	Mures / Maros	HU-5 RO-5	2020 2017	Poor Good		-	Yes -	-	-
GWB-6	Somes / Szamos	HU-6 RO-6	2020 2017	Good	-	-	-	-	-
	Upper Pannonian – Lower	HU-7	2020	Poor	Yes	-	Yes	-	-
GWB-7	Pleistocene / Vojvodina / Duna-	RO-7	2017	Good	-	-	-	-	-
	Tisza köze deli r.	RS-7	2019	Poor	Yes	Unknown	Unknown	Yes	Unkno
GWB-8	Podunajska Basin, Zitny Ostrov / Szigetköz, Hanság-Rábca	HU-8 SK-8	2020 2013-2017	Good	-	-	-	-	-
GWB-9	Bodrog	HU-9 SK-9	2020 2013-2017	Poor Good	Yes -	-	-	-	Unkno -
GWB-10	Slovensky kras / Aggtelek-hgs.	HU-10 SK-10	2020 2013-2017	Good	-	-	-	-	-
GWB-11	Komarnanska Kryha / Dunántúli- khgs. északi r.	HU-11 SK-11	2020 2015-2017	Good	-	-	-	-	-
GWB-12	lpel / lpoly	HU-12 SK-12	2020 2013-2017	Good	-	-	-	-	-

likely to happen due ections resulting from anges
/- / own
_
OWD
own

Table 10: Groundwater QUANTITY: Risk 2027 - Reasons for risk of failing good groundwater quantitative status in 2027 for the ICPDR GW-bodies.

GWB	GWB Name	National part	Year of risk assessment	ʻat risk' 2027	Exceedance of available GW resource	Failed achievement of Article 4 objectives for associated surface waters	Significant damage to GW dependent terrestrial ecosystem	Uses affected (drinking water use, irrigation etc.)	Intrusions detected or likely to happen due to alterations of flow directions resulting from level changes
				Risk / -	Yes / - / Unknown	Yes / - / Unknown	Yes/-/ Unknown	Yes / - / Unknown If yes, which?	Yes / - / Unknown
GWB-1	Deep GWB – Thermal Water	AT-1 DE-1	2020	-	-	-	-	-	-
GWB-2	Upper Jurassic – Lower Cretaceous GWB	BG-2 RO-2	2019 2017	-	-	-	-	-	-
GWB-3	Middle Sarmatian - Pontian GWB	MD-3 RO-3	2018 2017	-	-	-	-	-	-
GWB-4	Sarmatian GWB	BG-4 RO-4	2019 2017		-	-	-	-	-
GWB-5	Mures / Maros	HU-5 RO-5	2020 2017	Risk -	_	-	Yes -	-	-
GWB-6	Somes / Szamos	HU-6 RO-6	2020 2017		-	-	-	-	-
GWB-7	Upper Pannonian – Lower Pleistocene / Vojvodina / Duna- Tisza köze deli r.	HU-7 RO-7 RS-7	2020 2017 2019	Risk - Risk	Yes - Yes	- - - -	Yes - Unknown	- - Yes DW	- - Unknown
GWB-8	Podunajska Basin, Zitny Ostrov / Szigetköz, Hanság-Rábca	HU-8 SK-8	2020 2017	-	-	-	-	-	-
GWB-9	Bodrog	HU-9 SK-9	2020 2017	Risk -	Yes -	-	-	-	-
GWB-10	Slovensky kras / Aggtelek-hgs.	HU-10 SK-10	2020 2017	Risk	-	- Yes		-	-
GWB-11	Komarnanska Kryha / Dunántúli- khgs. északi r.	HU-11 SK-11	2020 2017	-	-	-	-	-	-
GWB-12	lpel / Ipoly	HU-12 SK-12	2020 2017	-	-	-	-	-	-

- means 'No';

likely to happen due rections resulting from anges
/- / own
own

Table 11: Summary table: Groundwater threshold values

		GWB-1	GWB	-2	GWB-3	GW	B-4	G	NB-5	GV	VB-6	GWB-	7		GWB-8	GV	/B-9	GW	B-10	GWB-11	GWB	8-12
Parameter	unit		BG-2	RO-2	RO-3	BG-4	RO-4	RO-5	HU-5	HU-6	RO-6	HU-7	R0-7	HU-8	SK-8	HU-9	SK-9	HU-10	SK-10	HU-11 SK-11**	HU-12	SK-12
Ammonium	mg/l		0.4487	0.5	6.4	0.38	0.7	0.5–1.9	2–5	2–5	0.5–1.3	2–5	6.4	1–2	0.26	2–5	0.30	0 .5	0.27	0.5–no TV	2	0.90
AOX	µg/l								20	20		20		20		20		20		20–no TV	20	
Arsenic	µg/l		7.6	10	10	7.7	10	40		-	10				6		6		5.5			6
Benzene	µg/l			10	10		10	10			10		10		0.8		0.8		0.8			0.8
Cadmium	µg/l		3.8	5	5	3.9	5	5	5	5	5	5	5	5	3.0	5	3.0	5	2.7	5–no TV	5	2.9
Chloride	mg/l		189	250	250	188.75	250	250	250-500	250	250	250	250	250	135.8-137.3	250	147.4	250	131.8	250–no TV	250	135.7
Chromium	µg/l		38.875		50	38.25		50			50		50		26		27		25			26
COD Mn	mg O2/l		3.975			3.8625																
Conductivity	µS/cm		1640.625			1713.6			2500-4000	2500		2500-4000		2500		2500		2500		2500–no TV	2500	
Copper	µg/l		152.7		100	150.1		100			100		100		1001-1002		1004		1001			1003
Cyanides	mg/l		0.04			0.04																
Iron total	mg/l		0.1607			0.15									0.125-0.135		0.150		0.105			0.150
Lead	µg/l		8.1	10	10	7.6	10	10–20	10	10	30–70	10	10	10	6.5-7.0	10	9.0	10	5.5	10–no TV	10	7.0
Manganese	mg/l		0.038			0.038									0.030		0.030		0.027			0.100
Mercury	µg/l		0.8	1	1	0.8	1		1	1	1	1	1	1	0.7-0.8	1	0.7	1	0.6	1–no TV	1	0.6
Nickel	µg/l		15.05		20	15.5	20	20			20		20									
Nitrates**	mg/l		38.5			39.87												25		25–50–no TV		
Nitrites	mg/l		0.3801	0.5	0.5	0.375	0.5	0.5			0.5		0.5		0.26		0.26		0.26			0.26
Phenols	µg/l							2			2		4									
Phosphates	mg/l		0.3805	0.5	1.4	0.3798	0.5	0.5–0.6			0.5		1		0.22		0.22		0.24			0.24
Orthophosphate	mg/l								2–5	0.5–2		1–5		1		1–2		0.25		0.25-no TV	2	
Sodium	mg/l		156.75			158.25									104.5-105.8		111.0		52.3			119.8
Sulphates	mg/l		192	250	250	189	250	250	250–500	250	250	250–500	250	250	148.9–157.6	250	167.4	250	167.6	250–no TV	500	140.8
Tetrachloroethylen	µg/l		7.5*	10	10	7.5*	10	10	10	10	10	10	10	10	7.5*	10	7.5*	10	7.5*	10	10	7.5*
Trichlorethylene	µg/l		*	10	10	*	10	10	10	10	10	10	10	10	7.5*	10	7.5*	10	7.5*	10	10	7.5*
Zinc	mg/l		0.777		5	0.7537	5	5			5		5									
Pesticides total**			0.375			0.375																

*...7.5 for Tetrachloroethylen + Trichlorethylene; ** the quality standards for nitrates (50 mg/l) and for pesticides (0.1 for individual pesticides and relevant metabolites and 0.5 for total pesticides) are not mentioned in the table. **...The criterion for evaluating the chemical status of geothermal GWB is the stability of the chemical composition

Methodologies of status and trend assessment of the ICPDR GW-bodies

GWB-1: Deep Groundwater Body – Thermal Water

GWB-1		National share	AT-1 DE-1	Status 2021 fo GW	2021 for each national GWB?				
				Chemical (substance)	Quantity				
List of individual	GW-bodies forming	AT	ATGK100158	Good	Good				
the whole nationa	l share (national code	DE	DEGK1110	Good	Good				
incl. country code	:)								
Description/Cha racterisation of the ICPDR GW-	The thermal groundw Molasse Basin is of tr The geothermal used	ater of the Malm karst ansboundary importan water is totally re-injec	(Upper Jurassic) in the l ce. It is used for spa pur ted in the same aquifer.	Lower Bavarian and poses and to gain ge	l Upper Austrian eothermal energy.				
body	The transboundary G 55 km. The aquifer is	W-body covers a total a Malm (karstic limeston	area of 5,900 km²; the lea ne): the top of the Malm 1	ngth is 155 km and i reaches a depth of n	the width is up to 10re than 1.000 m				
	below sea level in the	Bavarian part and 2,0	00 m in the Upper Austri	an part. The ground	lwater recharge				
	is mainly composed of	f subterranean inflow of the CW	of the adjacent Bohemian Parea The total ground	Massif and infiltra	tion of				
	820 l/s. The GW-body	is selected as of basin	-wide importance becaus	water recharge was se of its intensive us	e. An expert				
	group takes care for t	he permanent bilateral	exchange of information	and a sustainable	transboundary				
	use.								
Description of	Chemical Status								
assessment methodology.	The chemical status of according to a procea qualitative status of n	the deep GWB will be described on the basis of measurement and analysis data fure agreed between the two states. The decisive parameters for the evaluation of the ear-surface GWBs (such as nitrate and pesticides) are not relevant for deep GWBs.							
	As expected, the para considerably) from sin description of the qua the basis of aggregate individual measuring utilization of the wate concentration of certa	meters measured in the te to site. This is due to litative status cannot b ed data), but made on ti site. Contrary to near- rs (balneological and t un contents rises above	GWB extending over 59 regionally different geo- e made in the same way he basis of measurement surface GWBs, it should hermal uses), good statu e a certain level, but also	00 km ² differ (in sou hydraulic condition as that for near-surj and analysis data a be considered that, s is not only not ach if it falls below it.	me cases as. Therefore the face GWBs (on vailable at every due to the nieved if the				
	The available data is for individual parame	presently not sufficient eters at the individual m	to identify precisely eno neasuring sites.	ugh the scope of flu	ctuations relevant				
	Good chemical status neither exceed nor fal to examine the curren over a period of 10 ye	is considered to be reached if the threshold value (TV) of the decisive parameters I below the scope of fluctuations determined for every measuring site. It is planned it selected scope of fluctuations on the basis of many years of monitoring, (at least ears) and to adapt them, where reauired.							
	In any case, the GWB meet good status.	is considered to be in a	a good chemical status ij	f at least 75% of the	measuring sites				
	The following parame GWB: temperature, et	eters are used as a basi. lectrical conductivity, t	s for the determination of otal hardness, sulphate o	f the qualitative stat and chloride.	tus of the deep				
	Quantitative Status								
	No Changes since 200	09							
	There is no interaction	n between deep ground	lwater and surface water	s and/or terrestrial	ecosystems.				
	The quantitative statu	s of the deep GWB can	be described by means o	of:					
	- the identification at groundwater n	of trends over a period neasuring sites and wel	l of many years monitorii ls;	ng of the level of hyd	draulic pressure				
	- a balancing calcı abstractions.	ılatíon: a comparison ł	petween the thermal wate	er supply and therm	al water				
	Apart from Bad Füssi be significant for a tre	ng (records since 1948 end analysis is availabl), no long-term monitori. le.	ng of pressure poter	ntials that would				
	As early as in 1998, d this balancing an exp about 25% was record available).	letailed thermal water b loitation of the availabl ded, which corresponds	palancing was carried ou le thermal water resourc s to a good quantitative s	tt for the deep GWB es by thermal water status (at least 30%	. In the course of abstractions of of the quantity				
	In the meantime, the e management measure	extent of utilisation has s (among other things a	been considerably reduc the obligation to reinject	ced due to successfu the used thermal w	lly implemented ater exclusively).				

	Good quanti the thermal With a view abstracted w areas the de	tative sta waters of to the reg vater quan cisive bal	tus could be even furt. Bad Füssing which ha gionally uneven distrik ntities, a sub-division ance parameters can	her improved on the b as risen again since th pution of the available of the balance area in be determined separa	asis of the level of hyd nen. 2 quantity, water abstr nto sub-areas can be n tely	draulic pressure in action points and nade. For these			
Groundwat relationship	er threshold value		No changes since 2015						
Verbal description of the trend assessment methodology			No changes since 2015						
Verbal deso reversal as	cription of the trend sessment methodolog	ду	No changes since 2015						
Threshold	values per GWB								
	Pollutant / Indicate	or	TV (or range) [unit]	NBL (or range) [unit]	Level of TV establishment (national, RBD, GWB)	Related to risk in this GWB [yes/-]			

GWB-2: Upper Jurassic – Lower Cretaceous GWB

GWB-2		National share	BG-2, RO-2	Status 2021 for GW	Status 2021 for each national GWB?		
				Chemical (substance)	Quantity		
List of individua	al GW-bodies	BG-2	BG1G0000J3K051	Good	Good		
forming the who	ole national share	RO-2	RODL06	Good	Good		
(national code in	ncl. country code)						
Description/C haracterisation of the ICPDR GW-body	Bulgaria: The start BG1G0000J3K051 additional sub-divis lithological compos strata consists of ma mentioned deposits small cropped out a GWB. The main use Romania: Criteria permeable deposits limestones, dolomit limestones, pebbles Sarmatian, Pliocena Groundwater body platform. It is a tran a free level (in the s sometime fissured a deposits are characc From the geologica a system of major o WNW-ESE. Excluding small cro water supply, agrice Siutghiol situated no The criterion for sea	ing point for ident (Upper Jurassic-I ion on the basis of ition of GWB is: 1 arls, clays, sands, is Hauterivian, Sa vreas the GWB is w of groundwater i for delineation is and water conten ic limestones and and loess. The ag e and Quaternary. RODL06- Valach usboundary water ector adjacent to nd karstic, with ra terized by a hydra l point of view, thi lder than the Sarr opped out areas the ulture and industry ear the Black Sea.	tifying the geographical be Lower Cretaceous) is the g f groundwater flow lines a imestones, dolomitic lines limestones, pebbles and la urmatian, Pliocene and Qu yery well protected. There is for drinking water, agrid development of Upper Jur t in these deposits. The lith dolomites. Overlying strat e of the above mentioned ian Platform has great ext body of great potential, th the Danube) and is quarte egional extension in the wi uulic communication throu is aquifer complex has a con natian fault with orientati the GWB is very well prote y supply. In Romania the Q ant' is for both GWBs the	oundaries of the G geological bounda and piezometric he stones and dolomi oess. The age of th uaternary. With th is no significant is culture and indust assic-Lower Creta hological composi ta consists of marl deposits is Hauter ension and partial te depth aquifer ha tred in calcareous hole South Dobrog gh an aquitard. omplex structure, to ons approximatel cted. The main us GWB has an intered size which exceed	WB ries. After that eads.The tes. Overlying te above e exception of mpact on the ry supply. aceous tion is s, clays, sands, ivian, lly covers Valah aving partially formations, gea. These being divided by y NNE-SSW and e is for drinking action with Lake s 4,000 km ²		
Description of	Chemical Status						
status assessment	Bulgaria: Assessme following tests and	ent of the chemical steps:	l status of groundwater ha	s been done by ca	errying out the		
methodology.	GQA-Test: General	assessment of the	e chemical status of GWB.				
	<u>Step 1:</u> Calculation period 2017-2020.	of arithmetic mea Values below LoQ	ns per monitoring point (1 are replaced by ½ LoQ.	MP) for each indic	cator for the		
	<u>Step 2:</u> Comparison polluted waters, dri	n of arithmetic mee nking water stand	ans with the lowest QS or lard or other).	TVs (EQS, intrusio	on of salt or		
	<u>Step 3: A</u> ssessment	of the chemical st	atus in the area of the MP	:			
	- If for all in	dicators, the stati	is is "good", then the GWI	B in the area of the	e MP is "good";		
	- If for one is "poor". data. If the rejected fre	or more indicator In this case, a car data are doubtfu om the final asses.	s, the status is "poor", the eful analysis was carried o l or insufficiently reliable, sment and a respective jus	n the GWB in the operation of the primary the indicator (indeting the indicator the states of the st	area of the MP hydrochemical licators) are is presented.		
	<u>Step 4:</u> If in the area tests are needed.	as of all MP the st	tatus is good, the GWB is a	determined 'good	' and no other		
	Step 5: The confider	nce of the assessm	ent is determined by the f	ollowing criteria:			
	- Density of MP on are	the monitoring po a 50–200 km²), hi	oints in GWB: low (1 MP o gh (1 MP on area <50 km	on area > 200 km² ²);); medium (1		
	- Data have accordanc	to meet the follow e with standard B	ving requirements: All and DS EN ISO / IEC-17025 o	lytical methods an or other eauivalent	re validated in t internationallv		

Г

	• The GWB is of good chemical status when no EQS or TV is exceeded in any monitoring point
	 The GWB is of poor chemical status when EQS or TV are exceeded at monitoring points representing more than 20% of the GWB surface.
	Quantitative Status
	Bulgaria: The assessment considered data from national and self-monitoring of groundwater abstraction facilities according to the issued permits. The main criteria for assessing good quantitative status are the exploitable (available) groundwater resources of GWB and the groundwater level. To verify compliance with the requirements of the WFD, various tests were performed. The assessment was based on data from 2017–2020 and trends were assessed, with data from 2007–2020. The following tests were performed:
	- Water balance test: the assessment of the GW level downward trend is an indication that, the available GW resources were exceeded and the GWB is in poor status.
	- Surface water test and terrestrial ecosystem test: both not applicable in BG-2 as surface water bodies and terrestrial ecosystems are not associated/connected.
	- Saline intrusion test: not relevant
	Romania: The criterion for risk assessment of the quantity status is based on trend assessment evolution of the groundwater levels. The quantitative status has been assessed taking into account the CIS Guidance no.18. The following criteria have been used:
	water balance
	• the connection with surface waters
	• the influence on the terrestrial ecosystems which depend directly on the GWB
	• the effects of saline or other intrusions
	The quantitative status analysis has been done for the GWB level by comparing the average of the hydrostatic level from 2017 (reference year) with the multiannual average during the whole observation period
Groundwater	Receptors considered:
threshold	Romania: Drinking Water standards
threshold value relationships	Romania: Drinking Water standards Bulgaria: Drinking Water standards
threshold value relationships	Romania: Drinking Water standards Bulgaria: Drinking Water standards
threshold value relationships	Romania: Drinking Water standards Bulgaria: Drinking Water standards Consideration of NBL and EQS (environmental quality standards, drinking water standards) in the TV establishment:
threshold value relationships	Romania: Drinking Water standards Bulgaria: Drinking Water standards Consideration of NBL and EQS (environmental quality standards, drinking water standards) in the TV establishment: Romania: The methodology for TV establishment in Romania has been developed according to CIS Guidance No. 18. NBL are the key elements in the process of TV setting. As described above,
threshold value relationships	 Romania: Drinking Water standards Bulgaria: Drinking Water standards <u>Consideration of NBL and EQS (environmental quality standards, drinking water standards) in the TV establishment:</u> Romania: The methodology for TV establishment in Romania has been developed according to CIS Guidance No. 18. NBL are the key elements in the process of TV setting. As described above, during the TV establishment, the NBL have been compared with the drinking water standards. The maximum allowable concentrations (MAC) provided by the Law no.458/2002 as amended, were chosen as TV where NBL are smaller than MAC. Where NBL are higher than MAC, a small addition of 0.2 NBL was used, in order to avoid misclassification of the respective GWB (TV = NBL + 0.2 NBL = 1.2 NBL).
threshold value relationships	 Romania: Drinking Water standards Bulgaria: Drinking Water standards Consideration of NBL and EQS (environmental quality standards, drinking water standards) in the TV establishment: Romania: The methodology for TV establishment in Romania has been developed according to CIS Guidance No. 18. NBL are the key elements in the process of TV setting. As described above, during the TV establishment, the NBL have been compared with the drinking water standards. The maximum allowable concentrations (MAC) provided by the Law no.458/2002 as amended, were chosen as TV where NBL are smaller than MAC. Where NBL are higher than MAC, a small addition of 0.2 NBL was used, in order to avoid misclassification of the respective GWB (TV = NBL + 0.2 NBL = 1.2 NBL). The updated list of TVs established for each GWB was published in the new Order of the Minster no. 621/2014 approving TV for GWBs from Romania.
threshold value relationships	 Romania: Drinking Water standards Bulgaria: Drinking Water standards Consideration of NBL and EQS (environmental quality standards, drinking water standards) in the TV establishment: Romania: The methodology for TV establishment in Romania has been developed according to CIS Guidance No. 18. NBL are the key elements in the process of TV setting. As described above, during the TV establishment, the NBL have been compared with the drinking water standards. The maximum allowable concentrations (MAC) provided by the Law no.458/2002 as amended, were chosen as TV where NBL are smaller than MAC. Where NBL are higher than MAC, a small addition of 0.2 NBL was used, in order to avoid misclassification of the respective GWB (TV = NBL + 0.2 NBL = 1.2 NBL). The updated list of TVs established for each GWB was published in the new Order of the Minster no. 621/2014 approving TV for GWBs from Romania. Bulgaria: The methodology for TV determination in Bulgaria has been developed according to CIS Guidance No. 18. TVs are determined by comparing NBLs with criterial values (CVs). CVs is the concentration of a pollutant (without taking into account the NBLs), which, if exceeded, could lead to a distortion of the criteria for good status. CVs should take into account the risk assessment and receptors of eroundwater.
threshold value relationships	 Romania: Drinking Water standards Bulgaria: Drinking Water standards Consideration of NBL and EQS (environmental quality standards, drinking water standards) in the TV establishment: Romania: The methodology for TV establishment in Romania has been developed according to CIS Guidance No. 18. NBL are the key elements in the process of TV setting. As described above, during the TV establishment, the NBL have been compared with the drinking water standards. The maximum allowable concentrations (MAC) provided by the Law no.458/2002 as amended, were chosen as TV where NBL are smaller than MAC. Where NBL are higher than MAC, a small addition of 0.2 NBL was used, in order to avoid misclassification of the respective GWB (TV = NBL + 0.2 NBL = 1.2 NBL). The updated list of TVs established for each GWB was published in the new Order of the Minster no. 621/2014 approving TV for GWBs from Romania. Bulgaria: The methodology for TV determination in Bulgaria has been developed according to CIS Guidance No. 18. TVs are determined by comparing NBLs with criterial values (CVs). CVs is the concentration of a pollutant (without taking into account the NBLs), which, if exceeded, could lead to a distortion of the criteria for good status. CVs should take into account the risk assessment and receptors of groundwater. The NBL were established for each GWB as a result of the project report 'Assessment of the natural hydrochemical background of the substances composition of groundwater in Bulgaria" (GEOFUND V-402), 1998' NBLs are available for Ca, Mg, SO4, CI, HC03, Total hardness, Cu, Pb, Zn, As, Fe, F, Al, Mn, Cr, Co, V. J. Ag. Ni. Na, K.
threshold value relationships	 Romania: Drinking Water standards Bulgaria: Drinking Water standards Consideration of NBL and EQS (environmental quality standards, drinking water standards) in the TV establishment: Romania: The methodology for TV establishment in Romania has been developed according to CIS Guidance No. 18. NBL are the key elements in the process of TV setting. As described above, during the TV establishment, the NBL have been compared with the drinking water standards. The maximum allowable concentrations (MAC) provided by the Law no.458/2002 as amended, were chosen as TV where NBL are smaller than MAC. Where NBL are higher than MAC, a small addition of 0.2 NBL was used, in order to avoid misclassification of the respective GWB (TV = NBL + 0.2 NBL = 1.2 NBL). The updated list of TVs established for each GWB was published in the new Order of the Minster no. 621/2014 approving TV for GWBs from Romania. Bulgaria: The methodology for TV determination in Bulgaria has been developed according to CIS Guidance No. 18. TVs are determined by comparing NBLs with criterial values (CVs). CVs is the concentration of the criteria for good status. CVs should take into account the risk assessment and receptors of groundwater. The NBL were established for each GWB as a result of the project report 'Assessment of the natural hydrochemical background of the substances composition of groundwater in Bulgaria" (GEOFUND V-402), 1998 'NBLs are available for Ca, Mg, SO4, Cl, HC03, Total hardness, Cu, Pb, Zn, As, Fe, F, Al, Mn, Cr, Co, V, J, Ag, Ni, Na, K. The NBLs were determined for each hydrogeological classes (5 classes) in the 90th percentile and 50th percentile (median) of the statistical sample. Criterial values (CVs) have been drinking water standards according to the Bulgaria
threshold value relationships	Romania: Drinking Water standards Bulgaria: Drinking Water standards Consideration of NBL and EOS (environmental quality standards, drinking water standards) in the TV establishment: Romania: The methodology for TV establishment in Romania has been developed according to CIS Guidance No. 18. NBL are the key elements in the process of TV setting. As described above, during the TV establishment, the NBL have been compared with the drinking water standards. The maximum allowable concentrations (MAC) provided by the Law no.458/2002 as amended, were chosen as TV where NBL are smaller than MAC. Where NBL are higher than MAC, a small addition of 0.2 NBL was used, in order to avoid misclassification of the respective GWB (TV = NBL + 0.2 NBL = 1.2 NBL). The updated list of TVs established for each GWB was published in the new Order of the Minster no. 621/2014 approving TV for GWBs from Romania. Bulgaria: The methodology for TV determination in Bulgaria has been developed according to CIS Guidance No. 18. TVs are determined by comparing NBLs with criterial values (CVs). CVs is the concentration of a pollutant (without taking into account the NBLs), which, if exceeded, could lead to a distortion of the criteria for good status. CVs should take into account the risk assessment and receptors of groundwater. The NBL were established for each GWB as a result of the project report 'Assessment of the natural hydrochemical background of the substances composition of groundwater in Bulgaria" (GEOFUND V-402), 1998' NBLs are available for Ca, Mg, SO4, Cl, HC03, Total hardness, Cu, Pb, Zn, As, Fe, F, Al, Mn, Cr, Co, V, J, Ag, Ni, Na, K. The NBLs were determined for each hydrogeological classes (5 classes) in the 90th percentile and 50th percentile (median) of the statistical sample. Criterial values (CVs) have been drinking water standards according to the Bulgarian Regulation N-9. When NBL > CV, the TV is equal to NBL. When NBL > CV, the TV is equal to NBL.

	Ktv is usually between 0.5 and 0.75, as recommended and providing reasonable assurance. Ktv <0.5 has a large certainty and is used for GWBs, which have important economic significance and are the sole source of drinking water supply of settlements. This value should be used for such GWB to which they are attached particularly valuable wetlands presence of dependent PA terrestrial ecosystems. The higher value (0.75) is used in all other cases or GWBs already classified bodies at risk.
Verbal description of the trend	Bulgaria: The trend analysis is based on recognized statistical methods such as regression method and a time series of data from 2012 to 2019 (using annual values, semi-annual or quarterly values).
assessment methodology	Based on regression analysis is assessed whether there is a break in the trend i.e. after sustained upward trend follows sustained downward trend or the opposite case the sustained downward trend is followed by sustained upward trend.
	• Initially, the entire curve of the experimental data is approximated by a polynomial curve of degree 2 (quadratic regression curve).
	• If there is detected a maximum in the polynomial curve it means that a change of the direction of the trend is available - from ascending to descending.
	• If there is detected a minimum in the polynomial curve it means that a change of the direction of the trend is available - from descending to ascending.
	• Then, (in case of available maximum) the entire curve is divided into two branches: 1st branch – till the date of the maximum and the second branch - after the peak.
	• In case with available minimum: 1st branch – till the date of the minimum and the second branch - after the minimum.
	• Data from the first and second branch are considered separately and are approximated by linear trends (straight lines). The date at which it crossed the two approximating straight lines corresponds to the date at which it changes the direction of the linear trend - from ascending to descending or from descending to ascending
	By extrapolation of the second (falling) trend can be predicted date at which the starting concentration (75% GWQS in our case 60% TV) will be reached
	Romania: In order to assess the trend in pollutant concentrations, the results of the chemical analysis from the monitoring points have been used. Minimum period of analysis was at least 17 years (2000–2017).
	The methodology for identifying significant upper trends consists in adjustment and aggregation of the data from each monitoring points on groundwater bodies. The trend analysis was done using the Gwstat program.
	The steps used for trend assessment were:
	• Identifying the monitoring points and the associated results of chemical analysis, assessment of data series, for each year of reference period (2000–2017)
	• Establishment of baseline concentration for each parameter as the average concentration registered during the year 2000
	• Calculation of annual average for the available data in each monitoring point
	• Significant upward trends were identified by Gwstat software, based on Anova Test
Verbal description of the trend reversal assessment methodology	Bulgaria: The starting point for trend reversal should be placed where the concentration of the pollutant reaches 75% of the groundwater quality standard or 75% of the threshold value of the relevant pollutant. Selected starting points should be possible to reverse trends in the most effective way before pollutant concentrations can cause irreversible changes in groundwater quality. When we have GWB who responds too slowly to changes, there may be a need for an early starting point and vice versa - for responsive GWB should be chosen starting point at a later moment.
	Initially, the entire curve of the experimental data is approximated by a polynomial curve of degree 2 (quadratic regression curve).
	If there is detected a maximum in the polynomial curve it means that a change of the direction of the trend is available - from ascending to descending.
	If there is detected a minimum in the polynomial curve it means that a change of the direction of the trend is available - from descending to ascending.

	<i>Then, (in case of available maximum) the entire curve is divided into two branches:</i> 1 st branch – <i>till the date of the maximum and the second branch - after the peak</i>				
	In case with available minimum: 1^{st} branch – till the date of the minimum and the second branch - after the minimum.				
	Data from the first and second branch are considered separately and are approximated by lined trends (straight lines). The date at which it crossed the two approximating straight line corresponds to the date at which it changes the direction of the linear trend - from ascending descending or from descending to ascending				
	By extrapolation of the second (falling) trend can be predicted date at which the starting concentration (75% GWQS in our case 60% TV) will be reached .Practically for the second RBMP we have used 60 % from the TV				
	Romania: T	rend reversal assessm	nent methodology consists also i	in the use of Gwstat s	software.
	This method change with distribution, positive, and reversing the	assumes that the tim in the time interval a reversal of the tre l in the second section e pollutant concentra	e series can be characterized by (analysis period). Thus, by app nd is identified, if in the first se n the slope of the trend is negative tion tendency:	two linear trends wi lying the 95% quant action the slope of th ye. The stages of the s	th a slope tile of the e trend is method of
	• opt	imizing the choice of	time sections regarding the shap	pe of the resulting mo	odel
	• exa the	mining the significan square of the residue	nce of the rift for the simple linea 2 sum	ır regression model l	based on
	• con a si	ducting a statistical i	test to verify that the 2-sections i lel.	model is significantly	more than
Threshold	t values per CWB				
1 III CSHOK					Related
	Pollutant /	TV (or range)	NRI (or range) [unit]	Level of TV establishment (national, RBD, GWB)	to risk in this GWB
R_()	Nituatoa	[unu]	NDL (or range) [unit]	National	[yes/-]
RO	Nitrates Bonzon	30 mg/l		National	-
RO	Tricloretilena	10 μg/ι 10 μg/l		National	-
RO	Tetracloretilena	10 µg/l		National	-
RO	Ammonium	0.5 mg/l	0.31 mg/l	GWB	-
RO	Chlorides	250 mg/l	73,87 mg/l	GWB	-
RO	Sulphates	250 mg/l	71,44 mg/l	GWB	-
RO	Nitrites	0.5 mg/l	0.039 mg/l	GWB	-
RO	Phosphates	0.5 mg/l	0.08 mg/l	GWB	-
RO	Cadmium	0.005 mg/l	0.0001mg/l	GWB	-
RO	Mercury	0.001 mg/l	0.000042 mg/l	GWB	-
RO	Lead	0.01 mg/l	0.0011 mg/l	GWB	-
RO	Arsenic	0.01 mg/l	0.00075 mg/l	GWB	-
BG	Nitrates	38.5 mg/l	2.2 mg/l	GWB	-
BG	Pesticides sum	0.375 μg/l		GWB	
BG	Arsenic	0.0076 mg/l	0.0004 mg/l	GWB	
BG	Lead	0.0081 mg/l	0.0026 mg/l	GWB	
BG	Cadmium	0.0038 mg/l	0.0002 mg/l	GWB	
BG	Mercury	0.0008 mg/l	0.0002 mg/l	GWB	
BG	Ammonium	0.4487 mg/l	0.295 mg/l	GWB	
BG	Chlorides	189 mg/l	6 mg/l	GWB	
BG	Sulphates	192 mg/l	18 mg/l	GWB	
BG	<i>1ri</i> + <i>1etrachlo</i> - <i>roethyle</i>	7.5 μg/l		GWB	
BG	Conductivity	1640.625 μS/cm	562.5 μS/cm	GWB	
BG	Manganese	0.038 mg/l	0.022 mg/l	GWB	
BG	Total Iron	0.1607 mg/l	0.043 mg/l	GWB	
BG	Nitrites	0.3801 mg/l	0.0207mg/l	GWB	
BG	Sodium	156.75 mg/l	27 mg/l	GWB	

BG	Chromium	38.875 mg/l	5.5 μg/l	GWB
BG	Cupper	0.1527 mg/l	0.0108 mg/l	GWB
BG	Nikel	15.05 μg/l	0.2 μg/l	GWB
BG	Zink	0.777 mg/l	0.109 mg/l	GWB
BG	COD - Mn	3.975 mgO2/l	0.9 mgO2/l	GWB
BG	PO4	0.3805 mg/l	0.022 mg/l	GWB
BG	Cyanides	0.04 mg/l	0.01 mg/l	GWB

GWB-3: Middle Sarmatian - Pontian GWB

GWB-3		National share	MD-3 RO-3	Status 2021 for GW	r each national /B?
				Chemical (substance)	Quantity
List of individua	l GW-bodies		MDPR01	Good	Good
forming the whole national share			ROPR05	Good	Good
(national code in	ncl. country code)				
Description/C haracterisation of the ICPDR GW-body	Romania: The criter deposits on the terry River Basins. Lithol thin layer. Geologic Buglovian, Volhynia Sarmatian deposits considered that the the Early Buglovian Meotian boundary, Lithologically, the w medium grain-size (350 meters. Hydrogeologically a areal differences, of differences of quant The overlying strata The groundwater is The criterion for sea Republic of Moldow lines; chemical and interaction. The MI Silurian - Cretaceon for centralized wate limestone, sandstom from 50-60 m to 100 Dominating values m/day, Km=10-50 r heterogenous. In the and dominating hyd south chemical com sulphate-sodium an increases to 2-10 m Baden-Sarmatian water supply. Water sand, sometimes cla up to 90 m, with ave	ria for delineation of itories of Neamt, Bac logically, the water-b cally, the wells have p can, Basarabian and C thickness is highly va Sarmatian deposits u is lacking. The uppe is difficult to assign of vater-bearing deposi (sands, rarely gravel) (sands, rarely gravel) (sa	The GWB was the deve au and Vaslui districts, earing deposits are con- bierced the following su- Chersonian. The wells a triable, going from 295 nconformably overlay or boundary of Sarmatic due to the lack of sure p ts are constituted of this s), sometimes with lens the investigation of we alitative order, both how ecially due to the Sarma ay of about 50 meters the king water supply, agru- t" consists in its size the eation are: geological fu- us; GWB vulnerability; the deep aquifers. pread on the whole term for thern part of the bass Silurian marls and arg ing capacity of the aqui- ivity and transmissivity al composition of the Si basin fresh groundwate e-calcium-magnesium the characteristics is dium type and the amou- most productive and mar- represented by limestor on. Thickness of the aqui- out 25 m. In the norther	clopment of the Sa situated in the Si astituted of sands astituted of sands atta have indicate astituted Badeniar an, respectively the paleontological ele n layers with fine aspect, situated a ells data has revea rizontally and very atian deposits grad hickness. icultural and indu- at exceeds 4,000 k boundaries; groun surface-groundw ritory of the basin in. Groundwater filites with total the fers vary in a wid are rather low (K lurian-Cretaceous ters with minerali, ions are detected. changing to hydr unt of total dissolv post important for o the with interlayers ifer reaches 50 m, rn part of the basi	rmatian aquifer ret and Prut and sandstones trmatian: d that the (Bârlad). It is a ones, because e Sarmatian- ements. towards t depth of 30– aled important tically. The in size. strial supplies. cm^2 . adwater flow vater and it is used is contained in ickness varying e range. C=0.12-0.37 is aquifers is sation <1g/1 Going to the ocarbonate- red solids centralized of fine grained in some places n water bearing

	sediments outcrop to the pre-Quaternary surface and these areas coincide with the recharge zones of the aquifer. Groundwater is discharging into the valley of Prut's tributaries. Southwards Baden-Sarmatian aquifer occurs deeper and near the village Gotesti it was detected by drilling at the depth of 572 m.Hydraulic properties of the aquifer are rather poor. Hydraulic conductivity reaches 1–12 m/day, with mean values of 5 m/day, transmissivity is also low – only 5–20 m²/day. Capacity of wells varies in a range of 0.09–8l/s. When water bearing rocks are composed of limestones they contain fresh or slightly mineralised hydrocarbonate-calcium-sodium water with mineralization below 1 g/l. Such areas, however, are rather scarce and groundwaters with mineralization above 1 g/l are prevailing in the basin. <u>Upper Sarmatian Meotic</u> aquifer system (N1s3-m), which can be included in this GWB is only partially exploited for groundwater abstraction in the southern part of the river basin. Sarmat- Meotis deposits in the area are represented by fine-grained sands and clay with the lenses of
	quartz sand with total thickness of the aquifer 60–70 m. This sand is water-bearing and contains good quality water. The thickness of water bearing layers is $4-5$ m. Yields of exploitation wells vary between 3 and 7 m ³ /h. Waters from the aquifer system are supplying the needs of several enterprises. Near the Prut river valley yields of the wells increase to 10 m ³ /h with the drawdown of up to 30 m. This aquifer contains hydrocarbonate-sodium waters with total mineralization of 1-1.5 g/l. In some areas chemical composition changes to sulphate-hydrocarbonate-sodium and mineralization increases to 2 g/l. Hydraulic parameters of the aquifer are rather poor: hydraulic conductivity varies between 0.8–5 m/day with mean values of 2.3 m/day and transmissivity changes in a range of 10–25 m ² /day, mean being 5 m ² /day.
	Groundwater monitoring results over three wells for the period from 2005 to 2009 indicate a decrease in the level of groundwater. The rate of decrease is 0.5–1.4 meter per year. This can be attributed to an increase in the water abstraction from the operating wells located in the vicinity.
	<u>Middle Sarmatian (Congeriev) aquifer</u> (N1s2)is used for a centralised water supply in the southern part of Republic of Moldova. Groundwater is contained in fine-grained sands with interlayers of clays, sandstones and limestones. Thickness of water bearing sediments varies from 5–15 m to 40–50 m with mean values of 20–30 m. Hydraulic properties of water bearing sands are quite poor. Hydraulic conductivity changes from 0.6 to 1.9 m/day average being 1.3 m/day. Transmissivity values are also very low and do not exceed 20–50 m ² /day. Depth to groundwater aquifer depends on the landscape and varies from 1.5 to 100 m. Yields of wells vary from 5 to 75 l/s. When hydrocarbonate-sulphate-chloride anions dominate in groundwater its mineralisation is below 1.5 g/l. When chloride–hydrocarbonate and sodium ions prevail total mineralization increases up to 2 g/l. Monitoring of the aquifer indicates a slight decrease in groundwater level with the rate of 0.4–0.65 m/a.
	<u>Pontian aquifer (N2p)</u> is spread in the southern part of Republic of Moldova. Water bearing sediments are composed of sandy clays with interlayers of sand and shell limestone with the total thickness of 70–80 m.Prevailing hydraulic properties of water bearing sands are rather poor. Hydraulic conductivity changes from $3.5-3.7$ with mean values of 3 m/day. Transmissivity coefficient varies between $18-45$ m ² /day in some places (e.g. Giurgiulesti village) increasing to 250-260 m ² /day. Depth to groundwater aquifer depends on the landscape and varies from 2 to 125 m. Yields of wells vary from $1.1-2.3$ l/s, increasing southwards to $3.7-7.6$ l/s. Near the village of Taraklia few springs are discharging into Prut river valley with the capacity of $8-9$ l/sec. Aquifer contains fresh groundwater with mineralisation <1 g/l (figure 2.6) and prevailing ions of hydrocarbonate -sulphate-chloride-sodium, sometimes sulphate –hydrocarbonate- sodium.
Description of	Groundwater from this aquifer is used for drinking and agricultural water supply.
assessment methodology.	Republic of Moldova: The methodology for the chemical status assessment followed the requirements of the Groundwater Directive (2006/118/EC) as well as the recommendations of the CIS Guidance Document no. 18 – Guidance on Groundwater status and trend assessment. Romania: The methodology for the chemical status assessment followed the requirements of the
	Groundwater Directive (2006/118/EC) as well as the recommendations of the CIS Guidance Document no. 18 – Guidance on Groundwater status and trend assessment.
	The first step was to check any exceedances of the quality standards and TVs which were established taken into consideration the NBL values. If no exceedances of the quality standards and TVs have been recorded, the groundwater body has been considered as being in good

chemical status. If exceedances of TVs were recorded the following relevant tests were carried out:				
•	General assessment of the chemical status: Data aggregation was performed and it was checked whether the total area of exceedance was greater than 20% of the total area of the GWB. The test showed a good status for the water body if no exceeding occurs.			
٠	Saline or other intrusion: not relevant.			
•	Significant diminution of associated surface water chemistry and ecology due to transfer of pollutants from the GWB: The location of the exceedance of the relevant T was not found in areas where pollutants might be transferred to surface waters. A			

Significant diminution of associated sur transfer of pollutants from the GWB: The evant TVs was not found in areas where pollutants . A comparison of the pollutant load transferred from the GWB to the surface water body with the total load in the surface water body did not exceed 50%. The test showed a good status for the water body.

- Significant damage to GWDTEs due to transfer of pollutants from the GWB: No *GWDTE* was found to be damaged. The test showed a good status for the water body;
- Meets the requirements of WFD Article 7(3) Drinking Water Protected Areas: there is no evidence of increased treatment due to changes in water quality. The test showed a good status for the water body

To assess the chemical status of the groundwater bodies, the following steps are considered:

- for each monitoring point the annual average concentrations for each indicator was calculated; for the metals the concentration of the dissolved form was considered;
- For each monitoring point the annual average concentration of the each parameters was compared with the thresholds values (determined for each GWB) or standards value (nitrates and pesticides).
- The GWB is of good chemical status when no EQS or TV is exceeded in any monitoring point.
- The GWB is of poor chemical status when EQS or TV are exceeded at monitoring points representing more than 20% of the GWB surface.

Quantitative Status:

Republic of Moldova: The criterion for risk assessment of the quantity status is based on trend assessment evolution of the groundwater levels. The quantitative status has been assessed taking into account the CIS Guidance № 18

Romania: The criterion for risk assessment of the quantity status is based on trend assessment evolution of the groundwater levels. The quantitative status has been assessed taking into account the CIS Guidance № 18. The following criteria have been used:

- water balance
- the connection with surface waters
- the influence on the terrestrial ecosystems which depend directly on the GWB
- the effects of saline or other intrusions

The quantitative status analysis has been done for the GWB level by comparing the average of the hydrostatic level from 2017 (reference year) with the multiannual average levels during the whole period.

Groundwater threshold value relationships	<u>Receptors considered:</u> <i>Romania:</i> Drinking Water standards <i>Republic of Moldova:</i>
	Consideration of NBL and EQS (environmental quality standards, drinking water standards) in the TV establishment:
	Romania: The methodology for TV establishment in Romania has been developed according to CIS Guidance No. 18. NBL are the key elements in the process of TV setting. As described previously, during the TV establishment, the NBL have been compared with the drinking water standards. The maximum allowable concentrations (MAC) provided by the Law no.458/2002 as amended, were chosen as TV where natural background levels (NBL) are smaller than MAC.

		Where background levels are higher than MAC, a small addition of 0.2 NBL was used, in order to avoid misclassification of the respective GWB ($TV = NBL + 0.2 NBL = 1.2 NBL$).				
		The updated list of TVs established for each GWB was published in the new Order of the Minster no. 621/2014 approving TV for groundwater bodies from Romania.				
Verbal description the trend	Verbal Republic of Moldova: In order to assess the chemical analysis from the monitoring point at least 22 years (1996-2018).			assess the trend in pollutant con- oring points have been used. Mini	centrations, the rest mum period of anal	ults of the lysis was
assessmen methodolo	t gy	Romania: In analysis from years (2000-	order to assess the tant order to assess the tant of the monitoring poin 2017).	rend in pollutant concentrations, ts have been used. Minimum peri	the results of the ch od of analysis was o	aemical at least 17
		The methodo of the data fr using the Gw	logy for identifying s com each monitoring j ystat program.	ignificant upper trends consists in points on groundwater bodies. Th	n adjustment and ag ne trend analysis wa	ggregation as done
		The steps use	ed for trend assessme	nt were:		
		• Ider asse	ntifying the monitorin essment of data series	g points and the associated resul s, for each year of reference perio	ts of chemical anal d (2000–2017)	ysis,
		• Este	ablishment of baseling centration registered	e concentration for each paramet during the year 2000	er as the average	
		• Cal	culation of annual av	erage for the available data in ea	ich monitoring poin	<i>t</i>
		• Cur	if a set unuand they d	le ware identified by Coustat softw		i a Toat
		• Sigi	ujicani upwara irena	s were identified by Gwsidi softw	are, basea on Anov	a Test
VerbalRomania: 2description ofThis methodthe trendchange withreversaldistributionassessmentpositive, and		Romania: The This method change with distribution, positive, and reversing the	rend reversal assessme assumes that the time in the time interval (a a reversal of the tren in the second section pollutant concentrat	tent methodology consists also in e series can be characterized by t nalysis period). Thus, by applying d is identified, if in the first section the slope of the trend is negative tion tendency:	the use of Gwstat s wo linear trends win g the 95% quantile o on the slope of the tr c. The stages of the t	oftware. th a slope of the rend is method of
memodolo	reversing the point		mizing the choice of	time sections recarding the share	of the resulting me	dali
	• <i>opti</i>					<i>uei</i> ,
	• exa		mining the significant square of the residue	ce of the rift for the simple linear	regression model b	ased on
ine		ducting a statistical t	sum,	odal is significantly	more than	
		a si	mple regression mode	el.		
Threshold	l valu	es per GWB				
						Related
					Level of TV	to risk in
					establishment	this
	Polli	utant /	TV (or range)		(national, RBD,	GWB
	Indie	cator	[unit]	NBL (or range) [unit]	GWB)	[yes/-]
RO	Nitre	ates	50 mg/l		National	-
RO	Benz	zen	10 μg/l		National	-
RO	Tric	loretilena	10 μg/l		National	-
RO	Tetr	acloretilena	10 μg/l	5.24 //	National	-
RO	Amn	ionium	$0.4 \ mg/l$	5,34 mg/l	GWB	-
RO	Chlorides		250 mg/l	70,07 mg/l	GWB	-
RO	Sulphates		250 mg/l	$\frac{192 \text{ mg/l}}{0.34 \text{ mg/l}}$	GWB	-
RO	Phosphatas		0,5 mg/1 1 4 mg/1	1.13 mg/l	GWB	-
RO	Chromium		0.05 mg/l	0.0003033 mg/l	GWB	-
RO	Nickel		0.02 mg/l	0.00053 mg/l	GWB	-
RO	Cop	per	0,1 mg/l	0.00307 mg/l	GWB	-
RO	Zinc		5 mg/l	0.02425 mg/l	GWB	-
RO	Cadi	mium	0,005 mg/l	0.0000455 mg/l	GWB	-
RO	Mer	cury	0,001 mg/l	0.000003385 mg/l	GWB	-
RO	Lead	l	0,01 mg/l	0.0001825 mg/l	GWB	-
RO	Arsenic		0,01 mg/l	0.003175 mg/l	GWB	-

GWB-4: Sarmatian GWB

GWB-4		National share	BG-4 RO-4	Status 2021 for each natio GWB?	
				Chemical (substance)	Quantity
List of individua	al GW-bodies	BG-4	BG1G000000N049	Good	Good
forming the who	ole national share	RO-4	RODL04	Poor (nitrates)	Good
(national code in	ncl. country code)				
Description/C haracterisation of the ICPDR GW-body	The starting point for the geological boun - in Bulgaria Overlying strata con deposits is Quaterna sandstones or cover industry supply. Romania: Criteria water resources in to oollitic limestones of Overlying strata con areas, but is vulnera explains nitrate com GWB main use is for	 varting point for identifying the boundaries of the GWB BG1G00000N049 Sarmatian is cological boundaries. The lithological composition of water-bearing deposits is as follows: in Bulgaria: limestones, sands; ying strata consists of loess and loesses clays and clays. The age of the above mentioned its is Quaternary. The GWB is vulnerable with cropped out regions of limestones and tones or covered with loess. GWB main use is for drinking water supply, agriculture and try supply. varia: Criteria for delineation are the development of Sarmatian permeable deposits and resources in these deposits. The lithological composition of water-bearing deposits is is climestones and organogenic limestone. vying strata consists of loess and clays. The GWB is well protected in the clay covered , but is vulnerable to pollution in pre-dominantly loess and sands covered areas. This ins nitrate contamination in some areas. 			
	GWB main use is fo	r drinking water s	supply, and also agricultu	ral and industrial	purposes.
	The main pressures	are agriculture a	ctivities, waste landfills ar	id less industrial p	olants.
	The criterion for se	lection as "import	tant" is the size, which exc	ceeds 4000 km ² .	
Description of status assessment methodology.Chemical Status Bulgaria: Assessment of the chemical status of groundwater has been done be following tests and steps: GQA-Test: General assessment of the chemical status of GWB.		s been done by ca	rrying out the		
	<u>Step 1:</u> Calculation period 2017-2020.	of arithmetic mea Values below LoQ	ins per monitoring point (I are replaced by $\frac{1}{2}$ LoQ.	(MP) for each indicator for the	
	<u>Step 2:</u> Comparison polluted waters, dri	n of arithmetic med nking water stand	ans with the lowest QS or lard or other).	TVs (EQS, intrusio	on of salt or
	<u>Step 3:</u> <u>A</u> ssessment	of the chemical st	atus in the area of the MP	:	
	- If for all in	dicators, the stati	is is "good", then the GWI	B in the area of the	e MP is "good";
- If for one or more indicators, the status is "poor", then the GWB in th is "poor". In this case, a careful analysis was carried out of the prima data. If the data are doubtful or insufficiently reliable, the indicator (i rejected from the final assessment and a respective justification for the		n the GWB in the d out of the primary the indicator (ind tification for this t	n the area of the MP mary hydrochemical r (indicators) are r this is presented.		
	<u>Step 4:</u> If in the area tests are needed.	as of all MP the st	tatus is good, the GWB is a	determined 'good'	and no other
	Step 5: The confider	nce of the assessm	ent is determined by the f	ollowing criteria:	
	 Density of the monitoring points in GWB: low (1 MP on area > 200 km²); medium (1 MP on area 50–200 km²), high (1 MP on area <50 km²); 				
	- Data have accordanc recognizea analytical	to meet the follow e with standard B l standard. Accrea methods. Minimur	ving requirements: All ana DS EN ISO / IEC-17025 o lited laboratories shall ens n length of the time series	lytical methods an r other equivalent sure minimum crit	e validated in internationally eria for all applie
	<u>Step 6:</u> The extent of more indicators in o	f exceedance was one or more MP, t	calculated. If the status is hen an assessment of the c	determined as "pa affected area was j	oor" for one or performed.
	- Based on t located in	he conceptual mo the recharge zone	del, it is determined wheth or in the transit zone or it	er the MP (points n the drainage zon) is (are) he of GWB.

- The areas of GWB in which the average annual concentrations of pollutants exceed QS or TV have been delineated. Each area of GWB affected by pollution includes the area located between the MP where QS or TV have been exceeded. Further, a 1 km buffer zone was delineated around this zone or around the contaminated MP.
<u>Step 7:</u> If the polluted area is more than 20% of the total area of the GWB, the confidence assessment was made according step 5.
<u>Step 8:</u> The places of the exceedances are connected with the groundwater receptors. Depending on the identified locations and GW receptors, relevant tests have been applied: saline or other intrusion, surface water bodies with deteriorated status, GW directly dependent terrestrial ecosystems, drinking and household water supply located at polluted area.
<u>Step 9:</u> Local conceptual models have been developed for each exceedance point considering the possibility for the pollutant to move through the GWB, identification of pressures, additional trend assessment.
A GWB is in good chemical status when the extent of exceedance is less than 20% and the remaining tests show that: the quality of groundwater used for drinking and domestic water supply has not deteriorated, the GW status-related to surface waters and terrestrial ecosystems (directly dependent of GW) has not deteriorated and there is no intrusion of salt or polluted waters; no significant and sustainable upward trends in concentrations of pollutants and pollution indicators have been identified.
Romania: The methodology for the chemical status assessment followed the requirements of the Groundwater Directive (2006/118/EC) as well as the recommendations of the CIS Guidance Document no. 18 – Guidance on Groundwater status and trend assessment.
The first step is to check any exceedances of the quality standards and TVs which were established taken into consideration the NBL values. If no exceedances of the quality standards and TVs are recorded, the groundwater body is considered as being in good chemical status. If exceedances of TVs or quality standards are recorded the following relevant tests are carried out:
• General assessment of the chemical status: Data aggregation is performed and it is checked whether the total area of exceedance is greater than 20% of the total area of the GWB. In case there are no exceedances, the test indicate a good status for the water body.
• Saline or other intrusion: not relevant.
• Significant diminution of associated surface water chemistry and ecology due to transfer of pollutants from the GWB: the location of the exceedance of the relevant TVs was not found in areas where pollutants might be transferred to surface waters; a comparison of the pollutant load transferred from the GWB to the surface water body with the total load in the surface water body did not exceed 50%. The test show a good status for the water body if these criteria are achieved.
• Significant damage to GWDTEs due to transfer of pollutants from the GWB: No GWDTE was found to be damaged. The test show a good status for the water body if this criteria is achieved;
• Meets the requirements of WFD Article 7(3) – Drinking Water Protected Areas: there is no evidence of increased treatment due to changes in water quality.
To assess the chemical status of the groundwater bodies, the following steps are considered.
 for each monitoring point the annual average concentrations for each indicator was calculated; for the metals the concentration of the dissolved form was considered;
• For each monitoring point the annual average concentration of the each parameters was compared with the thresholds values (determined for each GWB) or standards value (nitrates and pesticides).
• The GWB is of good chemical status when no EQS or TV is exceeded in any monitoring point.
• The GWB is of poor chemical status when EQS or TV are exceeded at monitoring points representing more than 20% of the GWB surface.
The chemical status of the GWB RODL06 is poor, considering the results of applying the methodology for chemical status assessment

	Quantitative Status
	Bulgaria: The assessment considered data from national and self-monitoring of groundwater abstraction facilities according to the issued permits. The main criteria for assessing good quantitative status are the exploitable (available) groundwater resources of GWB and the groundwater level. To verify compliance with the requirements of the WFD, various tests were performed. The assessment was based on data from 2017–2020 and trends were assessed, with data from 2007–2020. The following tests were performed:
	- Water balance test: the assessment of the GW level downward trend is an indication that, the available GW resources were exceeded and the GWB is in poor status.
	- Surface water test and terrestrial ecosystem test: both not applicable in BG-2 as surface water bodies and terrestrial ecosystems are not associated/connected.
	- Saline intrusion test: not relevant
	Romania: The criterion for risk assessment of the quantity status is based on trend assessment evolution of the groundwater levels. The quantitative status has been assessed taking into account the CIS Guidance no.18. The following criteria have been used:
	water balance
	• the connection with surface waters
	• the influence on the terrestrial ecosystems which depend directly on the GWB
	• the effects of saline or other intrusions
	The quantitative status analysis has been done for the GWB level by comparing the average of the hydrostatic level from 2017 (reference year) with the multiannual average levels during the whole observation period.
Groundwater	Receptors considered:
threshold	Romania: Drinking Water standards
relationships	Bulgaria: Drinking Water standards
	Consideration of NBL and EQS (environmental quality standards, drinking water standards) in the TV establishment:
	Romania: The methodology for TV establishment in Romania has been developed according to CIS Guidance No. 18. NBL are the key elements in the process of TV setting. As described above, during the TV establishment, the NBL have been compared with the drinking water standards. The maximum allowable concentrations (MAC) provided by the Law no.458/2002 as amended, were chosen as TV where NBL are smaller than MAC. Where NBL are higher than MAC, a small addition of 0.2 NBL was used, in order to avoid misclassification of the respective GWB (TV = NBL + 0.2 NBL = 1.2 NBL).
	The updated list of TVs established for each GWB was published in the new Order of the Minster no. 621/2014 approving TV for GWBs from Romania.
	Bulgaria: The methodology for TV determination in Bulgaria has been developed according to CIS Guidance No. 18. TVs are determined by comparing NBLs with criterial values (CVs). CVs is the concentration of a pollutant (without taking into account the NBLs), which, if exceeded, could lead to a distortion of the criteria for good status. CVs should take into account the risk assessment and receptors of groundwater. The NBL were established for each GWB as a result of the project report 'Assessment of the natural hydrochemical background of the substances composition of groundwater in Bulgaria" (GEOFUND V-402), 1998' NBLs are available for Ca, Mg, SO4, Cl, HC03, Total hardness, Cu, Pb, Zn, As, Fe, F, Al, Mn, Cr, Co, V, J, Ag, Ni, Na, K. The NBLs were determined for each hydrogeological classes (5 classes) in the 90th percentile and 50th percentile (median) of the statistical sample. Criterial values (CVs) have been drinking water standards according to the Bulgarian Regulation N-9. When NBL > CV, the TV is equal to NBL. When CV > NBL, the TV = NBL + Ktv* (CV-NBL). $0 < Ktv < 1$ Ktv is usually between 0.5 and 0.75, as recommended and providing reasonable assurance. Ktv <0.5 has a large certainty and is used for GWBs, which have important economic
	significance and are the sole source of drinking water supply of settlements. This value should be used for such GWB to which they are attached particularly valuable wetlands presence of

	dependent PA terrestrial ecosystems. The higher value (0.75) is used in all other cases or GWBs already classified bodies at risk.
Verbal description of the trend	Bulgaria: The trend analysis is based on recognized statistical methods such as regression method and a time series of data from 2012 to 2019 (using annual values, semi-annual or quarterly values).
assessment methodology	Based on regression analysis is assessed whether there is a break in the trend i.e. after sustained upward trend follows sustained downward trend or the opposite case the sustained downward trend is followed by sustained upward trend.
	• Initially, the entire curve of the experimental data is approximated by a polynomial curve of degree 2 (quadratic regression curve).
	• If there is detected a maximum in the polynomial curve it means that a change of the direction of the trend is available - from ascending to descending.
	• If there is detected a minimum in the polynomial curve it means that a change of the direction of the trend is available - from descending to ascending.
	• Then, (in case of available maximum) the entire curve is divided into two branches : 1st branch – till the date of the maximum and the second branch - after the peak.
	• In case with available minimum: 1st branch – till the date of the minimum and the second branch - after the minimum.
	• Data from the first and second branch are considered separately and are approximated by linear trends (straight lines). The date at which it crossed the two approximating straight lines corresponds to the date at which it changes the direction of the linear trend - from ascending to descending or from descending to ascending
	By extrapolation of the second (falling) trend can be predicted date at which the starting concentration (75% GWQS in our case 60% TV) will be reached
	Romania: In order to assess the trend in pollutant concentrations, the results of the chemical analysis from the monitoring points have been used. Minimum period of analysis was at least 17 years (2000–2017).
	The methodology for identifying significant upper trends consists in adjustment and aggregation of the data from each monitoring points on groundwater bodies. The trend analysis was done using the Gwstat program.
	The steps used for trend assessment were:
	• Identifying the monitoring points and the associated results of chemical analysis, assessment of data series, for each year of reference period (2000–2017)
	• Establishment of baseline concentration for each parameter as the average concentration registered during the year 2000
	• Calculation of annual average for the available data in each monitoring point
	• Significant upward trends were identified by Gwstat software, based on Anova Test
Verbal description of the trend reversal assessment methodology	Bulgaria: The starting point for trend reversal should be placed where the concentration of the pollutant reaches 75% of the groundwater quality standard or 75% of the threshold value of the relevant pollutant. Selected starting points should be possible to reverse trends in the most effective way before pollutant concentrations can cause irreversible changes in groundwater quality. When we have GWB who responds too slowly to changes, there may be a need for an early starting point and vice versa - for responsive GWB should be chosen starting point at a later moment.
	Initially, the entire curve of the experimental data is approximated by a polynomial curve of degree 2 (quadratic regression curve).
	• If there is detected a maximum in the polynomial curve it means that a change of the direction of the trend is available - from ascending to descending.
	• If there is detected a minimum in the polynomial curve it means that a change of the direction of the trend is available - from descending to ascending.
	• Then, (in case of available maximum) the entire curve is divided into two branches: 1 st branch – till the date of the maximum and the second branch - after the peak
	In case with available minimum: 1 st branch – till the date of the minimum and the second branch - after the minimum.

attr

. .

Data from the first and second branch are considered separately and are approximated by linear trends (straight lines). The date at which it crossed the two approximating straight lines corresponds to the date at which it changes the direction of the linear trend - from ascending to descending or from descending to ascending

By extrapolation of the second (falling) trend can be predicted date at which the starting concentration (75% GWQS in our case 60% TV) will be reached .Practically for the second RBMP we have used 60 % from the TV.

Romania: Trend reversal assessment methodology consists also in the use of Gwstat software. This method assumes that the time series can be characterized by two linear trends with a slope change within the time interval (analysis period). Thus, by applying the 95% quantile of the distribution, a reversal of the trend is identified, if in the first section the slope of the trend is positive, and in the second section the slope of the trend is negative. The stages of the method of reversing the pollutant concentration tendency:

- optimizing the choice of time sections regarding the shape of the resulting model;
- examining the significance of the rift for the simple linear regression model based on the square of the residue sum;
- conducting a statistical test to verify that the 2-sections model is significantly more than a simple regression model.

Threshol	d values per GWB				
	Pollutant / Indicator	TV (or range) [unit]	NBL (or range) [unit]	Level of TV establishment (national, RBD, GWB)	Related to risk in this GWB [yes/-]
RO	Nitrates	50 mg/l		National	Yes
RO	Benzen	10 μg/l		National	-
RO	Tricloretilena	10 μg/l		National	-
RO	Tetracloretilena	10 μg/l		National	-
RO	Ammonium	0.7 mg/l	0.504 mg/l	GWB	-
RO	Chlorides	250 mg/l	189 mg/l	GWB	-
RO	Sulphates	250 mg/l	120.5 mg/l	GWB	-
RO	Nitrites	0,5 mg/l	0.069 mg/l	GWB	-
RO	Phosphates	0,5 mg/l	0.21 mg/l	GWB	-
RO	Nickel	0,02 mg/l	0.035 mg/l	GWB	-
RO	Zinc	5 mg/l	0.355 mg/l	GWB	-
RO	Cadmium	0.005 mg/l	0.000202 mg/l	GWB	-
RO	Mercury	0.001 mg/l	0.00012 mg/l	GWB	-
RO	Lead	0.01mg/l	0.001 mg/l	GWB	-
RO	Arsenic	0.01 mg/l	0.0013 mg/l	GWB	-
BG	Nitrates	39.87 mg/l	9.49mg/l	GWB	-
BG	Pesticides sum	0.375 μg/l		GWB	-
BG	Arsenic	0.0077 mg/l	0.0007mg/l	GWB	-
BG	Lead	0.0076 mg/l	0.0005 mg/l	GWB	-
BG	Cadmium	0.0039 mg/l	0.0005 mg/l	GWB	-
BG	Mercury	0.0008 mg/l	0.0002 mg/l	GWB	-
BG	Ammonium	0.3758 mg/l	0.0031mg/l	GWB	-
BG	Chlorides	188.75 mg/l	5 mg/l	GWB	-
BG	Sulphates	189 mg/l	6 mg/l	GWB	-
BG	Tri+Tetraclo- retilena	7.5 μg/l		GWB	
BG	Conductivity	1713.6 µS/cm	854.5 µS/cm	GWB	-
BG	Manganese	0.0379 mg/l	0.016 mg/l	GWB	-
BG	Total Iron	0.1513 mg/l	0.005 mg/l	GWB	-
BG	Nitrites	0.375 mg/l	0.0001 mg/l	GWB	-
BG	Sodium	158.25 mg/l	33 mg/l	GWB	-
BG	Chromium	38.25 mg/l	<u>3 μg/l</u>	GWB	-
BG	Cupper	0.1501 mg/l	0.003 mg/l	GWB	-
L		0	- 0		1

BG	Nikel	15.5 μg/l	$2 \mu g/l$	GWB	-
BG	Zink	0.7537 mg/l	0.015 mg/l	GWB	
BG	COD - Mn	3.8625 mgO2/l	0.45 mgO2/l	GWB	-
BG	PO4	0.3798 mg/l	0.0195 mg/l	GWB	-
BG	Cyanides	0.04 mg/l	0.01 mg/l	GWB	-

GWB-5: Mures / Maros

GWB-5		National share HU-5 RO-5		Status 2021 for each national GWB?		
				Chemical (substance)	Quantity	
List of individua	l GW-bodies	HU	HU_AIQ605	Poor (NH4, NO ₃ , SO ₄ , Cl)	Good	
(national code in	cl. country code)	HU	HU_AIQ604	Good	Good	
(HU	HU_AIQ594	Poor (NH ₄ , NO ₃ , SO ₄)	Poor	
		HU	HU_AIQ593	Good	Good	
		RO	ROMU20	Poor (nitrates)	Good	
		RO	ROMU22	Good	Good	
haracterisation of the ICPDR GW-body	– Romanian border an important water abstraction in one of The basin of the SE deposits of different Maros/Mures River GWBs in both coun it was possible to se four water bodies of the surface to a dep Underneath them an Quaternary strata, 400–500 m corresp Two Quaternary wa On the Romanian se in the Romanian side, sandy-silt, sand and improves towards the m/day). The coverin On the Romanian se the Hungary both cod (HU_AIQ604, HU_ bodies of the upwar below the surface in Mm3/year). At press layers, there is a pe system (app. 15 Mn the recharge of the Hun	s, to the north of the a resource for drinkin country influences the part of the Great Hu tages, which are pro- forms the Pleistocen tries. Despite the difj elect the relevant wan ontaining cold water th of 30 m, namely th re two porous GWBs include some parts of onding to the surface ther bodies have been ide, two water bodie ethod there is a separ to the surface the lower 100 m of a clay, and the upper the surface (the hydra ag layer is mainly san ide, the upper water onfined and unconfin AIQ605) and mainly a flow system (HU_4 a Hungary. Recharge ent, because of the c rmanent recharge fr abstracted amount in garian part is the la	actual river bed of the g water purposes for le e water availability in ungarian Plain is filled opressively thinning in the part of the strata. The ferences in the delined ter bodies from the trate in Hungary (HU), two he shallow GWBs (HU) (GWB HU_AIQ604, If the Upper- Pannonia e separating cold and a selected in Romania. It sare included in the t trating horizon at the li B ROMU22) age of the sands and clayey inter- bility. Virtually follow the 250–300 m thick F part is mainly sand w uulic conductivity of th- ndy silt and clay of 3-1 body is unconfined an- e confined conditions a AIQ593, HU_AIQ594) e in sandy areas has of onsiderable amount of om shallow groundwa eas with sandy-silty con- ter al flow across the b	Maros/Mures. In j poth countries and the other. I up with more tha Romania. The alli- the aquifer is divid the aquifer is divid o contain Quatern [articular, it is water an 2000 m thick uvial fan of the ed into several e two countries, of view. Of the ary strata from Q594). ich, besides l (to a depth of luation because GWB er bodies can be oper part is ration line on is silty-sand, permeability between 5–30 fined. er bodies for the water r table is 2–4 m ce (15 from the deep pundwater contribute to of the global at 15–20 Mm ³ /d	

	(uncertain value based on limited available knowledge). The direction of the groundwater flow is from the recharge area to the discharge areas (main river valleys and zones with groundwater level close to the surface) i.e. from SE to N and NW
Description of	Chemical status
status assessment methodology.	Romania: The methodology for the chemical status assessment followed the requirements of the Groundwater Directive (2006/118/EC) as well as the recommendations of the CIS Guidance Document no. 18 – Guidance on Groundwater status and trend assessment.
	The first step is to check any exceedances of the quality standards and TVs which were established taken into consideration the NBL values. If no exceedances of the quality standards and TVs are recorded, the groundwater body is considered as being in good chemical status. If exceedances of TVs or quality standards are recorded the following relevant tests are carried out:
	• General assessment of the chemical status: Data aggregation is performed and it is checked whether the total area of exceedance is greater than 20% of the total area of the GWB. In case there are no exceedances, the test indicate a good status for the water body.
	• Saline or other intrusion: not relevant.
	• Significant diminution of associated surface water chemistry and ecology due to transfer of pollutants from the GWB: the location of the exceedance of the relevant TVs was not found in areas where pollutants might be transferred to surface waters; a comparison of the pollutant load transferred from the GWB to the surface water body with the total load in the surface water body did not exceed 50%. The test show a good status for the water body if these criteria are achieved.
	• Significant damage to GWDTEs due to transfer of pollutants from the GWB: No GWDTE was found to be damaged. The test show a good status for the water body if this criteria is achieved;
	• Meets the requirements of WFD Article 7(3) – Drinking Water Protected Areas: there is no evidence of increased treatment due to changes in water quality.
	To assess the chemical status of the groundwater bodies, the following steps are considered:
	• For each monitoring point the annual average concentrations for each indicator was calculated; for the metals the concentration of the dissolved form was considered;
	• For each monitoring point the annual average concentration of the each parameters was compared with the thresholds values (determined for each GWB) or standards value (nitrates and pesticides).
	• The GWB is of good chemical status when no EQS or TV is exceeded in any monitoring point.
	• The GWB is of poor chemical status when EQS or TV are exceeded at monitoring points representing more than 20% of the GWB surface.
	The chemical status of the GWB ROMU20 is poor, considering the results of applying the methodology for chemical status assessment.
	Hungary: Assessment of the chemical status of GWBs was conducted: Analysing of the chemical data of individual monitoring points within each of the GWBs; Identifying of the
	pressures - sources of pollution; The NBLs were calculated and used to determine TVs. TVs have been determined according to CIS Guidance No. 18. Contamination limits have been determined for all indicators listed in Annex II Part B of Directive 2006/118/EC and indicators of the report under Art. 5 of Directive 2006/118/EC.
	The following parameters were investigated:
	a) NBL was determined for the following components: nitrate, ammonium, specific conductivity, sulphate, chloride, arsenic, cadmium, lead, mercury, orthosphosphate
	b) For each monitoring point the median concentration of each parameters of the studied period was compared to the TVs (determined for each GWB) or standards values (in the case of nitrates, metals and pesticides).
	c) Different tests were conducted to assess GWB status: Diffuse pollution test (nitrate, ammonium, orthosphosphate), Drinking water supply tests for numerous elements or components in both drinking water wells and monitoring wells and trend analysis based on the data of the surveillance monitoring system. Studied components of these

	tests are: nitrate, ammonium, chloride, sulphate, specific conductivity, mercury, lead, cadmium, pesticides and organics, furthermore in the trend analysis pH and dissolved oxygen.
	d) Based on these tests, GWB was evaluated.
	Quantitative Status
	Romania: The criterion for risk assessment of the quantity status is based on trend assessment evolution of the groundwater levels. The quantitative status has been assessed taking into account CIS Guidance No.18. The following criteria have been used:
	water balance
	• the connection with surface waters
	• the influence on the terrestrial ecosystems which depend directly on the GWB
	• the effects of saline or other intrusions
	The quantitative status analysis has been done for the GWB level by comparing the average of the hydrostatic level from 2017 (reference year) with the multiannual average levels during the whole observation period.
	Hungary: To determine the overall quantitative status for a GWB, a series of tests should be applied that considers the impacts of anthropogenically induced long-term alterations in groundwater level and/or flow. Each test will assess whether the GWB is meeting the relevant environmental objectives. The quantitative status has been assessed taking into account CIS Guidance No.18. The following criteria have been used:
	<u>GW alteration (Drawdown) test</u>
	Water Balance test
	Surface Water Flow test
	Groundwater Dependent Terrestrial Ecosystems (GWDTE)
	Saline or other Intrusion test
Groundwater	Receptors considered
threshold	Romania: Drinking Water standards
relationships	Hungary: Drinking water
	Consideration of NBL and EQS (environmental quality standards, drinking water standards) in the TV establishment:
	Romania: The methodology for TV establishment in Romania has been developed according to
	CIS Guidance No. 18. NBL are the key elements in the process of TV setting.
	As described previously, during the TV establishment, the NBL have been compared with the drinking water standards. The maximum allowable concentrations (MAC) provided by the Law no.458/2002 as amended, were chosen as TV where NBL are smaller than MAC. Where background levels are higher than MAC, a small addition of 0.2 NBL was used, in order to avoid misclassification of the respective GWB (TV = NBL + 0.2 NBL = 1.2 NBL).
	The updated list of TVs established for each GWB was published in the new Order of the Minster no. 621/2014 approving TV for groundwater bodies from Romania.
	Hungary:
	EQS for herbicides and total pesticides, tri-, tetrachloroethylenes based on 201/2001. (X.25.) Gov. decree and the 6/2009. (IV.14.) KvVM-EüM-FVM common ministerial decree in correspondence to I. Annex of the 2006/118/EC directive.
	In Hungary, more than 95% of drinking water ensured from subsurface waters, so for all other components the DWS is applicable.
	For those GWBs where the NBL was higher than the DWS due to natural hydro-geological reasons, the TVs for ammonium, SO4 and EC were defined by taking into account these higher values, as described in Guidance Document No. 18.
Verbal description of the trend	Romania: In order to assess the trend in pollutant concentrations, the results of the chemical analysis from the monitoring points have been used. Minimum period of analysis was at least 17 years (2000-2017).

E.

assessmen methodolo	t ogy	The methodolog aggregation of t analysis was dor	y for identifying significant upper trends consists in adjustment and the data from each monitoring points on groundwater bodies. The trend ne using the Gwstat program. The steps used for trend assessment were:						
	Identify assessi			ving the monitoring points and the associated results of chemical analysis, nent of data series, for each year of reference period (2000–2017)					
		• Establi. concent	shment of baseline concentration for each parameter as the average tration registered during the year 2000						
		Calcula	itio	n of annual average	e for the available data in each	h monitoring poin	t		
		• Signific	ant	upward trends we	re identified by Gwstat softwar	e, based on Anov	a Test		
Hungary: To as monitoring syste using Matlab pr for trend assessi				sess the trend of pollutant concentrations, chemical data of the surveillance ems were used for the period of 2000 to 2012. The trend analysis was done ogram package of Man-Kendall method with fitted Sen slope. The steps used ment were:					
		• During using y	the assessment trend of all components for all monitoring objects were created early average data and excluding time series with less than 4 data points.						
		• The treas well.	nd o	of groundwater bod	ly level aggregates of yearly a	nnual data were a	issessed		
		• Signific level us	ant ing	upward or downw Man-Kendall meth	ard trends were identified on S ood with Sen's slope.	95 and 90% signif	ficance		
Verbal description of the trend reversal assessment methodology		Romania: Trend reversal assessment methodology consists also in the use of Gwstat software. This method assumes that the time series can be characterized by two linear trends with a slope change within the time interval (analysis period). Thus, by applying the 95% quantile of the distribution, a reversal of the trend is identified, if in the first section the slope of the trend is positive, and in the second section the slope of the trend is negative. The stages of the method of reversing the pollutant concentration tendency:							
		• optimizing the choice of time sections regarding the shape of the resulting model:							
		• examin	ning the significance of the rift for the simple linear regression model based on						
		the squ	the square of the residue sum;						
		• conducting a statistical test to verify that the 2-sections model is significantly more than a simple regression model							
Hungary: To as periods were co		Hungary: To as periods were con	ses: npc	s the trend reversal ared and evaluated	of pollutant concentrations, tw	vo consecutive tin	ne		
Threshold	l valu	es per GWB							
							Related		
						Level of TV	to risk		
						establishment	in this		
				TV (or range)		(national,	GWB		
	Polli	utant / Indicator	1	[unit]	NBL (or range) [unit]	<i>RBD</i> , <i>GWB</i>)	[yes/-]		
HU	Nitra	ates	50) mg/l	0,5-12.1 mg/l	GWB	Yes		
HU	Amn	ionium du ativita	2-	5 mg/l	1,9/-4.54 mg/l	GWB	Yes		
	Sulf		2.	$500-4000 \ \mu \text{s/cm}$	$1210-2300 \ \mu S/Cm$	GWB	- Vac		
	Chlo	ne vride	2.	50-500 mg/i 50-500 mg/l	20-481 mg/l 32 5-300 mg/l	GWB	Ves		
HU	Orto	orlae		5 mg/l	0.65-1.71 mg/l	GWB	105		
HU	Cad	Imium		<u>ue/l</u>	0.16-0.83 µg/l	national	-		
HU	Lead	ıd) μg/l	2.7-5 μg/l	national	-		
HU	Mer	ercury		μg/l	0.39-0.49 µg/l	national	-		
HU	Tric	richlorethylene) μg/l		national	-		
HU	Tetre	trachloroethylene) μg/l		national	-		
HU	Abse	sorbed organic) μ <u>g/l</u>		national	-		
	halo	logens AOX							
HU	Pesticides by components		0,	1 μg/l		national	-		
HU	Pest	icides all	0,	5 μg/l		national	-		
RO	Nitrates		50) mg/l		National	Yes		

RO	Benzen	10 µg/l		National	-
RO	Tricloretilena	10 µg/l		National	-
RO	Tetracloretilena	10 µg/l		National	-
RO	Ammonium	0.5–1.9 mg/l	0.216–1.56 mg/l	GWB	-
RO	Chlorides	250 mg/l	66.755–179.57 mg/l	GWB	-
RO	Sulphates	250 mg/l	102.04–193.99 mg/l	GWB	-
RO	Nitrites	0,5 mg/l	0.046–0.2 mg/l	GWB	-
RO	Phosphates	0,5–0.6 mg/l	0.134–0.5 mg/l	GWB	-
RO	Chromium	0,05 mg/l	0.006296–0.00811mg/l	GWB	-
RO	Nickel	0,02 mg/l	0.009–0.00836 mg/l	GWB	-
RO	Copper	0.1 mg/l	0.0113–0.0117 mg/l	GWB	-
RO	Zinc	5 mg/l	0.125–0.0274 mg/l	GWB	-
RO	Cadmium	0.005 mg/l	0.0035 mg/l	GWB	-
RO	Lead	0.01-0.02 mg/l	0.0075–0.01316 mg/l	GWB	-
RO	Arsenic	0.04 mg/l	0.0289 mg/l	GWB	-
RO	Phenols	0.002mg/l	0.0015 mg/l	GWB	-

GWB-6: Somes / Szamos

GWB-6	National share	HU-6 RO-6	Status 2021 for each nationa GWB?		
			Chemical (substance)	Quantity	
List of individual GW-bodies	HU	HU_AIQ649	Good	Good	
forming the whole national share	HU	HU_AIQ648	Good	Good	
(national code incl. country code)	HU	HU_AIQ600	Good	Good	
	HU	HU_AIQ601	Good	Good	
	RO	ROSO01	Good	Good	
	RO	ROSO13	Good	Good	
Description/C haracterisation of the ICPDR GW-body GW-body Reasons for select The alluvial depos Hungarian-Roman the borders. The inhabitants in Rom lowland characte transpiration from The recharge zone status of the terren neighbouring coun described below. General description The Somes/Szamo. The aquifer is dividelineation method the transboundary Four water bodies strata from the HU_AIQ600). Un Quaternary strata 400–500 m corress This Holocene-Ple the Upper- and overlapping each of delineation, the are vertically unify thus no further hoc km2.	ROROSO01GoodGoodROROSO13GoodGoodReasons for selection as an important transboundary GWBThe alluvial deposit of the Somes/Szamos River extends on both sides of the northern part of Hungarian-Romanian border. It is also connected to the aquifer system lying in Ukraine close the borders. The aquifer system supplies drinking water to a population of approx. 170,0 inhabitants in Romania and 50,000 inhabitants in Hungary. On the Hungarian side, due to lowland character and upward flow system, the terrestrial ecosystems require surp transpiration from groundwater; 7% of the area of the water body is under nature conservati The recharge zone is in Romania and Ukraine, thus the available groundwater resource and status of the terrestrial ecosystems on the Hungarian parts of the water body complex of described below.General descriptionThe Somes/Szamos River has formed a 30–250 m thick alluvial depositThe aquifer is divided into several GWBs in both countries. Despite the differences in i delineation method of the two countries, it was possible to select the relevant water bodies fr the transboundary point of view.Four water bodies containing cold water occur in Hungary. Two of them contain Quaterna strata from the surface to a depth of 30 m, namely the shallow GWBs (HU_AIQ601), which bes Quaternary strata include some parts of the Upper-Pannonian deposits as well, to a depth 400–500 m corresponding to the surface separating cold and thermal waters.This Holocene-Pleistocene formation is divided vertically in Romania by the horizon separat the Upper- and Lower-Pleistocene strata. In Romania two water bodies are consider overlapping each other, covering a surface of 1,440 km². According to the Hungarian appro of delineation, the cold part of the Upper				
	In Romania , the shallow (Holocene-Upper-Pleistocene) aquifer is unconfined, consisting of sands, argillaceous sands, gravels and even boulders in the eastern part, and has a depth of 25–35 m. The silty-clayey covering layer is 5–15 m thick.				
--------------------------------------	---				
	The deeper (Lower-Pleistocene) aquifer is confined (it is separated from the Upper-Pleistocene part by a clay layer); its bottom is declining from 30 m to 130 m below the surface from East to West. The gravely and sandy strata (characteristic to westwards from Satu-Mare town) represent the main aquifer for water supply in the region.				
	In Hungary (as part of the cold water body), the Quaternary (Pleistocene) and Holocene strata are 50 m thick at the Ukrainian border and its continuously declining bottom is around 200 m below the surface at the western boundary. Mainly confined conditions characterise the Hungarian part, with a silty clayey covering layer of $1-6$ m (increasing from the NE to the SW). The Quaternary aquifer is sand or gravelly sand, and the hydraulic conductivity ranges between 10-30 m/d. It should be noted that the Hungarian water body includes the cold water bearing part of the Upper-Pannonian formation as well, to a depth of 400–500 m (under this level, thermal water of a temperature greater than 30 °C can be found).				
	Depth of the groundwater level (mainly pressure in confined area) below the surface ranges between 2 and 5 m in Hungary. The flow direction is from the ENE to the WSW in both countries, corresponding to the recharge and main discharge zones (rivers and area with groundwater level close to the surface).				
	The recharge area is in the Romanian part of the water body (and in Ukraine). In Hungary the infiltrated amount from local recharge zones supplies neighbouring discharge zones and cannot be considered as part of the available groundwater resources.				
Description of	Chemical status				
status assessment methodology.	Romania: The methodology for the chemical status assessment followed the requirements of the Groundwater Directive (2006/118/EC) as well as the recommendations of the CIS Guidance Document no. 18 – Guidance on Groundwater status and trend assessment.				
	The first step is to check any exceedances of the quality standards and TVs which were established taken into consideration the NBL values. If no exceedances of the quality standards and TVs are recorded, the groundwater body is considered as being in good chemical status. If exceedances of TVs or quality standards are recorded the following relevant tests are carried out:				
	• General assessment of the chemical status: Data aggregation is performed and it is checked whether the total area of exceedance is greater than 20% of the total area of the GWB. In case there are no exceedances, the test indicate a good status for the water body.				
	• Saline or other intrusion: not relevant.				
	• Significant diminution of associated surface water chemistry and ecology due to transfer of pollutants from the GWB: the location of the exceedance of the relevant TVs was not found in areas where pollutants might be transferred to surface waters; a comparison of the pollutant load transferred from the GWB to the surface water body with the total load in the surface water body did not exceed 50%. The test show a good status for the water body if these criteria are achieved.				
	• Significant damage to GWDTEs due to transfer of pollutants from the GWB: No GWDTE was found to be damaged. The test show a good status for the water body if this criteria is achieved;				
	• Meets the requirements of WFD Article 7(3) – Drinking Water Protected Areas: there is no evidence of increased treatment due to changes in water quality.				
	To assess the chemical status of the groundwater bodies, the following steps are considered:				
	• For each monitoring point the annual average concentrations for each indicator was calculated; for the metals the concentration of the dissolved form was considered;				
	• For each monitoring point the annual average concentration of the each parameters was compared with the thresholds values (determined for each GWB) or standards value (nitrates and pesticides).				
	The GWB is of good chemical status when no EQS or TV is exceeded in any monitoring point.				

	• The GWB is of poor chemical status when EQS or TV are exceeded at monitoring points representing more than 20% of the GWB surface
	Hungary: Assessment of the chemical status of groundwater was conducted: Analysing of the chemical data of individual monitoring points within each of the GWBs; Identifying of the pressures - sources of pollution; The background levels were calculated and used to determine threshold value. Threshold values have been determined according to CIS Guidance No. 18. Contamination limits have been determined for all indicators listed in Annex II Part B of Directive 2006/118/EC and indicators of the report under Art. 5 of Directive 2006/118/EC.
	The following parameters were investigated:
	a) Natural Background Level was determined for the following components: nitrate, ammonium, specific conductivity, sulphate, chloride, arsenic, cadmium, lead, mercury, orthophosphate
	b) For each monitoring point the median concentration of each parameters of the studied period was compared to the thresholds values (determined for each GWB) or standards values (in the case of nitrates, metals and pesticides).
	c) Different tests were conducted to assess groundwater body status: Diffuse pollution test (nitrate, ammonium, orthophosphate), Drinking water supply tests for numerous elements or components in both drinking water wells and monitoring wells and trend analysis based on the data of the surveillance monitoring system. Studied components of these tests are: nitrate, ammonium, chloride, sulphate, specific conductivity, mercury, lead, cadmium, pesticides and organics, furthermore in the trend analysis pH and dissolved oxygen.
	d) Based on these tests, groundwater body was evaluated.
	Quantitative Status
	Romania: The criterion for risk assessment of the quantity status is based on trend assessment evolution of the groundwater levels. The quantitative status has been assessed taking into account the CIS Guidance No.18. The following criteria have been used:
	water balance
	• the connection with surface waters
	• the influence on the terrestrial ecosystems which depend directly on the GWB
	• the effects of saline or other intrusions
	The quantitative status analysis has been done for the GWB level by comparing the average of the hydrostatic level from 2017 (reference year) with the multiannual average levels during the observation period.
	Hungary: To determine the overall quantitative status for a GWB, a series of tests should be applied that considers the impacts of anthropogenically induced long-term alterations in groundwater level and/or flow. Each test will assess whether the GWB is meeting the relevant environmental objectives. The quantitative status has been assessed taking into account CIS Guidance No.18. The following criteria have been used:
	<u>GW alteration (Drawdown) test</u>
	Water Balance test
	Surface Water Flow test
	Groundwater Dependent Terrestrial Ecosystems (GWDTE)
	Saline or other Intrusion test
Groundwater	Receptors considered
threshold	Romania: Drinking Water standards
value relationships	Hungary: Drinking water
	Consideration of NBL and EQS (environmental quality standards, drinking water standards) in the TV establishment:
	<i>Romania:</i> The methodology for TV establishment in Romania has been developed according to CIS Guidance No. 18. NBL are the key elements in the process of TV setting.

	As described previously, during the TV establishment, the NBL have been compared with the drinking water standards. The maximum allowable concentrations (MAC) provided by the Law no.458/2002 as amended, were chosen as TV where natural background levels (NBL) are smaller than MAC. Where background levels are higher than MAC, a small addition of 0.2 NBL was used, in order to avoid misclassification of the respective GWB ($TV = NBL + 0.2 NBL = 1.2 NBL$).			
	The updated list of TVs established for each GWB was published in the new Order of the Minster no. 621/2014 approving TV for groundwater bodies from Romania. <i>Hungary:</i>			
	EQS for herbicides and total pesticides, tri-, tetrachloroethylenes based on 201/2001. (X.25.) Gov. decree and the 6/2009. (IV.14.) KvVM-EüM-FVM common ministerial decree in correspondence to I. Annex of the 2006/118/EC directive.			
	In Hungary, more than 95% of drinking water ensured from subsurface waters, so for all other components the DWS is applicable.			
	For those GWBs where the NBL was higher than the DWS due to natural hydro-geological reasons, the TVs for ammonium, SO4 and EC were defined by taking into account these higher values, as described in Guidance Document No. 18.			
Verbal description of the trend	Romania: In order to assess the trend in pollutant concentrations, the results of the chemical analysis from the monitoring points have been used. Minimum period of analysis was at least 10 years (2000-2011).			
assessment methodology	The methodology for identifying significant upper trends consists in adjustment and aggregation of the data from each monitoring points on groundwater bodies. The trend analysis was done using the Gwstat program.			
	The steps used for trend assessment were:			
	• Identifying the monitoring points and the associated results of chemical analysis, assessment of data series, for each year of reference period (2000–2011)			
	• Establishment of baseline concentration for each parameter as the average concentration registered during the year 2000			
	• Calculation of annual average for the available data in each monitoring point			
	• Significant upward trends were identified by Gwstat software, based on Anova Test			
	Hungary : To assess the trend of pollutant concentrations, chemical data of the surveillance monitoring systems were used for the period of 2000 to 2012. The trend analysis was done using Matlab program package of Man-Kendall method with fitted Sen slope. The steps used for trend assessment were:			
	• During the assessment trend of all components for all monitoring objects were created using yearly average data and excluding time series with less than 4 data points.			
	• The trend of groundwater body level aggregates of yearly annual data were assessed as well.			
	• Significant upward or downward trends were identified on 95 and 90% significance level using Man-Kendall method with Sen's slope.			
Verbal description of the trend reversal assessment methodology	Romania: Trend reversal assessment methodology consists also in the use of Gwstat software. This method assumes that the time series can be characterized by two linear trends with a slope change within the time interval (analysis period). Thus, by applying the 95% quantile of the distribution, a reversal of the trend is identified, if in the first section the slope of the trend is positive, and in the second section the slope of the trend is negative. The stages of the method of reversing the pollutant concentration tendency:			
	• optimizing the choice of time sections regarding the shape of the resulting model;			
	• examining the significance of the rift for the simple linear regression model based on the square of the residue sum;			
	• conducting a statistical test to verify that the 2-sections model is significantly more than a simple regression model.			
	<i>Hungary:</i> To assess the trend reversal of pollutant concentrations two consecutive time period was compared and evaluated			
Threshold values per GWB				

	Pollutant / Indicator	TV (or range) [unit]	NBL (or range) [unit]	Level of TV establishment (national, RBD, GWB)	Related to risk in this GWB [yes/-]
HU	Nitrates	50 mg/l	1-11.5 mg/l	GWB	-
HU	Ammonium	2-5 mg/l	1.5-3.3 mg/l	GWB	-
HU	Conductivity	2500 µS/cm	649-1787 μS/cm	GWB	-
HU	Sulfate	250 mg/l	17.8-184 mg/l	GWB	-
HU	Chloride	250 mg/l	21.4-138 mg/l	GWB	-
HU	Orthophosphate	0.5-2 mg/l	0.11-0.92 mg/l	GWB	
HU	Cadmium	5 μg/l	0.04-0.16 μg/l	national	-
HU	Lead	10 μg/l	0.38-4.7 μg/l	national	-
HU	Mercury	1 μg/l	0.005-0.27 μg/l	national	-
HU	Trichlorethylene	10 μg/l		national	-
HU	Tetrachloro ethylene	10 µg/l		national	-
HU	Absorbed organic halogens AOX	20 µg/l		national	-
HU	Pesticides by components	0,1 µg/l		national	-
HU	Pesticides all	0,5 μg/l		national	-
RO	Nitrates	50 mg/l		National	-
RO	Benzen	10 μg/l		National	-
RO	Tricloretilena	10 μg/l		National	-
RO	Tetracloretilena	10 μg/l		National	-
RO	Ammonium	0.5-1.3 mg/l	0.22-1.05 mg/l	GWB	-
RO	Chlorides	250 mg/l	19.46-51.5 mg/l	GWB	-
RO	Sulphates	250 mg/l	19,01- 91.78 mg/l	GWB	-
RO	Nitrites	0.5 mg/l	0.08- 0.15 mg/l	GWB	-
RO	Phosphates	0.5 mg/l	0.16-0.41 mg/l	GWB	-
RO	Chromium	0.05 mg/l	0.0071-0.010 mg/l	GWB	-
RO	Nickel	0.02 mg/l	0.011-0.005 mg/l	GWB	-
RO	Copper	0.1 mg/l	0.0153-0.024 mg/l	GWB	-
RO	Zinc	5 mg/l	0.26-0.262 mg/l	GWB	-
RO	Cadmium	0,005 mg/l	0.00085-0.0023 mg/l	GWB	-
RO	Mercury	0,001 mg/l	0.000035-0.00002 mg/l	GWB	-
RO	Lead	0.03-0.07 mg/l	0.022-0.055 mg/l	GWB	-
RO	Arsenic	0.01mg/l	0.0021- 0.006 mg/l	GWB	-
RO	Phenols	0.002mg/l	0.001- 0.0013 mg/l	GWB	-

RS-7 Chemical (substance) Quantity List of individual GW-bodies forming the whole national share (national code incl. country code) HU HU HU/QS23 Good Good Good Good Good HU HU HU/QS23 Good Good Good Good HU HU HU/QS23 Good Good Good Good HU HU HU/QS23 Good Good Good HU HU HU/QS23 Good Good HU HU HU/QS23 Good Good HU HU HU/HU/AQS33 Good Poor HU HU HU/HU/AQS33 Good Poor HU HU HU/AQS33 Good Ro RS RS TIS (W/L) Good Ro RS RS RS TIS (W/L) Good RO RS RS TIS (W/L) Good RS RS TIS (W/L) S RS TIS (W/L) S RS TIS (W/L) S RS TIS (W/L) Good RS RS <th colspan="2">GWB-7</th> <th>National share</th> <th colspan="2">HU-7 Status 2021 for each nationa</th> <th>r each national</th>	GWB-7		National share	HU-7 Status 2021 for each nationa		r each national
List of individual GW-bodies forming the whole national share (national code incl. country code) HU HU HU AlQ523 Good Good Intional code incl. country code) HU HU HU AlQ523 Good Good Good Intional code incl. country code) HU HU HU AlQ523 Good Good Good Good HU				RO-7 RS-7	Chemical	Orcentites
List of individual GW-bodies forming the whole national share (national code incl. country code) HU HU HU HU Good Good Good HU HU HU HU Good Good Good Good Initional code incl. country code) HU HU HU Good Good Good Good HU HU HU HU Good Good Poor HU HU HU AlQ529 Good Poor HU HU HU AlQ529 Good Poor HU HU HU AlQ529 Good Poor HU HU HU AlQ533 Good Poor HU HU HU AlQ533 Good Poor HU HU HU AlQ533 Good Poor RS RS <tis 12<="" gw="" td=""> Good Good Roo RS RS<td colspan="2"></td><td></td><td></td><td>(substance)</td><td>Quantity</td></tis>					(substance)	Quantity
The GWB is mainly used for drinking water supply, agricultural and industrial supplies, or the considered as pure hydrodynamic boundaries, sither the is somewhat east from the Danube in Serbia in the addition of the considered as pure hydrodynamic boundaries, sither the is somewhat east from the Tisza River in Hungary and Serbia in includers. Description/C The GWB is mainly used for drinking water supply, agricultural and industrial supplies. The whole aquifer system of the Danube in Serbia in the difference of the includer of the includer of the river. The porus aquifer system the there is some flow under the river in the deeper aquifer has in considered as the sorted of the river. The porus aquifer system the there is the administry is flow the and the discreted as an explored in the discreted as the sorted of the river. The porus aquifer system the there is the administry is flow the sorted of the river in the deeper aquifer has a well, whose eastern port is in the admines transformed flow and in the sorted as the sorted as the sorted as the sorted as the sorted of the Hungary and a sorted at the screeds 4.000 km². In the WHB is mainly used for drinking water supply, agricultural and industrial supplies, criterion for selection as "important" consists in its size that exceeds 4.000 km². The GWB is mainly used for drinking water supply, agricultural and industrial supplies, criterion for selection as "important" is the sorthed by the sorted in the river. The porus aquifer system of the Danube Tisza River in Hungary and is portial in cludes and there resorted as the sorther is in Romania. The Danube, Tisza are sorted as the contail clear cost in the sorted in the river. The porus aquifer system deveen the Danube and Tisza Rivers is the biggest geological unt the Pannonian Basin. It lies mainly in Hungary and serbia, with a smaller part in Croatia). eastify the wate	List of individua	al GW-bodies	HU	HU_AIQ528	Good	Good
(national code incl. country code) HU HU HU AUX	forming the who	ble national share	HU	HU_AIQ523	Good	Good
HU HU_AIQ53 Good Good HU HU_AIQ590 Good Good Good HU HU_AIQ520 Good Poor HU HU_AIQ533 Good Poor HU HU_AIQ533 Good Poor HU HU_AIQ486 Good Poor HU HU_AIQ486 Good Good RO R0BA18 Good Good RO R0BA18 Good Good RS RS <tis gw_l2<="" td=""> Good Poor RS RS<tis gw_l2<="" td=""> Good Poor RS RS<tis gw_l3<="" td=""> Good Good RS RS<tis gw_l4<="" td=""> Good Good Ro RS RS<tis gw_l1<="" td=""> Good Good Ro RS RS TIS GW_L1 Good Good Ro RS RS D_S D_S L4</tis></tis></tis></tis></tis>	(national code in	ncl. country code)	HU	HU_AIQ532	Good	Good
HU HU_AIQ590 Good Good HU HU HU_AIQ529 Good Poor HU HU_AIQ522 Good Poor HU HU_AIQ522 Good Poor HU HU_AIQ521 Good Poor HU HU_AIQ511 Poor (NO) Poor Good HU HU_AIQ511 Foor (NO) Poor RS RS RS_TIS_GW_L1 Good Good RS RS_TIS_GW_L1 Good Good RS RS_TIS_GW_L1 Good Poor RS RS_TIS_GW_S1_3 Good Good RS RS_TIS_GW_S1_3 Good Good RS RS_TIS_GW_S1_7 Good Good RS RS_TIS_GW_S1_1 Good Poor RG RS_TIS_GW_S1_1 Good Poor RG RS_TIS_GW_S1_1 Good Poor Good RS RS_TIS_GW_S1_7 Good Poor Gw-body The whole aquifer system	(HU	HU_AIQ487	Good	Good
HU HU AlQ529 Good Poor HU HU AlQ522 Good Poor HU HU AlQ533 Good Poor HU HU AlQ533 Good Poor HU HU AlQ531 Poor (NOs) Good RO ROBA18 Good Good RO ROBA18 Good Good RS RS TIS GW_L1 Good Good RS RS TIS GW_L2 Good Poor RS RS TIS GW_L3 Good Poor RS RS TIS GW_S1.3 Good Poor RS RS TIS GW_S1.4 Good Good RS RS TIS GW_S1.1 Good Good RS RS D GW_S1.1 Good Good RW-body The GWB is mainly used for drinking water supply, agricultural and industrial supplies.			HU	HU_AIQ590	Good	Good
HU HU AIQ522 Good Poor HU HU_AIQ533 Good Poor HU HU_AIQ486 Good Poor RO ROBA18 Good Good RO ROBA18 Good Good RO ROBA18 Good Good RO RS RS TIS GW L1 Good Good RS RS TIS GW L2 Good Poor RS RS TIS GW L3 Good Good Ro RS RS TIS GW L4 Good Good Ro RS RS TIS GW L3 Good Good Ro RS RS TIS GW L4 Good Good Ro RS RS TIS GW L3 Good Good Ro RS RS TIS GW L1 Good Poor RS RS RS TIS GW S1.1 Good Good Ro Criterio for selection as "important" consists in its size that exceeds 4,000 bm ² . The whole aquifer system of the Danube-Tizz region stretches from the foothills of the nort			HU	HU_AIQ529	Good	Poor
HU HU_AlQ533 Good Poor HU HU_AlQ591 Poor (NO ₃) Good Poor RO ROBA18 Good Poor Good Poor RS RS_TIS_GW_L1 Good Poor Rood Rodd Rdd Rddd			HU	HU_AIQ522	Good	Poor
HU HU_AIQ486 Good Poor HU HU_HU_AIQ591 Poor (NOs) Good Good Good Roo ROBA18 Good Good Good Good Roo ROBA18 Good Good Good Good Roo RS RS_TIS_GW_L1 Good Good Good Roo RS RS_TIS_GW_S1_2 Good Good Roo RS RS_TIS_GW_S1_3 Good Good Roo RS RS_TIS_GW_S1_3 Good Good RS RS RS RS RS RS <tis_gw_s1_3< td=""> Good Good RS <td< td=""><td></td><td></td><td>HU</td><td>HU_AIQ533</td><td>Good</td><td>Poor</td></td<></tis_gw_s1_3<>			HU	HU_AIQ533	Good	Poor
HU HU_A[Q591 Poor (NO3) Good RO ROBA18 Good Ro RS RS <tis_gw_i_i< td=""> Good Poor RS RS<tis_gw_si_2< td=""> Good Good Ro RS RS RS RS<tis_gw_si_2< td=""> Good Poor RS RS TS<gw_si_2< td=""> Good Poor RS RS<tis_gw_si_3< td=""> Good Poor RS RS<tis_gw_si_3< td=""> Good RS RS<tis_gw_si_3< td=""> Good RS RS<tis_gw_si_3< td=""> Good Good RS RS<tis_gw_si_3< td=""> Good Good RS RS RS<tis_gw_si_3< td=""> Good Good RS RS</tis_gw_si_3<></tis_gw_si_3<></tis_gw_si_3<></tis_gw_si_3<></tis_gw_si_3<></tis_gw_si_3<></gw_si_2<></tis_gw_si_2<></tis_gw_si_2<></tis_gw_i_i<>			HU	HU_AIQ486	Good	Poor
RO ROBA18 Good Good RS RS_TIS_GW_L1 Good Good Poor RS RS_TIS_GW_SL1 Good Good Good RS RS_TIS_GW_SL2 Good Poor RS RS_TIS_GW_L3 Good Poor RS RS_TIS_GW_L3 Good Poor RS RS_TIS_GW_L4 Good Poor RS RS_TIS_GW_SL3 Good Poor RS RS_TIS_GW_SL4 Good Poor RS RS_TIS_GW_SL7 Good Poor RS RS_TIS_GW_SL7 Good Poor RS RS_D_GW_SL7 Good Good Rod Gorder RS RS_D_GW_SL7 Good Good Rod Gowbody The GWB is mainly used for drinking water supply, agricultural and industrial supplies. criterion for selection as "important" consists in its size that exceeds 4,000 km ² . Gw-body The whole aquifer system of the Danube-Tisza region stretches from the forbhills of the north mountainous region of Hungary to the Danube in Serbia, where the river flow			HU	HU_AIQ591	Poor (NO ₃)	Good
RS RS_TIS_GW_1_1 Good Poor RS RS_TIS_GW_SL_1 Good Good Good Rodd			RO	ROBA18	Good	Good
RS RS TIS GW SI I Good Good Good Rod Rod <throd< th=""> Rod Rod</throd<>			RS	RS_TIS_GW_I_1	Good	Poor
RS RS_TIS_GW_12 Good Poor RS RS_TIS_GW_S12 Good Good Good Good Ro RS RS_TIS_GW_13 Good Poor RS RS_TIS_GW_14 Good Good Good Ro RS RS_TIS_GW_14 Good Poor RS RS_TIS_GW_17 Good Good Ro RS RS TIS_GW_17 Good Poor RS RS TIS_GW_17 Good Poor RS RS_TIS_GW_S17 Good Poor RS RS TIS_GW_S17 Good Poor RS RS TIS_GW_S17 Good Poor RS RS DS God Good RO RS RS DS God Good RO RS RS TIS GW_S17 Good Food RS RS TIS GW_S17 Good RO RS RS TIS GW_S17 Good Food RS RS TIS GW_S17 Good Food RS TIS GW_S17			RS	RS_TIS_GW_SI_1	Good	Good
RS RS_TIS_GW_SL_2 Good Good RS RS_TIS_GW_L_3 Good Poor RS RS_TIS_GW_L_4 Good Poor RS RS_TIS_GW_L_4 Good Poor RS RS_TIS_GW_L_7 Good Poor RS RS_TIS_GW_L_7 Good Poor RS RS_D_GW_L_1 Good Poor RS RS_D_GW_L_1 Good Poor RS RS_D_GW_L_1 Good Poor RS RS_D_GW_L_1 Good Poor RS RS_D_GW_SL_1 Good Poor Criterion for selection as "important" consists in its size that exceeds 4,000 km². Criterion for selection as "important" consists in its size that exceeds 4,000 km². GW-body The whole aquifer system of the Danube inself downstream of Budapest in Hungary but after cross the Hungarian border it enlarges towards Slavonia (western part of Backa in Croatia). eastern boundary is somewhat east from the Tisza Rivers in thungary and in Serbia it includes Banat as well, whose eastern part is in Romania. The Danube, Tisza and Timis Rivers important discharge-lines but cannot be considered as pure hydrodynamic boundaries, si there is some flow under the river in the deeper			RS	RS_TIS_GW_I_2	Good	Poor
RS RS_TIS_GW_L3 Good Poor RS RS_TIS_GW_SL3 Good Good Good Rodd			RS	RS_TIS_GW_SI_2	Good	Good
RS RS_TIS_GW_SL3 Good Good RS RS_TIS_GW_L4 Good Poor RS RS_TIS_GW_L4 Good Poor RS RS_TIS_GW_L7 Good Poor RS RS_TIS_GW_SL7 Good Poor RS RS_D_GW_SL7 Good Poor RS RS_D_GW_SL7 Good Poor RS RS_D_GW_SL7 Good Poor RS RS_D_GW_SL1 Good Poor RS RS_D_GW_SL1 Good Poor riterion for selection as "important" consists in its size that exceeds 4,000 km ² . The whole aguifer system of the Danube -Tisza region stretches from the foothills of the north mountainous region of Hungary to the Danube in Serbia, where the river flows to the south-e The western boundary is somewhat east from the Tisza River in Hungary and in Serbia in includes Banat as well, whose eastern part is in Romania. The Danube, Tisza and Timis Rivers important discharge-lines but cannot be considered as pure hydrodynamic boundaries, si there is some flow under the river in the deeper aquifer that is not discharged into the river. The porous aquifer system between the Danube and Tisza Rivers is the biggest geological unit the Pannonian Basin. It lies mainly in Hungary and Serbia, with a smaller part in Croatia a consteris of the GWB complex (protection zones for vulnerab			RS	RS_TIS_GW_I_3	Good	Poor
RS RS_TIS_GW_1_4 Good Poor RS RS_TIS_GW_SI_4 Good Good Good Rod Rod Rod Good Good Good Rod Rod Rod Rod Good Good Rod Rod Rod Rod Rod Good Rod			RS	RS_TIS_GW_SI_3	Good	Good
RS RS_TIS_GW_SI_4 Good Good RS RS_TIS_GW_I_7 Good Poor RS RS_TIS_GW_I_7 Good Good RS RS_TIS_GW_SI_7 Good Good RS RS_D_GW_I_1 Good Good Poor RS RS_D_GW_I_1 Good Good Description/C haracterisation of the ICPDR Gow food Good GW-body The whole aquifer system of the Danube-Tisza region stretches from the foothills of the north mountainous region of Hungary to the Danube in Serbia, where the river flows to the south-e The western boundary is the Danube itself downstream of Budapest in Hungary but after cross sthe Hungarian border it enlarges towards Slavonia (western part of Backa in Croatia). eastern boundary is somewhat east from the Tisza River in Hungary and in Serbia it includes Banat as well, whose eastern part is in Romania. The Danube, Tisza and Timis Rivers important discharge-lines but cannot be considered as pure hydrodynamic boundaries, si there is some flow under the river in the deeper aquifer that is not discharged into the river. The porous aquifer system between the Danube and Tisza Rivers is the biggest geological um the Pannonian Basin. It lies mainly in Hungary and Serbia, with a smaller part in Croatia a Romania. Serbia and Hungary have selected it as an important transboundary GWB comp because: (i) size, (ii) importance in supplying drinking water for the population and (ii			RS	RS_TIS_GW_I_4	Good	Poor
RS RS_TIS_GW_L7 Good Poor RS RS_TIS_GW_SL7 Good Good RS RS_D_GW_SL1 Good Poor RS RS_D_GW_SL1 Good Poor Naracterisation of the ICPDR The GWB is mainly used for drinking water supply, agricultural and industrial supples. criterion for selection as "important" consists in its size that exceeds 4,000 km². The whole aquifer system of the Danube-Tisza region stretches from the foothills of the north mountainous region of Hungary to the Danube in Serbia, where the river flows to the south-e The western boundary is the Danube itself downstream of Budapest in Hungary but after cross the Hungarian border it enlarges towards Slavonia (western part of Backa in Croatia). eastern boundary is somewhat east from the Tisza River in Hungary and in Serbia it includes Banat as well, whose eastern part is in Romania. The Danube, Tisza and Timis Rivers important discharge-lines but cannot be considered as pure hydrodynamic boundaries, si there is some flow under the river in the deeper aquifer that is not discharged into the river. The porous aquifer system between the Danube and Tisza Rivers is the biggest geological uni the Pamnonian Basin. It lies mainly in Hungary and Serbia, with a smaller part in Croatia a Romania. Serbia and Hungary have selected it as an important transboundary GWB comp because: (i) size, (ii) importance in supplying drinking water for the population and (ii) the n to satisfy the water demand of agriculture and industry, (iv) protected areas cover a large p of the GWB complex (protection zones for vulnerable drinking water resources, nat conservation areas and nitrate-sensiti			RS	RS_TIS_GW_SI_4	Good	Good
RS RS_TIS_GW_SI_7 Good Good RS RS_D_GW_L1 Good Poor RS RS_D_GW_SI_1 Good Good Description/C haracterisation of the ICPDR GW-body The GWB is mainly used for drinking water supply, agricultural and industrial supplies. criterion for selection as "important" consists in its size that exceeds 4,000 km ² . The whole aquifer system of the Danube-Tisza region stretches from the foothills of the north mountainous region of Hungary to the Danube in Serbia, where the river flows to the south- eastern boundary is the Danube itself downstream of Budapest in Hungary but after cross the Hungarian border it enlarges towards Slavonia (western part of Backa in Croatia). eastern boundary is somewhat east from the Tisza River in Hungary and in Serbia it includes Banat as well, whose eastern part is in Romania. The Danube, Tisza and Timis Rivers important discharge-lines but cannot be considered as pure hydrodynamic boundaries, si there is some flow under the river in the deeper aquifer that is not discharged into the river. The porous aquifer system between the Danube and Tisza Rivers is the biggest geological unit the Pannonian Basin. It lies mainly in Hungary and Serbia, with a smaller part in Croatia of Romania. Serbia and Hungary have selected it as an important transboundary GWB comp because: (i) size, (ii) importance in supplying drinking water for the population and (iii) the n to satisfy the water demand of agriculture and industry, (iv) protected areas cover a large p of the GWB complex (protection zones for vulnerable drinking water resources, nat conservation areas and nitrate-sensitive areas). In Serbia, the area of the whole Dunav aquifer system is 17,435 km ² (the areas of Backa Banat			RS	RS_TIS_GW_I_7	Good	Poor
RS RS_D_GW_L1 Good Poor RS RS_D_GW_S1_1 Good			RS	RS_TIS_GW_SI_7	Good	Good
RSRS_D_GW_SI_1GoodGoodDescription/C haracterisation of the ICPDR GW-bodyThe GWB is mainly used for drinking water supply, agricultural and industrial supplies. criterion for selection as "important" consists in its size that exceeds 4,000 km².GW-bodyThe whole aquifer system of the Danube-Tisza region stretches from the foothills of the north mountainous region of Hungary to the Danube in Serbia, where the river flows to the south-e- The western boundary is the Danube itself downstream of Budapest in Hungary but after cross the Hungarian border it enlarges towards Slavonia (western part of Backa in Croatia). eastern boundary is somewhat east from the Tisza River in Hungary and in Serbia it includes Banat as well, whose eastern part is in Romania. The Danube, Tisza and Timis Rivers important discharge-lines but cannot be considered as pure hydrodynamic boundaries, si there is some flow under the river in the deeper aquifer that is not discharged into the river. The porous aquifer system between the Danube and Tisza Rivers is the biggest geological uni the Pannonian Basin. It lies mainly in Hungary and Serbia, with a smaller part in Croatia Romania. Serbia and Hungary have selected it as an important transboundar GWB compl because: (i) size, (ii) importance in supplying drinking water for the population and (iii) the n to satisfy the water demand of agriculture and industry, (iv) protected areas cover a large p of the GWB complex (protection zones for vulnerable drinking water resources, nat conservation areas and nitrate-sensitive areas).In Serbia, the area of the whole Dunav aquifer system is 17,435 km² (the areas of Backa' Banat). However, the transboundary importance is related only to the GWB sadjacent to the si borders with Hungary (a total of 6 GWBs: 3 shallow (RS_TIS_GW_SI_1; RS_TIS_GW_SI_2) with Romania (a tot			RS	RS_D_GW_I_1	Good	Poor
 Description/C haracterisation of the GWB is mainly used for drinking water supply, agricultural and industrial supplies. criterion for selection as "important" consists in its size that exceeds 4,000 km². The whole aquifer system of the Danube-Tisza region stretches from the foothills of the north mountainous region of Hungary to the Danube in Serbia, where the river flows to the south-e. The western boundary is the Danube itself downstream of Budapest in Hungary but after cross the Hungarian border it enlarges towards Slavonia (western part of Backa in Croatia). eastern boundary is somewhat east from the Tisza River in Hungary and in Serbia it includes Banat as well, whose eastern part is in Romania. The Danube, Tisza and Timis Rivers important discharge-lines but cannot be considered as pure hydrodynamic boundaries, si there is some flow under the river in the deeper aquifer that is not discharged into the river. The porous aquifer system between the Danube and Tisza Rivers is the biggest geological unit the Pannonian Basin. It lies mainly in Hungary and Serbia, with a smaller part in Croatia Romania. Serbia and Hungary have selected it as an important transboundar GWB comple because: (i) size, (ii) importance in supplying drinking water for the population and (iii) the n to satisfy the water demand of agriculture and industry, (iv) protected areas cover a large p of the GWB complex (protection zones for vulnerable drinking water resources, nat conservation areas and nitrate-sensitive areas). In Serbia, the area of the whole Dunav aquifer system is 17,435 km² (the areas of Backa Banat). However, the transboundary importance is related only to the GWBs adjacent to the si borders with Hungary (a total of 6 GWBs: 3 shallow (RS_TIS_GW_SI_1; RS_TIS_GW_SI_2, RS_TIS_GW_SI_3) and 3 deep (RS_TIS_GW_I_1; RS_TIS_GW_SI_4; RS_T			RS	RS_D_GW_SI_1	Good	Good
In Hungary, the aquifer system is divided into several water bodies according to ma subsurface catchment areas and downward-upward flow systems. For the transbound	beschption/C haracterisation of the ICPDR GW-body	criterion for selection as "important" consists in its size that exceeds 4,000 km ² . The whole aquifer system of the Danube-Tisza region stretches from the foothills of the northern mountainous region of Hungary to the Danube in Serbia, where the river flows to the south-east. The western boundary is the Danube itself downstream of Budapest in Hungary but after crossing the Hungarian border it enlarges towards Slavonia (western part of Backa in Croatia). The eastern boundary is somewhat east from the Tisza River in Hungary and in Serbia it includes the Banat as well, whose eastern part is in Romania. The Danube, Tisza and Timis Rivers are important discharge-lines but cannot be considered as pure hydrodynamic boundaries, since there is some flow under the river in the deeper aquifer that is not discharged into the river. The porous aquifer system between the Danube and Tisza Rivers is the biggest geological unit of the Pannonian Basin. It lies mainly in Hungary and Serbia, with a smaller part in Croatia and Romania. Serbia and Hungary have selected it as an important transboundary GWB complex because: (i) size, (ii) importance in supplying drinking water for the population and (iii) the need to satisfy the water demand of agriculture and industry, (iv) protected areas cover a large part of the GWB complex (protection zones for vulnerable drinking water resources, nature conservation areas and nitrate-sensitive areas). In Serbia, the area of the whole Dunav aquifer system is 17,435 km ² (the areas of Backa and Banat). However, the transboundary importance is related only to the GWBs adjacent to the state borders with Hungary (a total of 6 GWBs: 3 shallow (RS_TIS_GW_SI_4; RS_TIS_GW_SI_4; RS_TIS_GW_SI_7; RS_D_GW_SI_3) and 3 deep (RS_TIS_GW_I_4; RS_TIS_GW_SI_4; RS_TIS_GW_SI_4; I). The area of water bodies situated towards Hungary is 5,647 km2 and towards Romania 4,859 km2, with a total aggregated area of 10,506 km2 for the Voyodina GWB.				

	Beneath these are five porous GWBs. Besides Quaternary strata, these include part of the Upper- Pannonian deposits as well, to a depth of 400–500 m corresponding to the surface and separating cold and thermal water bodies. The Hungarian part can be characterised by both upward and downward flow systems that are the basis for the horizontal separation of the GWBs. The area covered by these water bodies is 7,098 km2. The aquifer can be considered unconfined in the shallow GWBs, despite a considerable area where the water level is in the semi-permeable covering layer, and confined in the deeper ones.
	The depth of the groundwater level below the surface ranges between 3 and 5 m in Hungary, with a maximum depth of 7–12 m in the main recharge zones (HU_AIQ529, HU_AIQ591 and HU_AIQ533).
	In Romania , the aquifer system covers around 11,408 km2 and is adjacent to the state border with Serbia. The GWB is generally confined, its covering strata being of Quaternary age. The depth of the groundwater level below surface ranges from 3–20 m. The protection degree of the GWB is very good. The main aquifer is the Quaternary alluvial deposit of the Danube lying on the Pannonian strata. Its thickness is a few tens of meters at the northern, western and southern boundary and increases up to 700 m in the middle of the basin (in the lower Tisza-valley). At the eastern boundary, the thick Quaternary deposit is a mixture of the alluvial deposits of the Danube and the Carpathian rivers. In respect to lithology, the aquifer consists of medium and coarse sands and gravely sands with inter-layers and lenses of silty sands and silty clays. Average hydraulic conductivity ranges between 5–30 m/d. The topographically elevated ridge between the Danube and the Tisza is formed of eolian sand with relatively good recharge conditions and phreatic groundwater. In the river valleys and east of the Tisza, mainly confined conditions appear. The depth of the fluvial-swamp silty clays and swamp clays overlying strata varies from 10-20 m in the western and southern part, and up to 100–125 m in the north-eastern part of Backa and in Banat. Here, prior to intensive groundwater abstraction, an artesian type of groundwater occurred. The main recharge area is in Hungary, in the eolian sand ridge, and in Romania. In Hungary,
	the estimated value of the recharge is approx. 220 Mm3/year. In Serbia, only local recharge areas exist (areas of the Deliblat Sands and the Subotica/Horgos Sands), thus the lateral flow crossing the border from the neighbouring country - as a component of the overall recharge - is very important.
	The groundwater is mainly discharged by the rivers (and drainage canals) and by the surplus of evapotranspiration from vegetation in the areas characterised by groundwater levels close to the surface. Small lakes and marshes in locally deeper areas (i.e. in topographic depressions) must be considered as local discharge areas – they are important from the nature conservation point of view. Besides natural discharge, there is also significant groundwater tapping for various uses (drinking water, agriculture, industry, irrigation etc.). In Vojvodina, the entire public water supply relies exclusively on groundwater from aquifers formed at different depths, from 20 m to more than 200 m.
	The direction of the groundwater flow in the upper part of the aquifer-system follows the topography and recharge-discharge conditions. At the Hungarian-Serbian border, the flow direction is almost parallel to the border (flowing slightly from Hungary towards Serbia). In the deeper part, the general flow direction is NW to SE i.e. from the Danube to the Tisza in Hungary and in Backa, while in Banat the general direction of the groundwater flow is from E to W. GWB is mainly used for drinking water supply, agricultural and industrial supplies. The criterion for selection as "important" consists in its size that exceeds 4000 km ² .
Description of	Chemical status
status assessment methodology.	Romania: The methodology for the chemical status assessment followed the requirements of the Groundwater Directive (2006/118/EC) as well as the recommendations of the CIS Guidance Document no. 18 – Guidance on Groundwater status and trend assessment.
	The first step is to check any exceedances of the quality standards and TVs which were established taken into consideration the NBL values. If no exceedances of the quality standards and TVs are recorded, the groundwater body is considered as being in good chemical status. If exceedances of TVs or quality standards are recorded the following relevant tests are carried out:
	• General assessment of the chemical status: Data aggregation is performed and it is checked whether the total area of exceedance is greater than 20% of the total area of

the GWB. In case there are no exceedances, the test indicate a good status for the water body
 Saline or other intrusion: not relevant
 Significant diminution of associated surface water chemistry and ecology due to transfer of pollutants from the GWB: the location of the exceedance of the relevant TVs was not found in areas where pollutants might be transferred to surface waters; a comparison of the pollutant load transferred from the GWB to the surface water body with the total load in the surface water body did not exceed 50%. The test show a good status for the water body if these criteria are achieved.
• Significant damage to GWDTEs due to transfer of pollutants from the GWB: No GWDTE was found to be damaged. The test show a good status for the water body if this criteria is achieved;
 Meets the requirements of WFD Article 7(3) – Drinking Water Protected Areas: there is no evidence of increased treatment due to changes in water quality.
To assess the chemical status of the groundwater bodies, the following steps are considered:
• For each monitoring point the annual average concentrations for each indicator was calculated; for the metals the concentration of the dissolved form was considered;
• For each monitoring point the annual average concentration of the each parameters was compared with the thresholds values (determined for each GWB) or standards value (nitrates and pesticides).
• The GWB is of good chemical status when no EQS or TV is exceeded in any monitoring point.
• The GWB is of poor chemical status when EQS or TV are exceeded at monitoring points representing more than 20% of the GWB surface
Hungary: Assessment of the chemical status of groundwater was conducted: Analysing of the chemical data of individual monitoring points within each of the GWBs; Identifying of the pressures - sources of pollution; The background levels were calculated and used to determine threshold value. Threshold values have been determined according to CIS Guidance No. 18. Contamination limits have been determined for all indicators listed in Annex II Part B of Directive 2006/118/EC and indicators of the report under Art. 5 of Directive 2006/118/EC.
The following parameters were investigated:
a) Natural Background Level was determined for the following components: nitrate, ammonium, specific conductivity, sulphate, chloride, arsenic, cadmium, lead, mercury, orthophoshate
b) For each monitoring point the median concentration of each parameters of the studied period was compared to the thresholds values (determined for each GWB) or standards values (in the case of nitrates, metals and pesticides).
c) Different tests were conducted to assess groundwater body status: Diffuse pollution test (nitrate, ammonium, orthophoshate), Drinking water supply tests for numerous elements or components in both drinking water wells and monitoring wells and trend analysis based on the data of the surveillance monitoring system. Studied components of these tests are: nitrate, ammonium, chloride, sulphate, specific conductivity, mercury, lead, cadmium, pesticides and organics, furthermore in the trend analysis pH and dissolved oxygen.
d) Based on these tests, groundwater body was evaluated.
Serbia: The criteria for the chemical status assessment were: present groundwater quality, pressures and their impacts, natural protection (overlying strata),. Pressures and impacts where assessed on the basis of the census data at settlement level for the 2011 regarding demographics, sanitation and water supply practices (septic tanks, sewerage, water supply, connection rates) and agricultural census data from 2012 (livestock, Agricultural land use).
The Census data was projected to 2016 for the purpose of STATUS assessment. Non agricultural land use pressures were evaluated on the basis of CORINE 2016 data set and CORINE CLASS specific pollution coefficients for BOD, TN. Pressures were evaluated for organic pollution and nutrients (Indicators used were BOD, TN). Pressure analysis were conducted for 160 analytical units (settlements covering the total area of ground water bodies).

Monitoring data for 16 groundwater monitoring stations for the 12 GWB in Serbia covering a period from 2004 to 2018 was evaluated and stations with at least 5 years of data on monitoring were selected for status and impact assessment. Parameters considered for the analysis included NO3 and pesticides. For each of the monitoring stations trend analysis were conducted on all available data (minimum for 5 years, maximum for 15 years). Trend significance was classified in terms of annual rate of increase/decrease in a manner that would lead to the exceedance of the threshold value for NO3 (50 mg/L as NO3) within 10 years in relation to the observed average NO3 concentration at any given station. Regression coefficient values were used as a measure of a level of confidence of the trend assessment so that if r2 value was above 0,7 trend assessment was to be considered as high confidence assessment, values of r2 between 0,4 and 0,7 lead to medium confidence.

- The GWB is of good chemical status when no TV is exceeded in any monitoring point and when no significant increasing trend is detected, and GW is not under significant pressure (Pressure is considered to be significant if total load on the GWB exceeds 10 kg TN-N/ha/yr)
- The GWB is of poor chemical status when TV are exceeded at monitoring points representing more than 20% of the GW samples analysed at the particular monitoring point in the period from 2004 to 2018.
- The GWB is declared under risk if observed trend would lead to the exceedance of the TV for NO3 within 10 if the observed trend continued at any of the monitoring stations for a given water body. The assessment of Risk is accompanied with level of confidence of the assessment.

Quantitative Status

Romania: The criterion for risk assessment of the quantity status is based on trend assessment evolution of the groundwater levels. The quantitative status has been assessed taking into account CIS Guidance No.18. The following criteria have been used:

- water balance
- the connection with surface waters
- the influence on the terrestrial ecosystems which depend directly on the GWB
- the effects of saline or other intrusions

The quantitative status analysis has been done for the GWB level by comparing the average of the hydrostatic level from 2017 (reference year) with the multiannual average levels during the observation period.

Hungary: To determine the overall quantitative status for a GWB, a series of tests should be applied that considers the impacts of anthropogenically induced long-term alterations in groundwater level and/or flow. Each test will assess whether the GWB is meeting the relevant environmental objectives. The quantitative status has been assessed taking into account CIS Guidance No.18. The following criteria have been used:

- <u>GW alteration (Drawdown) test</u>
- Water Balance test
- Surface Water Flow test
- Groundwater Dependent Terrestrial Ecosystems (GWDTE)
- Saline or other Intrusion test

Serbia: Considering the risk of not achieving good quantitative status, groundwater bodies within which there is a registered trend of groundwater level decrease as a consequence of abstraction are considered to be at risk. For this purpose, data time series of registered groundwater levels were used only for shallow GWBs, since no organized monitoring of deep aquifers exists.

For groundwater bodies where no quantitative monitoring exists, the estimate of groundwater balance is calculated, using available data on precipitation, abstraction etc. Assessment of risk from non-achievement of the good quantitative status until 2015 was carried out based on the criteria that average GW abstraction over several years < 50% of groundwater recharge, no substance intrusion into the body caused by the change of GW streaming direction and associated surface ecosystems are not endangered by GW abstraction.

Olouliuwatei	Receptors considered:
threshold	Romania: Drinking Water standards
relationships	Hungary: Drinking water
F-	Serbia:
	<u>Consideration of NBL and EQS (environmental quality standards, drinking water standards) in</u> <u>the TV establishment:</u>
	<i>Romania:</i> The methodology for TV establishment in Romania has been developed according to CIS Guidance No. 18. NBL are the key elements in the process of TV setting.
	As described previously, during the TV establishment, the NBL have been compared with the drinking water standards. The maximum allowable concentrations (MAC) provided by the Law no.458/2002 as amended, were chosen as TV where natural background levels (NBL) are smaller than MAC. Where background levels are higher than MAC, a small addition of 0.2 NBL was used, in order to avoid misclassification of the respective GWB ($TV = NBL + 0.2 NBL = 1.2 NBL$).
	The updated list of TVs established for each GWB was published in the new Order of the Minster no. 621/2014 approving TV for groundwater bodies from Romania.
	Hungary: EQS for herbicides and total pesticides, tri-, tetrachloroethylenes based on 201/2001. (X.25.) Gov. decree and the 6/2009. (IV.14.) KvVM-EüM-FVM common ministerial decree in correspondence to I. Annex of the 2006/118/EC directive.
	In Hungary, more than 95% of drinking water ensured from subsurface waters, so for all other components the DWS is applicable.
	For those GWBs where the NBL was higher than the DWS due to natural hydro-geological reasons, the TVs for ammonium, SO4 and EC were defined by taking into account these higher values, as described in Guidance Document No. 18. Serbia:
Varbal	Domania . In order to appage the trend in pollutant concentrations, the results of the chemical
description of	<i>analysis from the monitoring points have been used. Minimum period of analysis was at least</i>
the trenu	17 years (2000-2017).
assessment methodology	The methodology for identifying significant upper trends consists in adjustment and aggregation of the data from each monitoring points on groundwater bodies. The trend analysis was done using the Gwstat program. The steps used for trend assessment were:
assessment methodology	 The methodology for identifying significant upper trends consists in adjustment and aggregation of the data from each monitoring points on groundwater bodies. The trend analysis was done using the Gwstat program. The steps used for trend assessment were: Identifying the monitoring points and the associated results of chemical analysis, assessment of data series, for each year of reference period (2000–2017)
assessment methodology	 The methodology for identifying significant upper trends consists in adjustment and aggregation of the data from each monitoring points on groundwater bodies. The trend analysis was done using the Gwstat program. The steps used for trend assessment were: Identifying the monitoring points and the associated results of chemical analysis, assessment of data series, for each year of reference period (2000–2017) Establishment of baseline concentration for each parameter as the average concentration registered during the year 2000
assessment methodology	 The methodology for identifying significant upper trends consists in adjustment and aggregation of the data from each monitoring points on groundwater bodies. The trend analysis was done using the Gwstat program. The steps used for trend assessment were: Identifying the monitoring points and the associated results of chemical analysis, assessment of data series, for each year of reference period (2000–2017) Establishment of baseline concentration for each parameter as the average concentration registered during the year 2000 Calculation of annual average for the available data in each monitoring point
assessment methodology	 The methodology for identifying significant upper trends consists in adjustment and aggregation of the data from each monitoring points on groundwater bodies. The trend analysis was done using the Gwstat program. The steps used for trend assessment were: Identifying the monitoring points and the associated results of chemical analysis, assessment of data series, for each year of reference period (2000–2017) Establishment of baseline concentration for each parameter as the average concentration registered during the year 2000 Calculation of annual average for the available data in each monitoring point Significant upward trends were identified by Gwstat software, based on Anova Test
assessment methodology	 The methodology for identifying significant upper trends consists in adjustment and aggregation of the data from each monitoring points on groundwater bodies. The trend analysis was done using the Gwstat program. The steps used for trend assessment were: Identifying the monitoring points and the associated results of chemical analysis, assessment of data series, for each year of reference period (2000–2017) Establishment of baseline concentration for each parameter as the average concentration registered during the year 2000 Calculation of annual average for the available data in each monitoring point Significant upward trends were identified by Gwstat software, based on Anova Test Hungary: To assess the trend of pollutant concentrations, chemical data of the surveillance monitoring systems were used for the period of 2000 to 2012. The trend analysis was done using Matlab program package of Man-Kendall method with fitted Sen slope. The steps used for trend assessment were:
assessment methodology	 The methodology for identifying significant upper trends consists in adjustment and aggregation of the data from each monitoring points on groundwater bodies. The trend analysis was done using the Gwstat program. The steps used for trend assessment were: Identifying the monitoring points and the associated results of chemical analysis, assessment of data series, for each year of reference period (2000–2017) Establishment of baseline concentration for each parameter as the average concentration registered during the year 2000 Calculation of annual average for the available data in each monitoring point Significant upward trends were identified by Gwstat software, based on Anova Test Hungary: To assess the trend of pollutant concentrations, chemical data of the surveillance monitoring systems were used for the period of 2000 to 2012. The trend analysis was done using Matlab program package of Man-Kendall method with fitted Sen slope. The steps used for trend assessment were: During the assessment trend of all components for all monitoring objects were created using yearly average data and excluding time series with less than 4 data points.
assessment methodology	 The methodology for identifying significant upper trends consists in adjustment and aggregation of the data from each monitoring points on groundwater bodies. The trend analysis was done using the Gwstat program. The steps used for trend assessment were: Identifying the monitoring points and the associated results of chemical analysis, assessment of data series, for each year of reference period (2000–2017) Establishment of baseline concentration for each parameter as the average concentration registered during the year 2000 Calculation of annual average for the available data in each monitoring point Significant upward trends were identified by Gwstat software, based on Anova Test Hungary: To assess the trend of pollutant concentrations, chemical data of the surveillance monitoring systems were used for the period of 2000 to 2012. The trend analysis was done using Matlab program package of Man-Kendall method with fitted Sen slope. The steps used for trend assessment were: During the assessment trend of all components for all monitoring objects were created using yearly average data and excluding time series with less than 4 data points. The trend of groundwater body level aggregates of yearly annual data were assessed as well.
assessment methodology	 The methodology for identifying significant upper trends consists in adjustment and aggregation of the data from each monitoring points on groundwater bodies. The trend analysis was done using the Gwstat program. The steps used for trend assessment were: Identifying the monitoring points and the associated results of chemical analysis, assessment of data series, for each year of reference period (2000–2017) Establishment of baseline concentration for each parameter as the average concentration registered during the year 2000 Calculation of annual average for the available data in each monitoring point Significant upward trends were identified by Gwstat software, based on Anova Test Hungary: To assess the trend of pollutant concentrations, chemical data of the surveillance monitoring systems were used for the period of 2000 to 2012. The trend analysis was done using Matlab program package of Man-Kendall method with fitted Sen slope. The steps used for trend assessment were: During the assessment trend of all components for all monitoring objects were created using yearly average data and excluding time series with less than 4 data points. The trend of groundwater body level aggregates of yearly annual data were assessed as well.
assessment methodology	 The methodology for identifying significant upper trends consists in adjustment and aggregation of the data from each monitoring points on groundwater bodies. The trend analysis was done using the Gwstat program. The steps used for trend assessment were: Identifying the monitoring points and the associated results of chemical analysis, assessment of data series, for each year of reference period (2000–2017) Establishment of baseline concentration for each parameter as the average concentration registered during the year 2000 Calculation of annual average for the available data in each monitoring point Significant upward trends were identified by Gwstat software, based on Anova Test Hungary: To assess the trend of pollutant concentrations, chemical data of the surveillance monitoring systems were used for the period of 2000 to 2012. The trend analysis was done using Matlab program package of Man-Kendall method with fitted Sen slope. The steps used for trend assessment were: During the assessment trend of all components for all monitoring objects were created using yearly average data and excluding time series with less than 4 data points. The trend of groundwater body level aggregates of yearly annual data were assessed as well. Significant upward or downward trends were identified on 95 and 90% significance level using Man-Kendall method with Sen's slope.
Verbal description of the trend reversal assessment	 The methodology for identifying significant upper trends consists in adjustment and aggregation of the data from each monitoring points on groundwater bodies. The trend analysis was done using the Gwstat program. The steps used for trend assessment were: Identifying the monitoring points and the associated results of chemical analysis, assessment of data series, for each year of reference period (2000–2017) Establishment of baseline concentration for each parameter as the average concentration registered during the year 2000 Calculation of annual average for the available data in each monitoring point Significant upward trends were identified by Gwstat software, based on Anova Test Hungary: To assess the trend of pollutant concentrations, chemical data of the surveillance monitoring systems were used for the period of 2000 to 2012. The trend analysis was done using Matlab program package of Man-Kendall method with fitted Sen slope. The steps used for trend assessment were: During the assessment trend of all components for all monitoring objects were created using yearly average data and excluding time series with less than 4 data points. The trend of groundwater body level aggregates of yearly annual data were assessed as well. Significant upward trends swere identified on 95 and 90% significance level using Man-Kendall method with Sen's slope. Serbia: No methodology for trend assessment has been developed. Romania:. Trend reversal assessment methodology consists also in the use of Gwstat software. This method assumes that the time series can be characterized by two linear trends with a slope change within the time interval (analysis period). Thus, by applying the 95% quantile of the distribution, a reversal of the trend is identified, if in the first section the slope of the trend is positive, and in the second section the slope of the trend is negative. The stages of the method of

	• optimizing the choice of time sections regarding the shape of the resulting model;				
	• examining the significance of the rift for the simple linear regression model based on the square of the residue sum;				
	• conduc than a	cting a statistical test t simple regression mo	to verify that the 2-sections del.	model is significantly	v more
	Hungary: To as were compared	ssess the trend reversa	al of pollutant concentration	as two consecutive tir	ne periods
	Serbia: No meth	hodology for trend rev	versal assessment has been o	developed	
Thresh	old values per GWB			-	
					Related
	Pollutant / Indicator	TV (or range) [unit]	NBL (or range) [unit]	Level of TV establishment (national, RBD, GWB)	to risk in this GWB [yes/-]
HU	Nitrates	50 mg/l	0.5-9.6 mg/l	GWB	Yes
HU	Ammonium	2-5 mg/l	1.3-4.54 mg/l	GWB	-
HU	Conductivity	2500-4000 µS/cm	565-2004 μS/cm	GWB	-
HU	Sulfate	250-500 mg/l	5.6-373 mg/l	GWB	-
HU	Chloride	250 mg/l	8-183 mg/l	GWB	-
HU	Orthophosphate	1-5 mg/l	0.16-1.71 mg/l	GWB	
HU	Cadmium	5 μg/l	0.01-0.52µg/l	national	-
HU	Lead	10 μg/l	1-6 µg/l	national	-
HU	Mercury	1 μg/l	0.06-0.52 μg/l	national	-
HU	Trichlorethylene	10 µg/l		national	-
HU	Tetrachloro ethylene	10 µg/l		national	-
HU	Absorbed organic halogens AOX	20 µg/l		national	-
HU	Pesticides by components	0,1 µg/l		national	-
HU	Pesticides all	0.5 μg/l		national	-
RO	Nitrates	50 mg/l		National	-
RO	Benzen	10 μg/l		National	-
RO	Tricloretilena	10 μg/l		National	-
RO	Tetracloretilena	10 μg/l		National	-
RO	Ammonium	6.4 mg/l	5.33 mg/l	GWB	-
RO	Chlorides	250 mg/l	51.66 mg/l	GWB	-
RO	Sulphates	250 mg/l	69.47 mg/l	GWB	-
RO	Nitrites	0.5 mg/l	0.137 mg/l	GWB	-
RO	Phosphates	1 mg/l	0.774 mg/l	GWB	-
RO	Chromium	0.05 mg/l	0.00505 mg/l	GWB	-
RO	Nickel	0.02 mg/l	0.009573 mg/l	GWB	-
RO	Copper	0,1 mg/l	0.017913 mg/l	GWB	-
RO	Zinc	5 mg/l	0.350642 mg/l	GWB	-
RO	Cadmium	0.005 mg/l	0.000333 mg/l	GWB	-
RO	Mercury	0.001 mg/l	0.0004 mg/l	GWB	-
RO	Lead	0.01-mg/l	0.00744 mg/l	GWB	-
RO	Phenols	0.004 mg/l	0.003 mg/l	GWB	-

GWB-8		National share HU-8 SK-8		Status 2021 for each national GWB?		
				Chemical (substance)	Quantity	
List of individua	List of individual GW bodies forming		HU_AIQ654	Good	Good	
the whole nation	al share (national code	HU	HU_AIQ572	Good	Good	
incl. country coo	de)	HU	HU_AIQ653	Good	Good	
		HU	HU_AIQ573	Good	Good	
		SK	SK1000300P	Good	Good	
		SK	SK1000200P	Good	Good	
Description/C	Slovakia: The delineat	ion consists of the f	ollowing steps:			
of the ICPDR GW-body	1. The aquifers quaternary sti considered as	are vertically div rata containing cold thermal by classifie	vided in three floor l waters, thermal aqu cation).	s: Quaternary s ifers (temperature	ediments, $Pre-e > 25^{\circ}C$ or it is	
	2. The pre-quate aquifer: volca	ernary strata are fi unic rocks, other fiss	urther divided horizon sured rocks, karstic ro	ntally by geologic ocks, porous sedir	cal types of the nents.	
	3. Further separ river basin ma	ation is due to the anagement units.	borders of the surfac	e catchment area.	s considered as	
	Hungary: The delinear	tion of groundwater	· bodies in Hungary h	as been carried o	out by:	
	1. Separation of aquifers, mixe	f the main geologi ed formations of the	cal features: porous mountainous regions	aquifers in the s, other than karst	basins, karstic tic aquifers.	
	2. Thermal wate In the case of There are no	er bodies are separated according to the temperature greater than 30 °C. porous aquifers it is done vertically, while in karstic aquifers horizontally. thermal aquifers in the mountainous regions other than karstic.				
	3. Further divisi (in the case of of karstic aqu	on is related to the subsurface catchment areas and vertical flow system porous aquifers) and to the structural and hydrological units (in the case ifers and mountainous regions).				
	For transboundary wa because of the numero the risk of failing g characterisation for al	ter bodies the more us transboundary w ood status, Hunga l water bodies).	e detailed further cha vater bodies and the o ary decided to app	racterisation is c expected further 2 ly the methodolo	arried out (n.b. 20–30 % due to ogy of further	
	Reasons for selecting as important transboundary GWB					
	The large alluvial dep. Slovakia (Podunajská including the Szigetköz Hungary as an importa available groundwater purposes as well (iii) majority of the area is sensitive areas, nature System.	osit of the River Do lowland and its par and in Austria. The ant transboundary a r resource and the the groundwater do protected (protect e conservation area	anube downstream B et: Žitný ostrov), Hun e aquifer system has aquifer because of (i) important actual us ependent terrestrial e ion zones of drinking as), (v) the existence	ratislava lies in t gary (Northern p been considered l its size, (ii) the un te for drinking w ecosystem of the g water abstraction of the Gabcikow	hree countries: art of Kisalföld by Slovakia and hique amount of eater and other floodplain, (iv) on sites, nitrate vo Hydropower	
General description						
	The Danube has been p aquifer is made up of sands, gravels, interco conductivity is in the ra in the centre of the bas 3,500 m.	playing the decisive 15–500 m thick Qu calated with nume inge of 100–500 m/d in. Here, the botton	e role in the formation aternary alluvia: hydrogen rous clay and silt lay providing extreme 1 of the underlying Po	n of the aquifer sy draulically conne lenses. The aver ely high transmiss nnonian deposits	estem. The main octed mixture of rage hydraulic ivity, especially is at a depth of	
The aquifer is divided into several groundwater in the delineation method of the two countries, it from transboundary point of view: two water b beside the Quaternary strata include some part depth of 400–500 m corresponding to the surfa km2) and two Quaternary water bodies in Slov km2 in total (see the summary table above).		vater bodies in both countries. Despite the differences ries, it was possible to select the relevant water bodies ater bodies containing cold water in Hungary, which e part of the Upper-Pannonian deposits as well, to the e surface separating cold and thermal waters (1,152 n Slovakia (2,186 km2) have been selected, i.e. 3,338				

GWB-8: Podunajska Basin, Zitny Ostrov / Szigetköz, Hanság-Rábca

The aquifer can be considered as unconfined, despite the considerable area where the water level is in the semi-permeable covering layer.
Due to the high transmissivity of the aquifer, the groundwater regime and groundwater quality mainly depend on the surface water. The flow system and the type of covering layer provide surplus recharge condition in the majority of the area, but the main source of groundwater recharge is the Danube. Before the construction of the hydropower system (1992), the riverbed had been the infiltration surface, and the Danube's line had been the hydraulic boundary between the countries as well (in upper parts of Danube stream between Devín and Hrušov, approximately since 1970's, river bed started to drain groundwater). In the actual situation, the artificial recharge system is the main source for the vicinity of the Danube, but a remaining part of the aquifers in the Hungarian territory is recharged by the Čunovo reservoir. Where the reservoir is in the neighbourhood of the main channel (between Rajka and Dunakiliti) considerable transboundary groundwater flow appears under the Danube. The Danube's river bed downstream the reservoir – due to the derived flow and the consequently decreased average water level - drains the neighbouring groundwater, causing considerable drop of groundwater level in the imminent vicinity of the river bed. Both the quantity and the quality of the recharge from the reservoir highly depend on the continuously increasing deposit in the reservoir and the developing physico-chemical processes. Deposits in the reservoir are extracted. Signs of long-term changes of quantity and quality of recharge caused by continuously increasing deposit in the reservoir to be served in the Slovak part of the aquifer yet.
The depth of the groundwater table varies between 2 and 5 m. The weiting conditions of the covering layer has substantially changed along the Danube and in the lower Szigetköz, where prior to the derivation of the Danube the groundwater has fluctuated in the covering layer and the existing artificial recharge system does not compensate sufficiently the former influence of the Danube. On the Slovak territory, annual artificial flooding of the river system in the high water periods seems to efficiently supply groundwater as well as the soil moisture resources.
<u>Chemical Status</u> <u>Slovakia:</u> The methodology for assessing chemical status followed the requirements of the Groundwater Directive (2006/118/EC) as well as the recommendations of the CIS Guidance Document no. 18 - Guidance on groundwater status and trend assessment. The assessment of the chemical status of GWB in the conditions of the Slovakia consisted of the following tests:
1. General quality assessment (GQA) test - years 2016-2017.
2. Drinking water protected areas (DWPA) test - period 2008-2017.
3. Test of significant diminution of associated surface water chemistry and ecology due to transfer of pollutant from the GWB - named as Surface water test - period 2013-2018.
In the GQA test and the Surface water test, the procedure was based on a comparison of the arithmetic means of the concentration of the individual component with quality standards (QS) or thresholds values (TV) for each monitoring point. If no exceedances of the QS/TV were recorded in all monitoring points, the whole GWB was evaluated in good chemical status. If exceedances of QS/TVs were recorded than the methodologies were as follows:
In the GQA test, the data aggregation to whole GWB was performed. If the calculated total area of exceedance of the QS/TV was less than 20% of the total area of the GWB, the GWB was evaluated in good status. If the exceedance more than 20% of the total area of the GWB was recorded and based on expert judgment, the GWB was evaluated in poor chemical status.
In the Surface water test, each GWB (with the relevant groundwater monitoring point) associated with the surface water body was assessed individually, taking into account the hydrological criterion, the hydrogeological criterion, the groundwater and surface water concentration profile, dilution (if data available) and that the estimated load of pollutant from groundwater transferred to associated surface water could be more than 50%, the GWB was evaluated in poor chemical status.
In the DWPA test, the procedure was based on trend analysis (Mann-Kendal, linear regression, 10 years) of biological, chemical and radiological parameters of groundwater intended for human consumption before any level of treatment. If there was not a statistically significant and sustained upward trend in any drinking water abstraction points, the GWB was evaluated in good chemical status. If there was any significant and sustained upward trend in any parameter

ICPDR / International Commission for the Protection of the Danube River / www.icpdr.org

data aggregation to whole GWB was performed (kriging from 2 years mean). If the calculated

	total area of exceedance of the QS/TV was less than 20% of the total area of the GWB, the GWB was evaluated in good status. If the exceedance more than 20% of the total area of the GWB was recorded and based on expert judgment, the GWB was evaluated in poor chemical status.
	<i>Hungary:</i> Assessment of the chemical status of groundwater was conducted: Analysing of the chemical data of individual monitoring points within each of the GWBs; Identifying of the pressures - sources of pollution; The background levels were calculated and used to determine threshold value. Threshold values have been determined according to CIS Guidance No. 18. Contamination limits have been determined for all indicators listed in Annex II Part B of Directive 2006/118/EC and indicators of the report under Art. 5 of Directive 2006/118/EC.
	The following parameters were investigated:
	a) Natural Background Level was determined for the following components: nitrate, ammonium, specific conductivity, sulphate, chloride, arsenic, cadmium, lead, mercury, orthophosphate
	b) For each monitoring point the median concentration of each parameters of the studied period was compared to the thresholds values (determined for each GWB) or standards values (in the case of nitrates, metals and pesticides).
	c) Different tests were conducted to assess groundwater body status: Diffuse pollution test (nitrate, ammonium, orthophosphate), Drinking water supply tests for numerous elements or components in both drinking water wells and monitoring wells and trend analysis based on the data of the surveillance monitoring system. Studied components of these tests are: nitrate, ammonium, chloride, sulphate, specific conductivity, mercury, lead, cadmium, pesticides and organics, furthermore in the trend analysis pH and dissolved oxygen.
	d) Based on these tests, groundwater body was evaluated.
	Quantitative Status
	Hungary: To determine the overall quantitative status for a GWB, a series of tests should be applied that considers the impacts of anthropogenically induced long-term alterations in groundwater level and/or flow. Each test will assess whether the GWB is meeting the relevant environmental objectives. The quantitative status has been assessed taking into account CIS Guidance No.18. The following criteria have been used:
	<u>GW alteration (Drawdown) test</u>
	Water Balance test
	Surface Water Flow test
	Groundwater Dependent Terrestrial Ecosystems (GWDTE)
	Saline or other Intrusion test
	Slovakia: Assessment of groundwater quantitative status consists of 4 tests:
	1. balance assessment of groundwater bodies for the period 2013-2017 and evaluation of the long-term trend of development of balance levels of groundwater bodies for the period 2004-2018
	2. evaluation of the existence of significant declining trends in the groundwater level and spring yield in groundwater bodies for the period 2007-2016 processed by aggregation of point results of groundwater quantity monitoring in the facilities of the state hydrological network of the SHMI
	<i>3. assessment of the impact of groundwater quantity on the status of terrestrial ecosystems dependent on groundwater</i>
	4. assessment of the impact of groundwater quantity on surface water.
Groundwater	Receptors considered
threshold	Slovakia: Drinking water, Surface water
relationships	Hungary: Drinking water
	Consideration of NBL and EQS (environmental quality standards, drinking water standards, surface water standards) in the TV establishment:

	 Slovakia: The natural background level (NBL) was determined and used to derive the threshold value (TV). The TV were determined for all indicators listed in Part B of Annex II to Directive 2006/118/EC and in Directive 2014/80/EU. The TV for the inorganic substances were derived according to the formula: TV = (NBL + DWS)/2. The TV for organic compounds were derived using the formula: TV = 0.75 * DWS. These TV were used for GQA and DWPA tests. An updated list of the TV established for each GWB was published in the amended Regulation of the Government of the Slovakia no. 282/2010 Coll. For the Surface water test, the TV were derived as follows: TV = CV = AF * EQS (surface water standard)/DF, where AF (Attenuation factor) and DF (Dilution factor) are equal to 1 (the worst case). For that GWB where the NBL was higher than the TV due to natural hydro-geological reasons, the TV was set up as TV = NBL. Hungary: EQS for herbicides and total pesticides, tri-, tetrachloroethylenes based on 201/2001. (X.25.) Gov. decree and the 6/2009. (IV.14.) KvVM-EüM-FVM common ministerial decree in correspondence to 1. Annex of the 2006/118/EC directive. In Hungary, more than 95% of drinking water ensured from subsurface waters, so for all other components the DWS is applicable. For those GWBs where the NBL was higher than the DWS due to natural hydro-geological reasons, the TVs for ammonium, SO4 and EC were defined by taking into account these higher values, as described in Guidance Document No. 18.
Verbal description of the trend assessment methodology	 Slovakia: Trend is assessed separately for groundwater quality and quantity at which for trends in quantity the procedure applies for all GW quantity monitoring sites. The assessment follows a stepwise procedure. Consisting of the evaluation of the data sets and the monitoring points (no gaps in time series are allowed and data from 2007–2016 were used), consisting of the performance of the non-parametric Mann-Kendall trend test (95% confidence level) and comprising the regression analysis. GWBs with decreasing trends but with no evidence of abstraction are excluded from assessment in the 3rd RBMP. For assessing trends in concentrations of pollutants in groundwater the evaluation period was 2007–2016. The results of surveillance and operational monitoring were applied for the assessment. Monitoring frequency depends on the GWB type. In the analysis the values <loq (anova)="" (regression="" *="" 0.75="" 2.="" 2026="" 5%="" 50%.="" <loq="" a="" all="" also="" and="" applied="" are="" assessment="" at="" by="" calculated="" concentrations="" distribution,="" evaluated="" evaluation.="" for="" gwb="" higher="" identified="" if="" is="" least="" less="" level="" level.="" level.<="" li="" linear="" lineat="" loqmax="" mann-kendall="" median="" method="" model="" monitoring="" non-parametric="" nonparametric="" normal="" number="" of="" only="" or="" parametric="" performed="" points="" pollutant="" predicted="" procedure)="" qstv="" qstv.="" replaced="" sen's="" series="" showing="" significance="" significant="" squares="" statistical="" statistically="" sustained="" test="" tested="" than="" the="" time="" times="" to="" trend="" trends="" trends,="" up="" upward="" upwards="" value="" values="" was="" were="" with=""> The starting point for trend reversal was placed where the concentration of the pollutant reaches 75% of the QSTV of the relevant pol</loq>
Verbal description of the trend	Slovakia: Trend reversal assessment methodology consists in the use of GWstat software. Time series were included in the assessment, on the basis of which significant sustained upward trends at the level of monitoring sites in the previous RBMP were classified. The time series

reversal assessment	entering the evaluation were supplemented by data monitored in previous years so that the evaluation period was 14 years. The evaluation was performed by dynamically dividing the
methodology	time series into two sections with different lengths and then evaluating the statistical significance of the trends senarately for each allocated section. A reversal of the trend was
	indicated if the following conditions were met at the same time: the statistical significance of the trends evaluated within individual sections is higher than the statistical significance of the
	trend evaluated on the basis of all data forming the evaluated time series, the section representing the results of monitoring in the older period shows a statistically significant upward trend, which is followed by a statistically significant decreasing trend evaluated on the basis of the results of monitoring in the newer period
	Hungary: To assess the trend reversal of pollutant concentrations two consecutive time period was compared and evaluated

Threshold values per GWB

	Pollutant / Indicator	TV (or range) [unit]	NBL (or range) [unit]	Level of TV establishment (national, RBD, GWB)	Related to risk in this GWB [yes/-]
HU	Nitrates	50 mg/l	2.9-12 mg/l	GWB	-
HU	Ammonium	1-2 mg/l	0.4-0.86 mg/l	GWB	-
HU	Conductivity	2500 µS/cm	657-1030	GWB	-
			µS/cm		
HU	Sulfate	250 mg/l	88.8-220 mg/l	GWB	-
HU	Chloride	250 mg/l	30-49.7 mg/l	GWB	-
HU	Orthophosphate	1 mg/l	0.24-0.44 mg/l	GWB	
HU	Cadmium	5 μg/l	0.17-1.1 μg/l	national	-
HU	Lead	10 µg/l	1.9-3.1 μg/l	national	-
HU	Mercury	1 μg/l	0.07-0.2 µg/l	national	-
HU	Trichlorethylene	10 µg/l		national	-
HU	Tetrachloro ethylene	10 µg/l		national	-
HU	AOX	20 µg/l		national	-
HU	Pesticides by components	0,1 µg/l		national	-
HU	Pesticides all	0.5 µg/l		national	-
SK1000300P	Ammonium	0.26 mg/l	0.02 mg/l	GWB	Yes
	Arsenic	6 µg/l	2 µg/l	GWB	-
	Benzene	0.8 µg/l	-	national	-
	Cadmium	3.0 µg/l	1 μg/l	GWB	-
	Chloride	137.3 mg/l	24.6 mg/l	GWB	-
	Chromium	26 µg/l	$2 \mu g/l$	GWB	-
	Copper	1002 µg/l	$4 \mu g/l$	GWB	-
	Iron total	0.135 mg/l	0.07 mg/l	GWB	-
	Lead	7.0 μg/l	$4 \mu g/l$	GWB	-
	Manganese	0.030 mg/l	0.01 mg/l	GWB	-
	Mercury	0.8 µg/l	0.5 μg/l	GWB	-
	Nitrates	50 mg/l	6.6 mg/l	GWB	-
	Nitrites	0.26 mg/l	0.01 mg/l	GWB	-
	Phosphates	0.22 mg/l	0.04 mg/l	GWB	-
	Sodium	104.5 mg/l	8.9 mg/l	GWB	-
	Sulphates	157.6 mg/l	65.2 mg/l	GWB	-
	Tetrachloroethylen	7.5* µg/l	-	national	-
	Trichlorethylene	7.5* µg/l	-	national	-
SK1000200P	Ammonium	0.26 mg/l	0.01 mg/l	GWB	-
	Arsenic	6 µg/l	2 μg/l	GWB	-
	Benzene	0.8 µg/l	-	national	-
	Cadmium	3.0 µg/l	1 μg/l	GWB	-
	Chloride	135.8 mg/l	21.5 mg/l	GWB	-
	Chromium	26 µg/l	<u>Ι μg/l</u>	GWB	-
	Copper	1001 µg/l	$2 \mu g/l$	GWB	-

Iron total	0.125 mg/l	0.05 mg/l	GWB	-
Lead	6.5 µg/l	3 µg/l	GWB	-
Manganese	0.030 mg/l	0.01 mg/l	GWB	-
Mercury	0.7 μg/l	0.4 µg/l	GWB	-
Nitrates	50 mg/l	14.2 mg/l	GWB	-
Nitrites	0.26 mg/l	0.01 mg/l	GWB	-
Phosphates	0.22 mg/l	0.04 mg/l	GWB	-
Sodium	105.8 mg/l	11.5 mg/l	GWB	-
Sulphates	148.9 mg/l	47.8 mg/l	GWB	-
Tetrachloroethylen	7.5* µg/l	-	national	-
Trichlorethylene	7.5* μg/l	-	national	-

* 7.5 for Tetrachloroethylene + Trichlorethylene

GWB-9: Bodrog

GWB-9		National share HU-9 SK-9		Status 2021 for each national GWB?	
				Chemical (substance)	Quantity
List of individua	al GW-bodies forming	HU	HU_AIQ495	Good	Good
the whole national share (national code		HU	HU_AIQ496	Good	Poor
incl. country code)		SK	SK1001500P	Poor (NH ₄ , PO ₄)	Good
Description/C haracterisation of the ICPDR GW-body	Delineation: see GWB At the common east corresponding to the Záhony and Tokaj (con its significance in me groundwater in the vi- water aquifer system is General description The aquifer is the allur lowland area in Hunga silty-clayey layers cov- thick in the Slovakian (50-200 m). The fluvia intercalated silt and cl In the Slovakian part of complex while in Hunga app. 500 m, correspon The main recharge area mountains and penetra area surface waters al mainly unconfined or discharge position and level lies close to (bet surface, the groundwat which are adapted to t groundwater. The sur collect the upward gro discharged groundwat known (that is why bo aquifer). The general a River and SE-NW in th The regional hydro-ge recharging groundwat low TDS, Ca-Mg-HCO the middle and wester Bodrogköz region. At a migration from the dea The major water qualit is the high iron and ma arsenic-content occurs The estimated amoun Slovakian part, out of Hungarian part. It is t receives water from the available for abstractio	<i>i-8</i> <i>iern border of Sla</i> <i>Bodrog River catch</i> <i>afluence with the Ba</i> <i>eting the water det</i> <i>cinity of state bord</i> <i>s in Ukraine.</i> <i>wial deposit of the Ba</i> <i>ary into Bodrogköz</i> <i>er the surface with</i> <i>side and its thickne</i> <i>et surface with</i> <i>side and its thickne</i> <i>et sediments (from s</i> <i>ay lenses) can be ch</i> <i>ay lense for ay alfers</i> <i>be contribute to the</i> <i>be contribute to the</i> <i>be contra for a ba</i> <i>be contra for a ba</i> <i>be contra for a ba</i> <i>be conter of the grow</i> <i>be contra of the grow</i> <i>be conter of the grow</i> <i>be conter of the grow</i> <i>be conter of the bo</i> <i>cher zones.</i> <i>by problem of natura</i> <i>by problem of natura</i> <i>by problem of natura</i> <i>by problem of natura</i> <i>for available grow</i> <i>that 10–15 Mm3/y</i> <i>o be mentioned, tha</i> <i>e southern recharge</i> <i>on in the Bodrogkö</i> <i>mpacts</i>	ovakia and Hungar, ment area in Slovak odrog River) has beer mand of the region, er between Slovakia Bodrog River and its to (northern part) and H peaty areas. The Qu ss gradually increase sandy gravels in the D paracterized by 5 – 30 aquifer system is part of the Pannonian for erature less than 30°C un territory. The rain deep aquifers. In the erecharge. In the Slo with considered as elow) the surface. Why contribute to the trans consequently they are piration and the art of south, the sandy if oundary of the water, in Hungary have bee ndwater flow is N-S (tain below the Tisza. follows the flow system y is almost the same r in the recharge area and mixture of these and drogköz, elevated Cl- al origin in the Bodrog educing conditions). I undwater resources ear should be maintan at the southern part of areas as well, but no z and Rétköz.	y, the alluvial ia and the Tisza- is elected as impo- (ii) contaminatio and Hungary. So ributaries. The T Rétköz (Southern J aternary aquifer es in Hungary tow North to sands is 0 m/d hydraulic co- of the transbound- mation is also att C). waters infiltrate of waters infiltrate of vakian side the w ngary both water confined. Here the here it is around uspiration need of very sensitive to to ificial drainage s hills of Nyírség co- sof different orig n attached to the NE-SW) to the No- n. Close to the riv as in surface strea is, Na-HCO3 water wo types in the No- content indicates gköz Quaternary of in the Rétköz elevo is almost 50 M ined as lateral fl of the Hungarian local recharge ca	aquifer system evalley between ortant due to (i) in threat of the ome part of the me part of the isza divides the part). Holocene is around 60 m vards the South the South with onductivity. ary water body- ached (depth is at the marginal f the catchment ater bodies are bodies are in the groundwater 2 m below the f the vegetation, the status of the system (canals) ontribute to the in is not exactly transboundary orth of the Tisza part bed sections ams. Generally ers dominate in western part of strong upward aquifer complex and the considered in be considered

	The groundwater is mainly used for drinking water supply, but partially for industrial and agricultural purposes (inc. irrigation) as well. The use ratio is auite low in Slovakia: only 10 %.
	The development is limited by occurrence of technologically inappropriate substances in water
	(Mn, Fe) and sometimes also by groundwater pollution from surface waters, industry, agriculture and transport infrastructure (Strážske, Hencovce, Michalovce, Čierna nad Tisou).
	In Hungary the available groundwater resources of the two water bodies are quite different. In the northern part, which is in close relation to the Slovakian part, the water demand of the groundwater dependent aquatic and terrestrial ecosystems can be estimated at 5–8 Mm3/d, thus the available groundwater resources is in the range of 5–7 Mm3/year. The abstracted amount of groundwater is 3 Mm3/year, so the ratio is around 50 %, but the majority is concentrated to Ronyva/Roňava river valley. In the southern part, the lateral flow from the recharge zone of Nyírség (app. 30 Mm3/year) provides sufficient water for the minimum water demand of ecosystems (8-12 Mm3/year) and for 8 Mm3/year of abstraction.
	In Hungary 10 significant point sources of pollution have been registered. The shallow groundwater has usually high nitrate under the settlements, because of the inappropriate handling of manure and the totally or partially missing sewer systems. The agriculture contributes to the pollution as well, through use of chemicals. The estimated amunt of surplus Nitrogen is 15 kgN/ha/year originated from the use of 88 kgN/ha/year fertilizer and 13 kgN/year manure.
	The groundwater quality in Slovakia is monitored in 17 sampling sites, groundwater samples are taken from the first aquifer 2 times per year). The Hungarian water quality monitoring is concentrating in the surrounding of waterworks. The quality of the Ronyva/Roňava aquifer close to the waterworks of Sátoraljaújhely shows increasing tendency of Nitrate pollution: the average concentration is around 30 mg/l, and in one production well the Nitrate-concentration exceeds the limit value of 50 mg/l. Information on pollution in arable lands is practically missing in this region.
	The high vulnerability of groundwater and the expected future development in water demand requires high level of protection in the Slovakian part of the region mainly oriented to measures focused on industrial pollution sources. In Hungary the protection zones of the waterworks (5%) need special attention.
Description of	Chemical Status
status assessment	<i>Slovakia:</i> The methodology for assessing chemical status followed the requirements of the Groundwater Directive (2006/118/EC) as well as the recommendations of the CIS Guidance
methodology.	Document no. 18 - Guidance on groundwater status and trend assessment. The assessment of the chemical status of GWB in the conditions of the Slovakia consisted of the following tests:
methodology.	Document no. 18 - Guidance on groundwater status and trend assessment. The assessment of the chemical status of GWB in the conditions of the Slovakia consisted of the following tests: 1. General quality assessment (GQA) test - years 2016-2017.
methodology.	 Document no. 18 - Guidance on groundwater status and trend assessment. The assessment of the chemical status of GWB in the conditions of the Slovakia consisted of the following tests: 1. General quality assessment (GQA) test - years 2016-2017. 2. Drinking water protected areas (DWPA) test - period 2008-2017.
methodology.	 Document no. 18 - Guidance on groundwater status and trend assessment. The assessment of the chemical status of GWB in the conditions of the Slovakia consisted of the following tests: General quality assessment (GQA) test - years 2016-2017. Drinking water protected areas (DWPA) test - period 2008-2017. Test of significant diminution of associated surface water chemistry and ecology due to transfer of pollutant from the GWB - named as Surface water test - period 2013-2018.
methodology.	 Document no. 18 - Guidance on groundwater status and trend assessment. The assessment of the chemical status of GWB in the conditions of the Slovakia consisted of the following tests: General quality assessment (GQA) test - years 2016-2017. Drinking water protected areas (DWPA) test - period 2008-2017. Test of significant diminution of associated surface water chemistry and ecology due to transfer of pollutant from the GWB - named as Surface water test - period 2013-2018. In the GQA test and the Surface water test, the procedure was based on a comparison of the arithmetic means of the concentration of the individual component with quality standards (QS) or thresholds values (TV) for each monitoring point. If no exceedances of the QS/TV were recorded in all monitoring points, the whole GWB was evaluated in good chemical status. If exceedances of QS/TVs were recorded than the methodologies were as follows:
methodology.	 Document no. 18 - Guidance on groundwater status and trend assessment. The assessment of the chemical status of GWB in the conditions of the Slovakia consisted of the following tests: General quality assessment (GQA) test - years 2016-2017. Drinking water protected areas (DWPA) test - period 2008-2017. Test of significant diminution of associated surface water chemistry and ecology due to transfer of pollutant from the GWB - named as Surface water test - period 2013-2018. In the GQA test and the Surface water test, the procedure was based on a comparison of the arithmetic means of the concentration of the individual component with quality standards (QS) or thresholds values (TV) for each monitoring point. If no exceedances of the QS/TV were recorded in all monitoring points, the whole GWB was evaluated in good chemical status. If exceedances of QS/TVs were recorded than the methodologies were as follows: In the GQA test, data aggregation to whole GWB was performed. If the calculated total area of exceedance of the QS/TV was less than 20% of the total area of the GWB was recorded and based on expert judgment, the GWB was evaluated in poor chemical status.
methodology.	 Document no. 18 - Guidance on groundwater status and trend assessment. The assessment of the chemical status of GWB in the conditions of the Slovakia consisted of the following tests: General quality assessment (GQA) test - years 2016-2017. Drinking water protected areas (DWPA) test - period 2008-2017. Test of significant diminution of associated surface water chemistry and ecology due to transfer of pollutant from the GWB - named as Surface water test - period 2013-2018. In the GQA test and the Surface water test, the procedure was based on a comparison of the arithmetic means of the concentration of the individual component with quality standards (QS) or thresholds values (TV) for each monitoring point. If no exceedances of the QS/TV were recorded in all monitoring points, the whole GWB was evaluated in good chemical status. If exceedances of QS/TVs were recorded than the methodologies were as follows: In the GQA test, data aggregation to whole GWB was performed. If the calculated total area of exceedance of the QS/TV was less than 20% of the total area of the GWB was recorded and based on expert judgment, the GWB was evaluated in goor chemical status. In the Surface water test, each GWB (with the relevant groundwater monitoring point) associated with the surface water body was assessed individually, taking into account the hydrological criterion, the hydrogeological criterion, the estimated load of pollutant from groundwater transferred to associated surface water could be more than 50% the GWB was
methodology.	 Document no. 18 - Guidance on groundwater status and trend assessment. The assessment of the chemical status of GWB in the conditions of the Slovakia consisted of the following tests: General quality assessment (GQA) test - years 2016-2017. Drinking water protected areas (DWPA) test - period 2008-2017. Test of significant diminution of associated surface water chemistry and ecology due to transfer of pollutant from the GWB - named as Surface water test - period 2013-2018. In the GQA test and the Surface water test, the procedure was based on a comparison of the arithmetic means of the concentration of the individual component with quality standards (QS) or thresholds values (TV) for each monitoring point. If no exceedances of the QS/TV were recorded in all monitoring points, the whole GWB was evaluated in good chemical status. If exceedances of QS/TVs were recorded than the methodologies were as follows: In the GQA test, data aggregation to whole GWB was performed. If the calculated total area of exceedance of the QS/TV was less than 20% of the total area of the GWB was recorded and based on expert judgment, the GWB was evaluated in poor chemical status. In the Surface water test, each GWB (with the relevant groundwater monitoring point) associated with the surface water body was assessed individually, taking into account the hydrological criterion, the hydrogeological criterion, the groundwater and surface water concentration (if data available) and that the estimated load of pollutant from groundwater transferred to associated surface water could be more than 50%, the GWB was evaluated in poor chemical status.
methodology.	 Document no. 18 - Guidance on groundwater status and trend assessment. The assessment of the chemical status of GWB in the conditions of the Slovakia consisted of the following tests: General quality assessment (GQA) test - years 2016-2017. Drinking water protected areas (DWPA) test - period 2008-2017. Test of significant diminution of associated surface water chemistry and ecology due to transfer of pollutant from the GWB - named as Surface water test - period 2013-2018. In the GQA test and the Surface water test, the procedure was based on a comparison of the arithmetic means of the concentration of the individual component with quality standards (QS) or thresholds values (TV) for each monitoring point. If no exceedances of the QS/TV were recorded in all monitoring points, the whole GWB was evaluated in good chemical status. If exceedances of QS/TVs were recorded than the methodologies were as follows: In the GQA test, data aggregation to whole GWB was performed. If the calculated total area of exceedance of the QS/TV was less than 20% of the total area of the GWB was recorded and based on expert judgment, the GWB was evaluated in poor chemical status. In the Surface water test, each GWB (with the relevant groundwater monitoring point) associated with the surface water body was assessed individually, taking into account the hydrological criterion, the hydrogeological criterion, the groundwater and surface water concentration profile, dilution (if data available) and that the estimated load of pollutant from groundwater transferred to associated surface water could be more than 50%, the GWB was evaluated in poor chemical status.

sustained upward trend in any drinking water abstraction points, the GWB was evaluated in good chemical status. If there was any significant and sustained upward trend in any parameter in any of drinking water abstraction point in the GWB, the methodology was as follows: the data aggregation to whole GWB was performed (kriging from 2 years mean). If the calculated total area of exceedance of the QS/TV was less than 20% of the total area of the GWB, the GWB was recorded in good status. If the exceedance more than 20% of the total area of the GWB was recorded and based on expert judgment, the GWB was evaluated in poor chemical status

Hungary: Assessment of the chemical status of groundwater was conducted: Analysing of the chemical data of individual monitoring points within each of the GWBs; Identifying of the pressures - sources of pollution; The background levels were calculated and used to determine threshold value. Threshold values have been determined according to CIS Guidance No. 18. Contamination limits have been determined for all indicators listed in Annex II Part B of Directive 2006/118/EC and indicators of the report under Art. 5 of Directive 2006/118/EC.

The following parameters were investigated:

- a) Natural Background Level was determined for the following components: nitrate, ammonium, specific conductivity, sulphate, chloride, arsenic, cadmium, lead, mercury, orthophosphate
- b) For each monitoring point the median concentration of each parameters of the studied period was compared to the thresholds values (determined for each GWB) or standards values (in the case of nitrates, metals and pesticides).
- c) Different tests were conducted to assess groundwater body status: Diffuse pollution test (nitrate, ammonium, orthophosphate), Drinking water supply tests for numerous elements or components in both drinking water wells and monitoring wells and trend analysis based on the data of the surveillance monitoring system. Studied components of these tests are: nitrate, ammonium, chloride, sulphate, specific conductivity, mercury, lead, cadmium, pesticides and organics, furthermore in the trend analysis pH and dissolved oxygen.
- *d)* Based on these tests, groundwater body was evaluated.

Quantitative Status

Hungary: To determine the overall quantitative status for a GWB, a series of tests should be applied that considers the impacts of anthropogenically induced long-term alterations in groundwater level and/or flow. Each test will assess whether the GWB is meeting the relevant environmental objectives. The quantitative status has been assessed taking into account CIS Guidance No.18. The following criteria have been used:

- <u>GW alteration (Drawdown) test</u>
- Water Balance test
- Surface Water Flow test
- Groundwater Dependent Terrestrial Ecosystems (GWDTE)
- Saline or other Intrusion test

Slovakia: Assessment of groundwater quantitative status consists of 4 tests:

	1. balance assessment of groundwater bodies for the period 2013-2017 and evaluation of the long-term trend of development of balance levels of groundwater bodies for the period 2004-2018
	2. evaluation of the existence of significant declining trends in the groundwater level and spring yield in groundwater bodies for the period 2007-2016 processed by aggregation of point results of groundwater quantity monitoring in the facilities of the state hydrological network of the SHMI
	<i>3.</i> assessment of the impact of groundwater quantity on the status of terrestrial ecosystems dependent on groundwater
	4. assessment of the impact of groundwater quantity on surface water
Groundwater	Receptors considered
threshold	Slovakia: Drinking water, Surface water
value relationships	Hungary: Drinking water

	Consideration of NBL and EQS (environmental quality standards, drinking water standards,
	surface water standards) in the TV establishment:
	Slovakia: The natural background level (NBL) was determined and used to derive the threshold value (TV). The TV were determined for all indicators listed in Part B of Annex II to Directive 2006/118/EC and in Directive 2014/80/EU. The TV for the inorganic substances were derived according to the formula: $TV = (NBL + DWS)/2$. The TV for organic compounds were derived using the formula: $TV = 0.75 * DWS$. These TV were used for GQA and DWPA tests.
	An updated list of the TV established for each GWB was published in the amended Regulation of the Government of the Slovakia no. 282/2010 Coll.
	For the Surface water test, the TV were derived as follows: $TV = CV = AF * EQS$ (surface water standard)/DF, where AF (Attenuation factor) and DF (Dilution factor) are equal to 1 (the worst case).
	For that GWB where the NBL was higher than the TV due to natural hydro-geological reasons, the TV was set up as $TV = NBL$.
	Hungary: EQS for herbicides and total pesticides, tri-, tetrachloroethylenes based on 201/2001. (X.25.) Gov. decree and the 6/2009. (IV.14.) KvVM-EüM-FVM common ministerial decree in correspondence to I. Annex of the 2006/118/EC directive.
	In Hungary, more than 95% of drinking water ensured from subsurface waters, so for all other components the DWS is applicable.
	For those GWBs where the NBL was higher than the DWS due to natural hydro-geological reasons, the TVs for ammonium, SO4 and EC were defined by taking into account these higher values, as described in Guidance Document No. 18.
Verbal description of the trend assessment methodology	 Slovakia: Trend is assessed separately for groundwater quality and quantity at which for trends in quantity the procedure applies for all GW quantity monitoring sites. The assessment follows a stepwise procedure. Consisting of the evaluation of the data sets and the monitoring points (no gaps in time series are allowed and data from 2007–2016 were used), consisting of the performance of the non-parametric Mann-Kendall trend test (95% confidence level) and comprising the regression analysis. GWBs with decreasing trends but with no evidence of abstraction are excluded from assessment in the 3rd RBMP. For assessing trends but with no evidence of abstraction are excluded from assessment in the 3rd RBMP. For assessing trends of pollutants in groundwater the evaluation period was 2007–2016. The results of surveillance and operational monitoring were applied for the assessment. Monitoring frequency depends on the GWB type. In the analysis the values <loq (anova)="" (regression="" *="" 0.75="" 2="" 2.="" 2026="" 5%="" 50%.="" <loq="" a="" also="" and="" applied="" are="" assessment="" by="" calculated="" distribution,="" evaluated="" evaluation.="" for="" higher="" identified="" if="" is="" last="" least="" less="" level="" li="" linear="" loqmax="" mann-kendall="" measured="" median="" method="" model="" non-parametric="" nonparametric="" normal="" number="" of="" only="" or="" over="" parametric="" performed="" pollutant.<="" predicted="" procedure)="" qs="" reached="" relevant="" replaced="" sen's="" series="" showing="" significance="" significant="" squares="" statistical="" test="" tested="" than="" the="" time="" to="" trend="" tv="" up="" upward="" value="" values="" was="" with="" years=""> Hungary: To assess the trend of pollutant concentrations, chemical data of the surveillance monitoring systems were used for the period of 2000 to 2012. The trend analysis was done using Matlab program package of Mann-Kendall method with fitted Sen slope. The steps used for trend assessment trend of all components for all monitoring objects were created<</loq>
	 using yearly average data and excluding time series with less than 4 data points. The trend of groundwater body level aggregates of yearly annual data were assessed as well
	us wen. Significant upward or downward trends were identified on 95% significance level using Mann- Kendall method with Sen's slope.

Verbal description of the trend reversal assessment methodology	f Slovakia: Trend rever series were included in trends at the level of r entering the evaluation evaluation period was time series into two se significance of the tree indicated if the follow the trends evaluated on the representing the result upward trend, which the basis of the results of	Slovakia: Trend reversal assessment methodology consists in the use of GWstat software. Time series were included in the assessment, on the basis of which significant sustained upward trends at the level of monitoring sites in the previous RBMP were classified. The time series entering the evaluation were supplemented by data monitored in previous years so that the evaluation period was 14 years. The evaluation was performed by dynamically dividing the time series into two sections with different lengths and then evaluating the statistical significance of the trends separately for each allocated section. A reversal of the trend was indicated if the following conditions were met at the same time: the statistical significance of the trend so full data forming the evaluated time series, the section representing the results of monitoring in the older period shows a statistically significant upward trend, which is followed by a statistically significant decreasing trend evaluated on the basis of monitoring in the newer period			at software. Time ined upward he time series rs so that the y dividing the tistical he trend was significance of gnificance of the section significant evaluated on the
	Hungary:				
Threshold va	alues per GWB				
	Pollutant / Indicator	TV (or range) [unit]	NBL (or range) [unit]	Level of TV establishment (national, RBD, GWB)	Related to risk in this GWB [yes/-]
HU	Nitrates	50 mg/l	1.2-12.8 mg/l	GWB	-
HU	Ammonium	2-5 mg/l	1.79-3.6 mg/l	GWB	Yes
HU	Conductivity	2500 µS/cm	1370-1483 µS/cm	GWB	-
HU	Sulfate	250 mg/l	42.2-191 mg/l	GWB	-
HU	Chloride	250 mg/l	135-214 mg/l	GWB	-
HU	Orthophosphate	1-2 mg/l	0.3-1.45 mg/l	GWB	
HU	Cadmium	5 μg/l	0.03-1 μg/l	national	-
HU	Lead	10 μg/l	3.5-4.36µg/l	national	-
HU	Mercury	1 μg/l	0.1-0.19 µg/l	national	-
HU	Trichlorethylene	10 µg/l		national	-
HU	Tetrachloro ethylene	10 µg/l		national	-
HU	Absorbed organic halogens AOX	20 µg/l		national	-
HU	Pesticides by components	0.1 µg/l		national	-
HU	Pesticides all	0.5 μg/l		national	-
SK	Ammonium	0.30 mg/l	0.09 mg/l	GWB	Yes
SK	Arsenic	6 µg/l	2 µg/l	GWB	-
SK	Benzene	0.8 µg/l	-	national	-
SK	Cadmium	3.0 µg/l	1 μg/l	GWB	-
SK	Chloride	147.4 mg/l	44.7 mg/l	GWB	-
SK	Chromium	<u>27 μg/l</u>	4 μg/l	GWB	-
SK	Copper	1004 μg/l	8 μg/l	GWB	-
SK	Iron total	0.150 mg/l	0.1 mg/l	GWB	-
	Leda	$9.0 \mu g/l$	$\delta \mu g/l$		-
	Manganese	0.030 mg/l	0.01 mg/l		-
	Nitratas	50 mg/l	$0.4 \mu g/l$	GWB	-
SK	Nitritos	0.26 mg/l	0.01 mg/l	GWB	
SK	Phosphates	0.20 mg/l	0.01 mg/l	GWB	Ves
SK	Sodium	1110 mg/l	22 mg/l	GWB	-
SK	Sulphates	167.4 mg/l	84.7 mg/l	GWB	-
SK	Tetrachloroethylen	7.5* µg/l	-	national	-
SK	Trichlorethylene	7.5* μg/l	-	national	-

* 7.5 for Tetrachloroethylene + Trichlorethylene

GWB-10: Slovensky kras / Aggtelek-hgs.

GWB-10		National share HU-10 SK-10	HU-10 SK-10	Status 2021 for each national GWB?	
				Chemical (substance)	Quantity
List of individua	List of individual GW-bodies		HU_AIQ485	Good	Good
forming the who	forming the whole national share		SK200480KF	Good	Good
(national code incl. country code)					
List of individua forming the who (national code in Description/C haracterisation of the ICPDR GW-body	ist of individual GW-bodies HU HU AlQ485 Good Good Good Orming the whole national share national code incl. country code) Belineation: see GWB-8 Description/C naracterisation The Aggetek Mountain and the Slovensky kras form a large common karstic aquifer syste the Eastern part of the countries. It is selected for presenting in the Danube-basin repo- important transboundary water body: (i) National Park covers the majority of its surface. w the role of the groundwater is presented by springs and stalactic caves. (ii) significant dri water resource in Slovakia, regionally important in Hungary (iii) vulnerable area requ protection. General description The Mgetek Mountain and the Slovensky kras form a large common karstic plateau and carnor valleys of water courses, separating different units. Hydrogeological units are very diff according to the character of permeability, character of groundwater sprinks. From thy geological point of view, the most important tectonic unit in the area is the Slicicum unit, m its Middle Triassic and Upper Triassic part. The most important aquifer here is the Middle Upper Triassic linestone and dolomites with kary-fissure type of permeability. Simi important hydrogeological units in the Hungarin side are Alschegy. Nagyoldal, Hasagistyd Galyadg, which contain the Aggetelek-Domica cave system. Tertiary busins act as a reg impermeable barrier for the groundwater accumulated in Triassic limestone. Groundwater circulation in these rocks is controlled by extreme heterogeneity of carbo rocks, following the tectonic development. These tectonic lay pre destinated drainage struct show the major influence on the directions of groundwater form. Majority of groundwater daiso less permeable. If on drai		Good Good Good Cood Cood Cood Cood Cood		
			tr, the actual use at naturally from the enough data iod of nearly 30 Il be planned on		
Description of status	Chemical Status:				

assessment methodology.	Slovakia: The methodology for assessing chemical status followed the requirements of the Groundwater Directive (2006/118/EC) as well as the recommendations of the CIS Guidance Document no. 18 - Guidance on groundwater status and trend assessment. The assessment of the chemical status of GWB in the conditions of the Slovakia consisted of the following tests:
	1. General quality assessment (GQA) test - years 2016-2017.
	2. Drinking water protected areas (DWPA) test - period 2008-2017.
	3. Test of significant diminution of associated surface water chemistry and ecology due to transfer of pollutant from the GWB - named as Surface water test - period 2013-2018.
	In the GQA test and the Surface water test, the procedure was based on a comparison of the arithmetic means of the concentration of the individual component with quality standards (QS) or thresholds values (TV) for each monitoring point. If no exceedances of the QS/TV were recorded in all monitoring points, the whole GWB was evaluated in good chemical status. If exceedances of QS/TVs were recorded than the methodologies were as follows:
	In the GQA test, data aggregation to whole GWB was performed. If the calculated total area of exceedance of the QS/TV was less than 20% of the total area of the GWB, the GWB was evaluated in good status. If the exceedance more than 20% of the total area of the GWB was recorded and based on expert judgment, the GWB was evaluated in poor chemical status.
	In the Surface water test, each GWB (with the relevant groundwater monitoring point) associated with the surface water body was assessed individually, taking into account the hydrological criterion, the hydrogeological criterion, the groundwater and surface water concentration profile, dilution (if data available) and that the estimated load of pollutant from groundwater transferred to associated surface water could be more than 50%, the GWB was evaluated in poor chemical status.
	In the DWPA test, the procedure was based on trend analysis (Mann-Kendal, linear regression, 10 years) of biological, chemical and radiological parameters of groundwater intended for human consumption before any level of treatment. If there was not a statistically significant and sustained upward trend in any drinking water abstraction points, the GWB was evaluated in good chemical status. If there was any significant and sustained upward trend in any parameter in any of drinking water abstraction point in the GWB, the methodology was as follows: the data aggregation to whole GWB was performed (kriging from 2 years mean). If the calculated total area of exceedance of the QS/TV was less than 20% of the total area of the GWB, the GWB was recorded and based on expert judgment, the GWB was evaluated in poor chemical status.
	Hungary: Assessment of the chemical status of groundwater was conducted: Analysing of the chemical data of individual monitoring points within each of the GWBs; Identifying of the pressures - sources of pollution; The background levels were calculated and used to determine threshold value. Threshold values have been determined according to CIS Guidance No. 18. Contamination limits have been determined for all indicators listed in Annex II Part B of Directive 2006/118/EC and indicators of the report under Art. 5 of Directive 2006/118/EC.
	The following parameters were investigated:
	a) Natural Background Level was determined for the following components: nitrate, ammonium, specific conductivity, sulphate, chloride, arsenic, cadmium, lead, mercury, orthophosphate
	b) For each monitoring point the median concentration of each parameters of the studied period was compared to the thresholds values (determined for each GWB) or standards values (in the case of nitrates, metals and pesticides).
	c) Different tests were conducted to assess groundwater body status: Diffuse pollution test (nitrate, ammonium, orthophosphate), Drinking water supply tests for numerous elements or components in both drinking water wells and monitoring wells and trend analysis based on the data of the surveillance monitoring system. Studied components of these tests are: nitrate, ammonium, chloride, sulphate, specific conductivity, mercury, lead, cadmium, pesticides and organics, furthermore in the trend analysis pH and dissolved oxygen.
	d) Based on these tests, groundwater body was evaluated.

E.

	 Hungary: To determine the overall quantitative status for a GWB, a series of tests should be applied that considers the impacts of anthropogenically induced long-term alterations in groundwater level and/or flow. Each test will assess whether the GWB is meeting the relevant environmental objectives. The quantitative status has been assessed taking into account CIS Guidance No.18. The following criteria have been used: <u>GW alteration (Drawdown) test</u> Water Balance test Surface Water Flow test Groundwater Dependent Terrestrial Ecosystems (GWDTE) Saline or other Intrusion test 				
	Slovakia: Assessment of groundwater quantitative status consists of 4 tests:				
	 balance assessment of groundwater bodies for the period 2013-2017 and evaluation of the long-term trend of development of balance levels of groundwater bodies for the period 2004-2018 				
	2. evaluation of the existence of significant declining trends in the groundwater level and spring yield in groundwater bodies for the period 2007-2016 processed by aggregation of point results of groundwater quantity monitoring in the facilities of the state hydrological network of the SHMI				
	3. assessment of the impact of groundwater quantity on the status of terrestrial ecosystems dependent on groundwater				
	4. assessment of the impact of groundwater quantity on surface water				
Groundwater	Receptors considered				
threshold	Slovakia: Drinking water, Surface water				
relationships	Hungary: Drinking water				
	<u>Consideration of NBL and EQS (environmental quality standards, drinking water standards, surface water standards) in the TV establishment:</u>				
	Slovakia: The natural background level (NBL) was determined and used to derive the threshold value (TV). The TV were determined for all indicators listed in Part B of Annex II to Directive 2006/118/EC and in Directive 2014/80/EU. The TV for the inorganic substances were derived according to the formula: $TV = (NBL + DWS)/2$. The TV for organic compounds were derived using the formula: $TV = 0.75 * DWS$. These TV were used for GOA and DWPA tests				
	An updated list of the TV established for each GWB was published in the amended Regulation of the Government of the Slovakia no. 282/2010 Coll.				
	For the Surface water test, the TV were derived as follows: $TV = CV = AF * EQS$ (surface water standard)/DF, where AF (Attenuation factor) and DF (Dilution factor) are equal to 1 (the worst case).				
	For that GWB where the NBL was higher than the TV due to natural hydro-geological reasons, the TV was set up as $TV = NBL$.				
	Hungary: EQS for herbicides and total pesticides, tri-, tetrachloroethylenes based on 201/2001. (X.25.) Gov. decree and the 6/2009. (IV.14.) KvVM-EüM-FVM common ministerial decree in correspondence to I. Annex of the 2006/118/EC directive.				
	In Hungary, more than 95% of drinking water ensured from subsurface waters, so the DWS is applicable. Exempt those cases, when the karstic and shallow GWBs are in direct relation to aquatic ecosystems (GWAAE), so here the EQS nitrate is applicable (25 mg/l) instead of 50 mg/l of DWS.				
	For other components the DWS is applicable.				
	For those GWBs where the NBL was higher than the DWS due to natural hydro-geological reasons, the TVs for ammonium, SO4 and EC were defined by taking into account these higher values, as described in Guidance Document No. 18.				
Verbal description of the trend	Slovakia: Trend is assessed separately for groundwater quality and quantity at which for trends in quantity the procedure applies for all GW quantity monitoring sites. The assessment follows a stepwise procedure. Consisting of the evaluation of the data sets and the monitoring points (no gaps in time series are allowed and data from 2007–2016 were used), consisting of				

 assessment methodology the performance of the non-parametric Mann-Kendall trend test (92 comprising the regression analysis. GWBs with decreasing trends be abstraction are excluded from assessment in the 3rd RBMP. For ass concentrations of pollutants in groundwater the evaluation period w of surveillance and operational monitoring were applied for the ass frequency depends on the GWB type. In the analysis the values <lo (anova)="" (regression="" *="" 0.75="" 2.="" 5%="" 75%="" a="" all="" also="" and="" assessment="" at="" by="" calculated="" concentr="" distribution,="" evaluated="" evaluation.="" for="" gwb="" higher="" identified="" if="" is="" least="" leve.="" level="" li="" loqmax="" mann-kendall="" meass="" median="" method="" model="" monitoring="" non-parametric="" normal="" number="" of="" only="" or="" parametric="" performed="" placed="" point="" points="" pollutant.<="" predicted="" qs="" r="" reaches="" relevant="" rend="" reversal="" sen's="" series="" showing="" significance="" significant="" squares="" starting="" statist="" statistically="" sustained="" test="" tested="" than="" the="" time="" times="" trend="" trends="" trends,="" tv="" tv.="" upward="" upwards="" value="" values="" was="" were="" where="" with=""> Hungary: To assess the trend of pollutant concentrations, chemican monitoring systems were used for the period of 2000 to 2012. The t using Matlab program package of Man-Kendall method with fitted for trend assessment were: During the assessment trend of all components for all monitoring yearly average data and excluding time series with l The trend of groundwater body level aggregates of yearly </lo>				ad test (95% confide g trends but with no P. For assessing tren a period was 2007–2 for the assessment. M clues <loq are="" rep<br="">aber of values <loq ance level was apple the statistical signi with 5% significance s, the statistically si ues measured over to value of the linear to or Sen's nonparame trends of pollutant of GWB level. concentration of th 12. The trend analy ith fitted Sen slope. r all monitoring obj ies with less than 4 of yearly annual dat</loq </loq>	nce level) and evidence of ads in 2016. The results Aonitoring laced by Q is less than ied for trend ficance of the re level. Than for ignificant upward the last 2 years rend up to 2026 tric procedure) concentrations e pollutant e surveillance sis was done The steps used iects were created datapoints. a were assessed	
		Significant upward Man-Kendall metho	or downward trend od with Sen's slope.	s were identified on	95 and 90% signifi	cance level using
Verbal description of the trend reversal assessment methodology <i>Slovakia: Trend rev</i> <i>series were included</i> <i>trends at the level of</i> <i>entering the evaluate</i> <i>evaluation period w</i> <i>time series into two</i> <i>significance of the t</i> <i>indicated if the follo</i> <i>the trends evaluated on</i> <i>representing the results of</i>			versal assessment m d in the assessment, f monitoring sites in tion were supplement vas 14 years. The ev sections with differ rends separately for wing conditions we d within individual s the basis of all data sults of monitoring i h is followed by a su of monitoring in the	ethodology consists on the basis of whi in the previous RBM inted by data monito aluation was perfor ent lengths and the reach allocated sec ere met at the same forming the evalua in the older period s tatistically significat newer period	s in the use of GWsta ch significant susta P were classified. T red in previous yea med by dynamicall n evaluating the stat tion. A reversal of t time: the statistical can the statistical sig ted time series, the shows a statistically nt decreasing trend	at software. Time ined upward The time series rs so that the y dividing the tistical the trend was significance of gnificance of the section significant evaluated on the
Threshold	l valu	es per GWB				
	Polli	utant / Indicator	TV (or range) [unit]	NBL (or range) [unit]	Level of TV establishment (national, RBD, GWB)	Related to risk in this GWB [yes/-]
HU	Nitre	ates	25 mg/l	8.6 mg/l	GWB	-
HU	Amn	ıonium	0.5 mg/l	0.26 mg/l	GWB	-
HU	Con	ductivity	2500 µS/cm	732 µS/cm	GWB	-
HU	Sulfa	ate	250 mg/l	123 mg/l	GWB	-
HU	Chlo	oride	250 mg/l	88 mg/l	GWB	-
HU	Orth	ophophate	0.25 mg/l	0.1 mg/l	GWB	
HU	Cadi	mium	$5 \mu g/l$	$0.02 \mu g/l$	national	-
HU	Lead		10 μg/l	0.7 μg/l	national	-

0.49 µg/l

national

national

-

-

1 μg/l

10 µg/l

HU

HU

Mercury

Trichlorethylene

HU	Tetrachloro ethylene	10 µg/l		national	-
HU	Absorbed organic	20 µg/l		national	-
	halogens AOX				
HU	Pesticides by	0.1 µg/l		national	-
	components				
HU	Pesticides all	0.5 μg/l		national	-
SK	Ammonium	0.27 mg/l	0.03 mg/l	GWB	-
SK	Arsenic	5.5 μg/l	1 μg/l	GWB	-
SK	Benzene	0.8 µg/l	-	national	-
SK	Cadmium	2.7 μg/l	$0.4 \mu g/l$	GWB	-
SK	Chloride	131.8 mg/l	13.5 mg/l	GWB	-
SK	Chromium	25 μg/l	0.4 µg/l	GWB	-
SK	Copper	1001 μg/l	1 μg/l	GWB	-
SK	Iron total	0.105 mg/l	0.01 mg/l	GWB	-
SK	Lead	5.5 μg/l	1 μg/l	GWB	-
SK	Manganese	0.027 mg/l	0.003 mg/l	GWB	-
SK	Mercury	0.6 µg/l	0.1 µg/l	GWB	-
SK	Nitrates	50 mg/l	16.7 mg/l	GWB	-
SK	Nitrites	0.26 mg/l	0.01 mg/l	GWB	-
SK	Phosphates	0.24 mg/l	0.07 mg/l	GWB	-
SK	Sodium	52.3 mg/l	4.6 mg/l	GWB	-
SK	Sulphates	167.6 mg/l	85.1 mg/l	GWB	-
SK	Tetrachloroethylen	$7.5* \mu g/l$	-	national	-
SK	Trichlorethylene	$7.5*\mu g/l$	-	national	-

* 7.5 for Tetrachloroethylene + Trichlorethylene

GWB-11: Komarnanska Kryha / Dunántúli-khgs. északi r.

GWB-11		National share	HU-11 SK-11	Status 2021 for each national GWB?	
				Chemical (substance)	Quantity
List of individua	l GW-bodies	HU	HU_AIQ558	Good	Good
forming the who	le national share	HU	HU_AIQ552	Good	Good
(national code in	cl. country code)	HU	HU_AIQ564	Good	Good
,	•	HU	HU_AIQ660	Good	Good
		SK	SK300010FK	Good	Good
		SK	SK300020FK	Good	Good
Description/C haracterisation of the ICPDR GW-body	Delineation: see G Reasons for selectin The Middle and Up the Transdanubian of the largest karstic for the population of supplying springs a resources in both co General description The karstic formatio of Upper-Triassic a due to the dense fis the faults. The elevel of the covering lay thickness (in some sand, clay, marl, sa	WB-8 mg as important transper-Triassic karstic of Mountain (Hungary, c aquifer systems in of the region in Hun of the region in Hun the deeper part ountries. to on of the northern part bolomite and limesto sure-system, while in the open karstic zon er is several hundre places it reaches ev ndstone, Eocene karst	asboundary GWB dolomite and limestone) and the Komarnansk Central Europe. It pro- ngary; it contributes t of the aquifer system art of the Transdanubic ne. The considerable in the limestone large j hes are separated by s and meters. Above the t en 2,500 m) consistin stic formation with bro	e formation of the tá Kryha (Slovakia vides good quality o the characterist is very importan an Mountains is co matrix porosity of fractures are char unken basins, whe thermal part it ex g of different typo own coal.	northern part of a) belong to one w drinking water ic landscape by t thermal water omposed mainly f the dolomite is eacteristic along ere the thickness ceeds 500 m of es of sediments:

The Slovakian part (the Komarno block) extends between Komarno and Sturovo. It is fringed by the Danube River in the South and by the E-W Hurbanovo fault in the North. The southern limit along the Danube is tectonic as well and therefore the Komarno block is a sunken tract of the northern slope of the Gerecse and Pilis Mountains. The Komarno block consists largely of Triassic dolomites and limestones up to 1,000 m in thickness. The surface of the pre-Tertiary substratum plunges towards the north from a depth of approximately 100 m near the River Danube to as much as 3,000 m near the Hurbanovo fault.

The karstic aquifer is divided into six water bodies. In Hungary, where the recharge area appears, two water bodies bearing cold waters have been delineated according to the flow system. The thermal water bodies (in Hungary waters with temperature more than 30 °C is considered as thermal, while in Slovakia the limit is 25°C: HU_kt.1.2, HU_kt.1.4, SK_300010FK and SK_300020FK are in close hydraulic connection with the cold ones. To be noted, that the missing continuation of the cold water bodies in the Slovakian part is mainly due to the different consideration of the limit of temperature. Taking into account hydro-geothermal aspects, the deep Slovakian karstic aquifer is divided into the Komarno high block (SK 300010FK) and the Komarno marginal block (SK300020FK).

The Danube River is the regional erosion base of the water bodies. The water level fluctuation is in strong relation with the water level changes in the river. The water bodies are hydraulically connected. It is valid at the border of the countries as well, i.e. under the Danube and the Ipoly/Ipel Rivers, making the abstractions of water in both countries highly interrelated.

The recharge area is in the Hungarian side and the total recharge is estimated at 60 Mm^3/y . Without abstraction this amount of water is discharged by the springs and by the upward flow towards the covering layer, and some part is infiltrating to the deeper, thermal part.

The temperature of the water abstracted (captured) from the Hungarian thermal water bodies does not exceed 60 °C. Heat-flow densities suggest that the Komarno high block can be characterised by a fairly low (thermal spring at Sturovo and Patince are 39 and 26 °C warm) and the marginal block by a medium geothermal activity (40–68 °C). Heat flow given in mW/m^2 is 50-60 in Komárno high block and 60–70 mW/m^2 in Komárno marginal block, both considered as low values.

Coefficient of transmissivity in the high block varies from 13 to $100 \text{ m}^2/d$, while in the marginal block between 4 to $20 \text{ m}^2/d$. Prognostic recoverable amount of thermal water in the high block is estimated at 12,000 m³/d water of 20 to 40° C warm. In the marginal block the abstracted thermal water should be re-injected after use.

Major pressures and impacts

In Hungary the actual abstractions are apr. 30 M m^3 /y from the cold part and 2 M m^3 /y from the thermal part. In Slovakia the thermal water abstraction is 0.6 M m^3 /y mainly in area Komárno-Patince-Štúrovo. The cold karstic water is used for drinking water, the thermal water for balneology (in Hungary and in Slovakia) and for energy production (in Slovakia). Disposal of used geothermal water is solved in Slovakia by discharge into surface water (River Danube and Váh) after dilution with groundwater on acceptable qualitative parameters.

Due to the mining activities in the 20^{th} century, the actual water levels - especially in the cold water bodies in the Hungarian side - are significantly lower than the long-term natural averages and as a consequence all cold and lukewarm karstic springs dried out. In the Slovak side the regime of geothermal water (decreasing discharges of wells) was also affected by the extensive pumping of karstic water from coal mines in Tatabánya and Dorog (Hungary). After the mining was stopped (in 1993), the water levels have been showing increasing trend and the gradual reappearance of the springs is forecasted in the coming 5–15 years.

The abandoned cuts and fields of mine submerged by the rising karstic water represent a potential pollution source. Water quality monitoring has been installed, but data are not sufficient for estimating future impacts.

In extremely vulnerable open karstic area a few settlements should be considered as potential source of pollution. Relatively a high number of significant pollution exists in the area (40). The majority is lying above the not vulnerable covered part. The average amount of Nitrogen fertilizer is 86 kgN/ha/year, the use of manure is insignificant (3 kgN/ha/year). The surplus Nitrogen from agriculture is 17 kgN/ha/year, but in the majority of the area the thick covering layers provide natural protection. (Localities in real danger should be assessed at smaller scale, focusing on open karstic zones).

Description of	Chemical Status				
status assessment methodology.	Hungary: Assessment of the chemical status of groundwater was conducted: Analysing of the chemical data of individual monitoring points within each of the GWBs; Identifying of the pressures - sources of pollution; The background levels were calculated and used to determine threshold value. Threshold values have been determined according to CIS Guidance No. 18. Contamination limits have been determined for all indicators listed in Annex II Part B of Directive 2006/118/EC and indicators of the report under Art. 5 of Directive 2006/118/EC.				
	The following parameters were investigated:				
	a) Natural Background Level was determined for the following components: nitrate, ammonium, specific conductivity, sulphate, chloride, arsenic, cadmium, lead, mercury, orthophosphate				
	b) For each monitoring point the median concentration of each parameters of the studied period was compared to the thresholds values (determined for each GWB) or standards values (in the case of nitrates, metals and pesticides).				
	c) Different tests were conducted to assess groundwater body status: Diffuse pollution test (nitrate, ammonium, orthophosphate), Drinking water supply tests for numerous elements or components in both drinking water wells and monitoring wells and trend analysis based on the data of the surveillance monitoring system. Studied components of these tests are: nitrate, ammonium, chloride, sulphate, specific conductivity, mercury, lead, cadmium, pesticides and organics, furthermore in the trend analysis pH and dissolved oxygen.				
	d) Based on these tests, groundwater body was evaluated.				
	Slovakia: An important factor in assessing the chemical status of geothermal waters, especially in terms of their use, is the stability of their chemical composition. The stability of the chemical composition for individual sources will be evaluated in those indicators that characterize the chemical type of water (Mineralization, Ca, Mg, Na, Cl, HCO ₃ , SO ₄). Another method is the evaluation of the development trend of the mentioned indicators in individual sources of the geothermal unit. The interquartile range (IQR) method was chosen to evaluate the chemical stability of geothermal water.				
	Good chemical status is if :				
	• the main indicators of the chemical type of water are between the lower and upper dispersion limits,				
	• the trend of development of components of the chemical type of water reaches the same course and individual deviations can be described from the source regime.				
	Quantitative Status				
	Hungary: To determine the overall quantitative status for a GWB, a series of tests should be applied that considers the impacts of anthropogenically induced long-term alterations in groundwater level and/or flow. Each test will assess whether the GWB is meeting the relevant environmental objectives. The quantitative status has been assessed taking into account CIS Guidance No.18. The following criteria have been used:				
	<u>GW alteration (Drawdown) test</u>				
	Water Balance test				
	Surface Water Flow test				
	Groundwater Dependent Terrestrial Ecosystems (GWDTE)				
	Saline or other Intrusion test				
	Slovakia: The assessment of the quantitative status of geothermal groundwater bodies consists of the balance assessment of individual bodies and the identification of sources for which a critical or emergency balance state occurred during the use of groundwater during the monitored period (2015-2017). For comparison, the state of balance in the period between the geothermal bodies, each will use the value of balance taking into account the state transformed usable amounts expressed in % (BST).				
	Good quantitative status is, if:				
	• the balance value of the BsT geothermal unit for the observed period may not exceed the value of 80%,				

		• the trend of development of BsT values <70% is not marked, for BsT> 70% we mark the trend with signs,					
		• in case of occurrence of sources with critical or emergency balance state $Bs \le 1,18$ - definition of causes.					
Groundwa	ter	Receptors considered	ed				
threshold		Hungary: Drinking	water standards				
value		Slovakia:					
relationshi	ps						
		Consideration of NBL and EQS (environmental quality standards, drinking water standards) in the TV establishment: <u>Hungary:</u> EQS for herbicides and total pesticides, tri-, tetrachloroethylenes based on 201/2001. (X.25.) Gov. decree and the 6/2009. (IV.14.) KvVM-EüM-FVM common ministerial decree in correspondence to I. Annex of the 2006/118/EC directive.					
		applicable. Exempt aquatic ecosystems mg/l of DWS.	those cases, when t (GWAAE), so here	g water ensured fro he karstic and shall the EQS nitrate is c	m subsurface waier low GWBs are in di applicable (25 mg/l)	s, so the DWS is rect relation to instead of 50	
		For other component	nts the DWS is appl	icable.			
		For those GWBs wh reasons, the TVs for values, as described	tere the NBL was hi r ammonium, SO4 a l in Guidance Docu	igher than the DWS and EC were defined ment No. 18.	due to natural hydi d by taking into acco	ro-geological ount these higher	
		<u>Slovakia:</u> The criterion for evaluating the chemical status of geothermal GWB is the stability of the chemical composition as was described above.					
Verbal description the trend assessmen	n of t	Hungary: To assess monitoring systems using Matlab progra for trend assessmen	s the trend of pollut were used for the p am package of Man t were:	the trend of pollutant concentrations, chemical data of the surveillance were used for the period of 2000 to 2012. The trend analysis was done in package of Mann-Kendall method with fitted Sen slope. The steps used were:			
methodolo	gy	• During the using year.	e assessment trend o ly average data and	of all components fo l excluding time ser	r all monitoring obj ies with less than 4	iects were created data points.	
		• The trend of as well.	of groundwater bod	y level aggregates o	of yearly annual dat	a were assessed	
		Significant upward Kendall method wit	or downward trend h Sen's slope.	s were identified on	n 95% significance l	evel using Mann-	
Varbal		Hungary	I I I I I I I I I I I I I I I I I I I				
description	ı of	Thungury. Slovakia					
the trend		Siovania.					
reversal							
assessmen	t						
	' <u>ву</u>						
Threshold	i valu	es per GWB	I	I	I	I	
					Level of TV		
			TV (or range)	NRI (or range)	establishment (national RRD	Related to risk	
	Poll	utant / Indicator	[unit]	[unit]	GWB)	[yes/-]	
HU	Nitrates		50-no TV mg/l	<1-9.8 mg/l	GWB	-	
HU	Ammonium		0.5-no TV mg/l	0.26-16.7 mg/l	GWB	-	
HU	Conductivity		2500-no TV	996-5097 µS/cm	GWB	-	
HU	Sulf	ate	μS/cm 250-no TV ma/l	124-266 mal	GWB		
HU	Chle	nc oride	250-no TV mg/l	35-627 mg/l	GWB	-	
HU	Orth	ophosphate	0.25-no TV mg/l	0.1 mg/l	GWB		
HU	Cad	mium	5-no TV μg/l	0.08-0.2 µg/l	national	-	
HU	Lead	1	10-no TV µg/l	2-3.42 μg/l	national	-	
HU	Mer	cury	1-no TV μg/l	0.21-0.5 μg/l	national	-	

HU	Trichlorethylene	10-no TV µg/l	national	-
HU	Tetrachloro ethylene	10-no TV µg/l	national	-
HU	Absorbed organic halogens AOX	20-no TV µg/l	national	-
HU	Pesticides by components	0.1-no TV µg/l	national	-
HU	Pesticides all	0.5-no TV µg/l	national	-

*: no TV for karst thermal GWB

GWB-12: Ipel /Ipoly

GWB-12		National share	HU-12 SK-12	Status 2021 for each national GWB?		
				Chemical (substance)	Quantity	
List of individua	al GW-bodies	HU	HUAIQ583	Good	Good	
forming the who (national code in	ble national share ncl. country code)	SK	SK1000800P	Poor (NO ₃ , SO ₄ , PO ₄)	Good	
Description/C	Delineation:					
haracterisation of the ICPDR GW-body	The Ipoly-valley is situated in the border of Slovakia and Hungary, east of Danube River. Its area is 145,8 km ² , the elevation varies between 290 m asl to 128 m asl. The middle Ipoly-valley has an east to west direction, while the lower Ipoly-valley is a north to south one. Left side of the river belongs to Hungary. The middle-Ipoly valley formed by several young refilling trenches, on the south is separated by a defined morphological barrier showing terrace-like river valley. Several river terraces forms the lower-Ipoly-valley between the Börzsöny and Helemba hills. Morphologically, it is a diverse pediment surface from the level of the river up					
	Reasons for selection	ng as important tran	sboundary GWB:			
	The surrounding ar are important local collaboration betwee transboundary GWL deposits of the Ipel'/ aquifer supplies dri 50,000 inhabitants upward flow system transpiration from g conservation. The r resource and the sta neighbouring count The Ipel'/ Ipoly Rive approximately 80km Hungary. More imp groundwater bodies General description The middle and the upper-Ipoly-valley, sediments. Below th hundred meters thick Pétervásárai sands	ea of this aquifer suf drinking water resou een SK and HU to de B is a key to maintain / Ipoly River extend of nking water to a pop in Hungary. On the H n, the terrestrial ecosy groundwater; 7% of echarge zone is in SI atus of the terrestrial vries. Both sides of th er had formed a 0-10 n of the river, which j portantly, hydraulic c s is anticipated (<u>http:</u> 1: lower part of the Ipo the maximum 10 men the maximum few tenti ck Oligocene schlier, tone, Kiscelli clay an ea of lower-Ipoly-val	fers from lack of water urces in Slovakia and J lineate the HU and SK a safe water supply in on both sides of the Hu ulation of approx. 170 Hungarian side, due to ystems (NATURA 2000 the area of the water b ovakia and Hungary th ecosystems depend of e GWBs have issues w meters thick alluvial of forms a natural bound connection between the y/www.all-in.sk/enwat hy-valley significantly ters thick soil covers th h meters thick Holocer sandstone, clay seque d Hárshegy sandstone lley below the few meter	r, while these grou Hungary. Therefo GWBs as commo sufficient quantition (GWBs as commo sufficient quantition (GWBs as commo (GWBs as commo (GWBs) as commo (G	In the area of andy gravel and y gravel and border. The and border. The and border. The and border. The and and and acter and plus and plus and plus and plus and plus and plus and plus and plus and plus and and plus and and plus and and and and and and and and and and	
	ciayly mart) covers The lower boundary	the magmatic tuffs (I y of the groundwater	body is formed by the	s) seatments. thick low permea	bility schlier	
	and sandstone form	ations, respectively t	hick clayly marl aquit	ard (Szilágyi clay	ly marl). In the	

	river terraces the Pleistocene fluvio- eolian sand and loess is a good water bearing strata,
	however the main aquifer is the few meters thick (4 m in average) Holocene fluvial sand and
	gravel along the river. The recharge of the upper part of the river is in Slovakia, while the
	middle and lower part of it is recharged both side of the river.
	The area of interest is delimited by the extent of the youngest alluvium of the river Ipoly/Ipel' and partially also of some of its tributaries. The alluvium lies on the impermeable clayey sediments of the Neogene filling of the Juhoslovenská and Podunajská panva basins in the Slovakian side. In the groundwater body there are mainly alluvial and terrestrial gravel, sandy gravel, sand, stratigraphic classification of Pleistocene - Holocene as collector rocks. In hydrogeological collectors of the formation, the inter-grain permeability prevails. The average range of the thickness of the guardrails is <10 m, the value of the filtration coefficient here is in the range of 1.10-4 to 1.10-3 m.s-1. The general direction of groundwater flow in the alluvial floodplain of the quaternary formation SK1000800P is more or less parallel to the course of the main flow. Intergranular groundwater body of Quaternary sediments of the Ipel' river is in the Hron watershed area. The evaluated area (agricultural land including arable land, grassland, pastures and permanent crops plantations) shares 86.69 % of total groundwater body area, rest of groundwater body area land cover is represented by forests, semi-natural land, surface water tables and artificial surfaces. Within the groundwater body area, evaluated area creates large and compact patterns which regularly cover whole area. In general, groundwater body shows lowered potential of soil regarding possible negative influence of surface contamination to groundwater.
	The main aquifer is the alluvial sediments of the river Ipoly/Ipel' and the connecting terraces. Their thickness is about 4-10 m, or more. The gravels and sands are covered with 1.5-4 m of clayey flood sediments. The changing thickness sometimes causes the occurrence of the confined groundwater. The gravels and sands have high transmissivity. The width of the river flood plain is about 1-2 km, but at some places it is of only tens of meters. Groundwater recharge occurs by infiltration of precipitations and infiltration of surface water at high water levels. The changing (decreasing) surface water level of the river has negative impact of the water supply possibilities Strong variability of groundwater chemical composition and quality is characteristic for the Ipel' region. Ca-Mg-HCO3 dominates in groundwater as the result of dissolution of carbonates and hydrolytical decomposition of silicate minerals. Groundwater qualitative properties in the region reflect either the natural character of the area or the addition of compounds due to anthropogenic activities.
	Major pressures and impacts
	Anthropogenic contamination of groundwater is mostly originated by agricultural activities and production of waste waters. It is mainly contamination of the uppermost groundwater horizons that occurs in the area. Deteriorated groundwater quality is mainly characterized by high contents of nitrates, chlorides, ammonia ions, phosphates or specific organic parameters (PAH, COD) and occasionally pesticides. Locally high pesticide concentrations (> 0.5 mg/l) are found in both surface water and in groundwater along the Ipoly/Ipel' valley. Pesticides in unsaturated soils can be released by erosion, which can be increased by climate change. Nitrates have also a substantial impact on the shallow parts (0-20 m) of the groundwater systems. In general, detected pesticide concentrations suggest that water quality can be considered to be at risk until further investigations will be made and the additional measures as defined by WFD, will be taken. Furthermore, besides the anthropogenic pressures the locally important drinking water resource has high natural sulphate content and electric conductivity. The whole GWB is highly sensitive to climatic changes
Description of	Chemical Status:
status assessment methodology.	Hungary: Assessment of the chemical status of groundwater was conducted: Analysing of the chemical data of individual monitoring points within each of the GWBs; Identifying of the pressures - sources of pollution; The background levels were calculated and used to determine threshold value. Threshold values have been determined according to CIS Guidance No. 18. Contamination limits have been determined for all indicators listed in Annex II Part B of Directive 2006/118/EC and indicators of the report under Art. 5 of Directive 2006/118/EC.
	The following parameters were investigated:
	a) Natural Background Level was determined for the following components: nitrate, ammonium, specific conductivity, sulphate, chloride, arsenic, cadmium, lead, mercury, orthophosphate

b) For each monitoring point the median concentration of each parameters of the studied period was compared to the thresholds values (determined for each GWB) or standards values (in the case of nitrates, metals and pesticides).
c) Different tests were conducted to assess groundwater body status: Diffuse pollution test (nitrate, ammonium, orthophosphate), Drinking water supply tests for numerous elements or components in both drinking water wells and monitoring wells and trend analysis based on the data of the surveillance monitoring system. Studied components of these tests are: nitrate, ammonium, chloride, sulphate, specific conductivity, mercury, lead, cadmium, pesticides and organics, furthermore in the trend analysis pH and dissolved oxygen.
d) Based on these tests, groundwater body was evaluated.
Slovakia: The methodology for assessing chemical status followed the requirements of the Groundwater Directive (2006/118/EC) as well as the recommendations of the CIS Guidance Document no. 18 - Guidance on groundwater status and trend assessment. The assessment of the chemical status of GWB in the conditions of the Slovakia consisted of the following tests:
1. General quality assessment (GQA) test - years 2016-2017.
2. Drinking water protected areas (DWPA) test - period 2008-2017.
3. Test of significant diminution of associated surface water chemistry and ecology due to transfer of pollutant from the GWB - named as Surface water test - period 2013-2018.
In the GQA test and the Surface water test, the procedure was based on a comparison of the arithmetic means of the concentration of the individual component with quality standards (QS) or thresholds values (TV) for each monitoring point. If no exceedances of the QS/TV were recorded in all monitoring points, the whole GWB was evaluated in good chemical status. If exceedances of QS/TVs were recorded than the methodologies were as follows:
In the GQA test, data aggregation to whole GWB was performed. If the calculated total area of exceedance of the QS/TV was less than 20% of the total area of the GWB, the GWB was evaluated in good status. If the exceedance more than 20% of the total area of the GWB was recorded and based on expert judgment, the GWB was evaluated in poor chemical status.
In the Surface water test, each GWB (with the relevant groundwater monitoring point) associated with the surface water body was assessed individually, taking into account the hydrological criterion, the hydrogeological criterion, the groundwater and surface water concentration profile, dilution (if data available) and that the estimated load of pollutant from groundwater transferred to associated surface water could be more than 50%, the GWB was evaluated in poor chemical status.
In the DWPA test, the procedure was based on trend analysis (Mann-Kendal, linear regression, 10 years) of biological, chemical and radiological parameters of groundwater intended for human consumption before any level of treatment. If there was not a statistically significant and sustained upward trend in any drinking water abstraction points, the GWB was evaluated in good chemical status. If there was any significant and sustained upward trend in any parameter in any of drinking water abstraction point in the GWB, the methodology was as follows: the data aggregation to whole GWB was performed (kriging from 2 years mean). If the calculated total area of exceedance of the QS/TV was less than 20% of the total area of the GWB, the GWB was recorded and based on expert judgment, the GWB was evaluated in poor chemical status
Quantitative Status:
Hungary: To determine the overall quantitative status for a GWB, a series of tests should be applied that considers the impacts of anthropogenically induced long-term alterations in groundwater level and/or flow. Each test will assess whether the GWB is meeting the relevant environmental objectives. The quantitative status has been assessed taking into account CIS Guidance No.18. The following criteria have been used:
<u>GW alteration (Drawdown) test</u>
Water Balance test
• Surface Water Flow test

- Groundwater Dependent Terrestrial Ecosystems (GWDTE)
- Saline or other Intrusion test

	Slovakia: Assessment of groundwater quantitative status consists of 4 tests:
	1. balance assessment of groundwater bodies for the period 2013-2017 and evaluation of the long-term trend of development of balance levels of groundwater bodies for the period 2004-2018
	2. evaluation of the existence of significant declining trends in the groundwater level and spring yield in groundwater bodies for the period 2007-2016 processed by aggregation of point results of groundwater quantity monitoring in the facilities of the
	state hydrological network of the SHMI
	<i>3.</i> assessment of the impact of groundwater quantity on the status of terrestrial ecosystems dependent on groundwater
	4. assessment of the impact of groundwater quantity on surface water
Groundwater	Receptors considered
value	Slovakia: Drinking water, Surface water
relationships	Hungary: Drinking water
	<u>Consideration of NBL and EQS (environmental quality standards, drinking water standards,</u> <u>surface water standards) in the TV establishment:</u>
	Slovakia: The natural background level (NBL) was determined and used to derive the threshold value (TV). The TV were determined for all indicators listed in Part B of Annex II to Directive 2006/118/EC and in Directive 2014/80/EU. The TV for the inorganic substances were derived according to the formula: $TV = (NBL + DWS)/2$. The TV for organic compounds were derived using the formula: $TV = 0.75 * DWS$. These TV were used for GQA and DWPA tests.
	An updated list of the TV established for each GWB was published in the amended Regulation of the Government of the Slovakia no. 282/2010 Coll.
	For the Surface water test, the TV were derived as follows: $TV = CV = AF * EQS$ (surface water standard)/DF, where AF (Attenuation factor) and DF (Dilution factor) are equal to 1 (the worst case).
	For that GWB where the NBL was higher than the TV due to natural hydro-geological reasons, the TV was set up as $TV = NBL$.
	Hungary: EQS for herbicides and total pesticides, tri-, tetrachloroethylenes based on 201/2001. (X.25.) Gov. decree and the 6/2009. (IV.14.) KvVM-EüM-FVM common ministerial decree in correspondence to I. Annex of the 2006/118/EC directive.
	In Hungary, more than 95% of drinking water ensured from subsurface waters, so for all other components the DWS is applicable.
	For those GWBs where the NBL was higher than the DWS due to natural hydro-geological reasons, the TVs for ammonium, SO4 and EC were defined by taking into account these higher values, as described in Guidance Document No. 18.
Verbal description of the trend assessment methodology	Slovakia: Trend is assessed separately for groundwater quality and quantity at which for trends in quantity the procedure applies for all GW quantity monitoring sites. The assessment follows a stepwise procedure. Consisting of the evaluation of the data sets and the monitoring points (no gaps in time series are allowed and data from 2007–2016 were used), consisting of the performance of the non-parametric Mann-Kendall trend test (95% confidence level) and comprising the regression analysis. GWBs with decreasing trends but with no evidence of abstraction are excluded from assessment in the 3 rd RBMP. For assessing trends in concentrations of pollutants in groundwater the evaluation period was 2007–2016. The results of surveillance and operational monitoring were applied for the assessment. Monitoring frequency depends on the GWB type. In the analysis the values <loq (anova)="" 2.="" 5%="" 50%.="" <loq="" a="" all="" also="" applied="" are="" assessment="" by="" distribution,="" evaluation.="" for="" if="" is="" less="" level="" level.="" loqmax="" mann-kendall="" method="" non-parametric="" normal="" number="" of="" only="" parametric="" performed="" replaced="" series="" showing="" significance="" significant="" statistical="" statistically="" td="" test="" tested="" than="" the="" time="" times="" trend="" trends,="" upwards="" upwards<="" values="" was="" with=""></loq>
	trend was evaluated and identified if the median of the values measured over the last 2 years was higher than 0.75 * QS/TV or the calculated predicted value of the linear trend up to 2026 (regression model calculated by the least squares method or Sen's nonparametric procedure)

		was higher than QS/TV. The significant sustained upward trends of pollutant concentrations were identified at the level of monitoring points and at the GWB level.						
		The starting point for trend reversal was placed where the concentration of the pollutant						
		reaches 75% of the QS/TV of the relevant pollutant.						
		Hungary : To assess the trend of pollutant concentrations, chemical data of the surveillance monitoring systems were used for the period of 2000 to 2012. The trend analysis was done using Matlab program package of Mann-Kendall method with fitted Sen slope. The steps used						
		• During the	e assessment trend o	of all components fo	er all monitoring obj	jects were created		
		• The trend	ny average aala and of groundwater bod	v level aggregates i	ies with tess than 4 of yearly annual day	ta were assessed		
		as well.	<i>y</i> groundwater bou	y ievei uggreguies (sj yeurry annuar aa	a were assessed		
		Significant upward Kendall method wit	or downward trend h Sen's slope.	s were identified on	n 95% significance l	evel using Mann-		
Verbal description the trend reversal assessmen methodolo	 Slovakia: Trend reversal assessment methodology consists in the use of GWstat software. Tin series were included in the assessment, on the basis of which significant sustained upward trends at the level of monitoring sites in the previous RBMP were classified. The time series entering the evaluation were supplemented by data monitored in previous years so that the evaluation period was 14 years. The evaluation was performed by dynamically dividing the time series into two sections with different lengths and then evaluating the statistical significance of the trends separately for each allocated section. A reversal of the trend was indicated if the following conditions were met at the same time: the statistical significance of the trends evaluated within individual sections is higher than the statistical significance of the trend by a statistically significant decreasing trend evaluated on the basis of all data forming the evaluated time series, the section representing the results of monitoring in the older period shows a statistically significant upward trend, which is followed by a statistically significant decreasing trend evaluated on t basis of the results of monitoring in the newer period. 					at software. Time ined upward The time series rs so that the y dividing the tistical the trend was significance of gnificance of the section t significant evaluated on the cutive time period		
Threshold	l valu	es per GWB						
	Pollutant / Indicator (unit) (unit) (unit) (unit) (unit)				Level of TV establishment (national, RBD, GWB)	Related to risk in this GWB [yes/-]		
HU	Nitre	ates	50-no TV mg/l	9.5 mg/l	GWB	-		
HU	Amn	ıonium	2.0-no TV mg/l	1.1 mg/l	GWB	-		
HU	Con	ductivity	2,500-no TV μS/cm	1,570 μS/cm	GWB	-		
HU	Sulp	hate	500-no TV mg/l	284 mg/l	GWB	-		
HU	Chlo	pride	250-no TV mg/l	119 mg/l	GWB	-		
HU	Orth	ophosphate	2.0 mg/l	0,91 mg/l	GWB			
HU	Cadi	mium	5-no TV µg/l	0.07 μg/l	national	-		
HU	Lead	l	10-no TV μg/l	0.293 μg/l	national	-		
HU	Mere	<i>1-no TV μg/l</i> 0.005 μg/l national -				-		
HU	Tric	hlorethylene	10-no TV μg/l		national	-		
HU	Tetre	achloro ethylene	10-no TV μg/l		national	-		
HU	Abso halo	orbed organic gens AOX	20-no TV µg/l		national	-		
HU	Pest com	icides by ponents	0.1-no TV µg/l		national	-		
HU	Pest	icides all	0.5-no TV µg/l		national	-		
SK	Amn	ıonium	0.9 mg/l	0.9 mg/l	GWB	-		
SK	Arse	nic	6 µg/l	2 μg/l	GWB	-		
SK	Benz	zene	0.8 µg/l	-	national	-		

Cadmium

Chloride

SK

SK

2.9 µg/l

135.7 mg/l

GWB

GWB

-

-

 $0.7 \,\mu g/l$

21.3 mg/l

Danube River Basin Management Plan Update 2021

SK	Chromium	26 µg/l	2 µg/l	GWB	-
SK	Copper	1003 μg/l	6 µg/l	GWB	-
SK	Iron total	0.150 mg/l	0.1 mg/l	GWB	-
SK	Lead	7.0 μg/l	5 μg/l	GWB	-
SK	Manganese	0.100 mg/l	0.1 mg/l	GWB	-
SK	Mercury	0.6 µg/l	0.1 μg/l	GWB	-
SK	Nitrates	50 mg/l	1.5 mg/l	GWB	Yes
SK	Nitrites	0.26 mg/l	0.02 mg/l	GWB	-
SK	Phosphates	0.24 mg/l	0.08 mg/l	GWB	Yes
SK	Sodium	119.8 mg/l	39.6 mg/l	GWB	-
SK	Sulphates	140.8 mg/l	31.6 mg/l	GWB	Yes
SK	Tetrachloroethylen	7.5* μg/l	-	national	-
SK	Trichlorethylene	7.5* μg/l	-	national	-

* 7.5 for Tetrachloroethylene + Trichlorethylene

Significant pressures on the ICPDR GW-bodies

Code of ICPDR GW-body				GWB-1		
National share of ICPDR GW-body (nationally aggregated part)				AT-1, DE-1		
	Status pressure types			Risk pressure types		
Significant Pressures for Groundwater	Chemical		021 Quantity	2019-72027 Chemical Quantity		antity
orginiteant resource for oroundwater	Yes/-		Yes/-	Yes/-	Yes/-	
	AT D)F	AT DF	AT DF	AT	DF
Point sources	-			•	711	
Leakages from contaminated sites						
Leakages from waste disposal sites (landfill and agricultural waste disposal)						
Leakages associated with oil industry infrastructure						
Mine water discharges						
Discharges to ground such as disposal of contaminated water to soak ways						
Other relevant point sources (specify below)						
Diffuse Sources	-			-		
due to agricultural activities						
due to non-sewered population						
Urban land use						
Other significant diffuse pressures (specify below)						
Water abstractions			-			-
Abstractions for agriculture						
Abstractions for public water supply						
Abstractions by industry						
IPPC activities						
Non-IPPC activities						
Abstractions by quarries/open cast coal sites						
Other major abstractions (specify below)						
Artificial recharge			-			-
Discharges to groundwater for artificial recharge purposes						
Returns of groundwater to GWB from which it was abstracted (e.g. for sand and gravel washing)						

Mine water rebound							
Other major recharges (specify below)							
Other significant pressures	-	-	-	-			
Saltwater intrusion							
Other intrusion (specify below)							
Description of other significant pressures than those selected above.							
Code of ICPDR GW-body			GWB-2				
---	----------	----------------	---------------------	----------	--	--	--
National share of ICPDR GW-body (nationally aggregated part)			BG-2, RO-2				
			-				
	Status p	oressure types	Risk pressure types				
Significant Pressures for Groundwater	Chemica	Quantity	Chemical	Quantity			
• 	Yes/-	Yes/-	Yes/-	Yes/-			
	BG R	O BG RO	BG RO	BG RO			
Point sources	-		-				
Leakages from contaminated sites							
Leakages from waste disposal sites (landfill and agricultural waste disposal)							
Leakages associated with oil industry infrastructure							
Mine water discharges							
Discharges to ground such as disposal of contaminated water to soak ways							
Other relevant point sources (specify below)							
Diffuse Sources	-		-				
due to agricultural activities							
due to non-sewered population							
Urban land use							
Other significant diffuse pressures (specify below)							
Water abstractions		-		-			
Abstractions for agriculture							
Abstractions for public water supply							
Abstractions by industry							
IPPC activities							
Non-IPPC activities							
Abstractions by quarries/open cast coal sites							
Other major abstractions (specify below)							
Artificial recharge		-		-			
Discharges to groundwater for artificial recharge purposes							
Returns of groundwater to GWB from which it was abstracted							
(e.g. for sand and gravel washing)							
Mine water rebound							
Other major recharges (specify below)							
Other significant pressures	-	-	-	-			
Saltwater intrusion							
Other Intrusion (specify below)							
Description of other significant pressures than							
those selected above.							

Code of ICPDR GW-body				GWB-3	
National share of ICPDR GW-body (nationally aggregated part)				MD-3, RO-	3
	-			•	
	Status	pres	ssure types	Risk pre	essure types
Significant Pressures for Groundwater	Chemica	∠∪∠ al	Quantity	Chemical	9 7 2027 Quantity
	Yes/-		Yes/-	Yes/-	Yes/-
	MD R	0	MD RO	MD RC) MD RO
Point sources	-			-	
Leakages from contaminated sites					
Leakages from waste disposal sites (landfill and agricultural waste disposal)					
Leakages associated with oil industry infrastructure					
Mine water discharges					
Discharges to ground such as disposal of contaminated water to soak ways					
Other relevant point sources (specify below)					
Diffuse Sources	-			-	
due to agricultural activities					
due to non-sewered population					
Urban land use					
Other significant diffuse pressures (specify below)					
Water abstractions			-	-	-
Abstractions for agriculture					
Abstractions for public water supply					
Abstractions by industry					
IPPC activities					
Non-IPPC activities					
Abstractions by quarries/open cast coal sites					
Other major abstractions (specify below)					
Artificial recharge			-		-
Discharges to groundwater for artificial recharge purposes					
Returns of groundwater to GWB from which it was abstracted					
(e.g. for sand and graver washing)					
Other major reported (anacify below)					
Other high recharges (specify below)					-
Saltwater intrusion	-		-	-	-
Other intrusion (specify helow)					
Description of other					
Description of other					
those selected above.					

Code of ICPDR GW-body					GWB	-4			
National share of ICPDR GW-body (nationally aggregated part)					BG-4	RO-4			
Status pressi			sure t	ypes	Ri	sk pres	sure ty∣ ≻2027	pes	
Significant Pressures for Groundwater	Che	zu mical	Qua	intity	Che	mical	≠2027 Quantity		
	Y	es/-	Ye	es/-	Ye	es/-	Yes/-		
	BG	RO	BG RO		BG	BG RO		RO	
Deleterer		poor				risk			
Point sources		-				•			
Leakages from contaminated sites									
Leakages from waste disposal sites (landfill and agricultural waste disposal)									
Leakages associated with oil industry infrastructure									
Mine water discharges									
Discharges to ground such as disposal of contaminated water to soak ways									
Other relevant point sources (specify below)									
Diffuse Sources	•	Yes			•	Yes			
due to agricultural activities		Х				Х			
due to non-sewered population		X				Х			
Urban land use									
Other significant diffuse pressures (specify below)									
Water abstractions		•		-				-	
Abstractions for agriculture									
Abstractions for public water supply									
Abstractions by industry									
IPPC activities									
Non-IPPC activities									
Abstractions by quarries/open cast coal sites									
Other major abstractions (specify below)									
Artificial recharge				-				-	
Discharges to groundwater for artificial recharge purposes									
Returns of groundwater to GWB from which it was abstracted									
(e.g. for sand and gravel washing)									
Mine water rebound									
Other major recharges (specify below)									
Other significant pressures		•		-		-		-	
Saltwater intrusion									
Other intrusion (specify below)									
Description of other									
Description of other significant pressures than									
those selected above.									

Code of ICPDR GW-body					GWB-	5			
National share of ICPDR GW-body (nationally aggregated part))				HU-5,	RO-5			
	Stat	tus pre	ssure ty	/pes	Risk pressure types				
Significant Dropouroo for Groundwater)21 0ua	ntitu	Cho	ZU19- mical	72027 Oua	ntity	
Significant Pressures for Groundwater	Ye	niicai 2s/-	Qua Ye	nury s/-	Ye	nicai			
	HU RO HU RO			HU	RO				
	poor	poor	poor		risk	risk	risk	110	
Point sources		-		<u>.</u>		-		<u>.</u>	
Leakages from contaminated sites									
Leakages from waste disposal sites (landfill and agricultural waste disposal)		-							
Leakages associated with oil industry infrastructure									
Mine water discharges									
Discharges to ground such as disposal of contaminated water to soak ways									
Other relevant point sources (specify below)									
Diffuse Sources	Yes	Yes			Yes	Yes			
due to agricultural activities	x	Х			x	X			
due to non-sewered population	x	Х			X	X			
Urban land use	x				X				
Other significant diffuse pressures (specify below)									
Water abstractions			Yes	-			Yes	-	
Abstractions for agriculture									
Abstractions for public water supply									
Abstractions by industry									
IPPC activities									
Non-IPPC activities									
Abstractions by quarries/open cast coal sites									
Other major abstractions (specify below)									
Artificial recharge				-				-	
Discharges to groundwater for artificial recharge purposes									
Returns of groundwater to GWB from which it was abstracted (e.g. for sand and gravel washing)									
Mine water rebound									
Other major recharges (specify below)									
Other significant pressures		-		-		-		-	
Saltwater intrusion									
Other intrusion (specify below)									
Description of other HU: indirect water abstraction significant pressures than those selected above.	n: inland	d exces	s water	drainag	je				

Code of ICPDR GW-body				GWB-6			
National share of ICPDR GW-body (nationally aggregated part)				HU-6, RO-6			
	Status	pre	essure types	Risk pres	sure typ	es	
Similiant Dragourge for Crownductor	Chami	2	021	2019-	→2027		
Significant Pressures for Groundwater			Quantity Yes/-		Qua Ye	ntity s/-	
	HU	RO	HU BO	HU RO	HU RO		
Point sources	-			-		110	
Leakages from contaminated sites							
Leakages from waste disposal sites (landfill and agricultural							
waste disposal)							
Leakages associated with oil industry infrastructure							
Mine water discharges							
Discharges to ground such as disposal of contaminated water to soak ways							
Other relevant point sources (specify below)							
Diffuse Sources	-			-			
due to agricultural activities							
due to non-sewered population							
Urban land use							
Other significant diffuse pressures (specify below)							
Water abstractions			-		-	-	
Abstractions for agriculture							
Abstractions for public water supply							
Abstractions by industry							
IPPC activities							
Non-IPPC activities							
Abstractions by quarries/open cast coal sites							
Other major abstractions (specify below)			_				
Artificial recharge			-		•		
Discharges to groundwater for artificial recharge purposes							
Returns of groundwater to GWB from which it was abstracted							
(e.g. for sand and gravel washing)							
Mine water rebound							
Other major recharges (specify below)							
	-		-	-	•		
Other intrusion (specify below)							
				<u> </u>			
Description of other							
significant pressures than those selected above							

Code of ICPDR GW-body						GWE	8-7					
National share of ICPDR GW-body (nationally aggregated part)							HU-7	', RC)-7, F	RS-7		
Status pre			pres	sure t	ype	S	Risk pressure types					S
Significant Pressures for Groundwater	Chemical Quantity					Chemical Quantit				lity		
	Yes/- Yes/-			`	∕es/·	-		Yes/	-			
	HU poor	RO	RS	HU poor	RO	RS poor	HU risk	RO	RS	HU risk	RO	RS risk
Point sources		-	-					-	-			
Leakages from contaminated sites												
Leakages from waste disposal sites (landfill and agricultural waste disposal)												
Leakages associated with oil industry infrastructure												
Mine water discharges												
Discharges to ground such as disposal of contaminated water to soak ways												
Other relevant point sources (specify below)												
Diffuse Sources	Yes	-	-				Yes	-	-			
due to agricultural activities	Х						х					
due to non-sewered population	Х						х					
Urban land use	Х						х					
Other significant diffuse pressures (specify below)						-					-	
Water abstractions				Yes	-	Yes				Yes	-	Yes
Abstractions for agriculture				X		X				x		X
Abstractions for public water supply				X		X				x		X
Abstractions by industry						X						X
IPPC activities												
Non-IPPC activities												
Abstractions by quarries/open cast coal sites												
Other major abstractions (specify below)												
Artificial recharge					-						-	
Discharges to groundwater for artificial recharge purposes												
Returns of groundwater to GWB from which it was												
abstracted (e.g. for sand and gravel washing)												
Mine water rebound												
Other major recharges (specify below)												
Other significant pressures		-			-			-			-	
Saltwater intrusion												
Other intrusion (specify below)												
Description of other												
significant pressures than those selected above.												

Code of ICPDR GW-body					GWB-	8				
National share of ICPDR GW-bc	dy (nationally aggregated part)					HU-8,	SK-8			
		•	4			Disk				
		Sta	tus pre 21	ssure t 021	ypes	Ris	sk pressure types			
Significant Pressures for Grou	Indwater	Che	mical		antity	Che	nical	Quantity		
		Y	Yes/- Yes/-			Ye	es/-	Yes/-		
		HU	SK	HU	SK	HU	SK	HU	SK	
							risk			
Point sources			-			-	Yes			
Leakages from contaminated site	es						X			
Leakages from waste disposal s waste disposal)	ites (landfill and agricultural									
Leakages associated with oil ind	ustry infrastructure									
Mine water discharges										
Discharges to ground such as di to soak ways	sposal of contaminated water									
Other relevant point sources (sp	ecify below)						Х			
Diffuse Sources			-				Yes			
due to agricultural activities							Х			
due to non-sewered population							Х			
Urban land use										
Other significant diffuse pressure	es (specify below)									
Water abstractions					-					
Abstractions for agriculture									-	
Abstractions for public water sur	nlv									
Abstractions by industry	(P1)									
IPPC activities										
Non-IPPC activities										
Abstractions by guarries/open ca	ast coal sites									
Other major abstractions (specif	v below)									
Artificial recharge	/ /								-	
Discharges to groundwater for a	rtificial recharge purposes									
Returns of groundwater to GWB (e.g. for sand and gravel washin	from which it was abstracted									
Mine water rebound										
Other major recharges (specify b	pelow)									
Other significant pressures	1		-				-		-	
Saltwater intrusion										
Other intrusion (specify below)										
Description of other significant pressures than those selected above.	SK: discharges from wastewa	ter trea	itment p	plant (in	direct pr	ressure)	I			

Code of ICPDR GW-body					GWB-	9		
National share of ICPDR GW-body (nationally aggregated part))				HU-9,	SK-9		
	Stat	tus pre	ssure ty	pes	Ris	k pres	sure ty	pes
	0	20	21		0	2019-	>2027	
Significant Pressures for Groundwater		micai	Qua	ntity		nicai	Quantity	
		-\c		5/- CK		5/- CL		
		noor	noor	SN	risk	risk	risk	SN
Point sources	-	Yes	μοσι		HON	TION	Hon	
Leakages from contaminated sites		x						
Leakages from waste disposal sites (landfill and agricultural waste disposal)		X						
Leakages associated with oil industry infrastructure								
Mine water discharges								
Discharges to ground such as disposal of contaminated water to soak ways								
Other relevant point sources (specify below)		Х						
Diffuse Sources	-	Yes			Yes	Yes		
due to agricultural activities					Х	Х		
due to non-sewered population		Х			X			
Urban land use								
Other significant diffuse pressures (specify below)								-
Water abstractions			Yes	-			Yes	-
Abstractions for agriculture								
Abstractions for public water supply								
Abstractions by industry								
IPPC activities								
Non-IPPC activities								
Abstractions by quarries/open cast coal sites								
Other major abstractions (specify below)								
Artificial recharge				-			•	-
Discharges to groundwater for artificial recharge purposes								
Returns of groundwater to GWB from which it was abstracted								
(e.g. for sand and gravel washing)								
Mine water rebound								
Other major recharges (specify below)								
Other significant pressures		•		•		-	•	•
Saltwater intrusion								
Other Intrusion (specify below)								
Description of other SK: discharges from wastewa	ter trea	tment p	lant (ind	direct pr	ressure)			
Significant pressures than HU: indirect water abstraction	: inland	excess	water o	drainag	е			
those selected above.								

Code of ICPDR GW-body						GWB-	-10				
National share of ICPDR GW-bc	dy (nationally aggregated part)						HU-10), SK-1	0		
		Sta	tus p	ores	sure t	ypes	Risk pressure types				
Significant Pressures for Grou	Indwator	Cho	mics	20 51	21 	ntity	2019→2027 Chamical Quan			ntitu	
Significant Fressures for Grot	muwater		es/-	21	Qua Ye	es/-			Yes/-		
		HU	S	K	HU	SK	HU	SK	Н	SK	
						Un	risk	on		risk	
Point sources			-			:	Yes	-			
Leakages from contaminated site	es										
Leakages from waste disposal s waste disposal)	ites (landfill and agricultural										
Leakages associated with oil ind	ustry infrastructure										
Mine water discharges											
Discharges to ground such as di to soak ways	sposal of contaminated water										
Other relevant point sources (sp	ecify below)						Х				
Diffuse Sources			-				-	-			
due to agricultural activities											
due to non-sewered population											
Urban land use											
Other significant diffuse pressure	es (specify below)									_	
Water abstractions						-				Yes	
Abstractions for agriculture										X	
Abstractions for public water sup	ply									Х	
Abstractions by industry										Х	
IPPC activities											
Non-IPPC activities											
Abstractions by quarries/open ca	ast coal sites										
Other major abstractions (specif	y below)										
Artificial recharge											
Discharges to groundwater for a	rtificial recharge purposes										
Returns of groundwater to GWB	from which it was abstracted										
(e.g. for sand and gravel washin	g)										
Mine water rebound											
Other major recharges (specify t	pelow)										
Other significant pressures			-			-		-		•	
Other Intrusion (specity below)											
Description of other significant pressures than those selected above.	HU: unknown pollution source	e, monit	oring	g re	quired						

Code of ICPDR GW-body			GWB-11	
National share of ICPDR GW-body (nationally aggregated part)			HU-11, SK-1	1
	Status p	oressure types	Risk press	sure types
Significant Pressures for Groundwater	Chemica	2021 I Quantity	2019- Chemical	72027 Quantity
	Yes/-	Yes/-	Yes/-	Yes/-
	HU SI	K HU SK	HU SK	HU SK
Point sources	-		-	
Leakages from contaminated sites				
Leakages from waste disposal sites (landfill and agricultural waste disposal)				
Leakages associated with oil industry infrastructure				
Mine water discharges				
Discharges to ground such as disposal of contaminated water				
to soak ways				
Other relevant point sources (specify below)				
Diffuse Sources	-		-	
due to agricultural activities				
due to non-sewered population				
Urban land use				
Other significant diffuse pressures (specify below)				
Water abstractions		-		-
Abstractions for agriculture				
Abstractions for public water supply				
Abstractions by industry				
IPPC activities				
Non-IPPC activities				
Abstractions by quarries/open cast coal sites				
Other major abstractions (specify below)				
Artificial recharge		-		-
Discharges to groundwater for artificial recharge purposes				
(e.g. for sand and gravel washing)				
Mine water rebound				
Other major recharges (specify below)				
Other significant pressures	-	-		-
Saltwater intrusion				
Other intrusion (specify below)				
	I	I	I	<u> </u>
Description of other				
significant pressures than those selected above.				
those selected above.				

Code of ICPDR GW-body					GWB	-12			
National share of ICPDR GW-bo	dy (nationally aggregated part)					HU-12	2, SK-12	2	
		Status pressure types			Risk pressure types				
Significant Pressures for Grou	ndwater	Chemical Quantity			Che	mical	72027 Quantity		
		Ye	es/-	Y	es/-	Ye	es/-	Yes/-	
		HU	SK	HU	SK	HU	SK	HU	SK
			poor				risk		
Point sources			-				-		
Leakages from contaminated site	es estatution est								
Leakages from waste disposal si waste disposal)	tes (landfill and agricultural								
Leakages associated with oil ind	ustry infrastructure								
Mine water discharges									
Discharges to ground such as di to soak ways	sposal of contaminated water								
Other relevant point sources (spe	ecify below)								
Diffuse Sources			Yes				Yes		
due to agricultural activities			Х				Х		
due to non-sewered population			Х						
Urban land use									
Other significant diffuse pressure	es (specify below)		х						
Water abstractions									-
Abstractions for agriculture					-				
Abstractions for public water sup	nly								
Abstractions by industry	ріу								
IPPC activities									
Non-IPPC activities									
Abstractions by guarries/open ca	ist roal sites								
Other major abstractions (specify	v helow)								
Artificial recharge									
Discharges to groundwater for a	tificial recharge purposes								
Returns of groundwater to GWB	from which it was abstracted								
(e.g. for sand and gravel washing	g)								
Mine water rebound	- /								
Other major recharges (specify b	elow)								
Other significant pressures			-		-		-		-
Saltwater intrusion									
Other intrusion (specify below)									
Description of other significant pressures than those selected above.	SK: other anthropogenic press	sure - u	inknow	'n					

Groundwater measures

The overview table indicates the status of implementation of all key measures in the following way:

MC	Measure implementation Completed by end of 2020
	Implementation of measure is estimated to be completed by the end of 2020
МО	Measure implementation On-going after the end of 2020
	(Involving administrative acts, diffuse pollution, advisory services, research etc.)
РО	Construction Planning On-going after the end of 2020
	Planning of construction measure is on-going.
	(Involving construction or building works)
СО	Construction On-going after the end of 2020
	Construction of measure is on-going.
	(Involving construction or building works)
MP	Measure implementation Not Started by the end of 2020
	Implementation of measure is planned
MN	Measure implementation Not Started by the end of 2020

The detailed tables provide more details on particular measures in each relevant GWB:

- description of the measure,
- responsible authority,
- quantitative information by appropriate indicators (number of measures/projects and costs).

GWBs at poor status in 2021 or at risk in 2027 and the implemented measures

DRBD-GWB	3	GWB-4		GWB-5			GWB-7		GWB-8	GW	'B-9	GW	/B-10	GWB- 12
National par	rt	RO-4	RO-5	HL	J-5	H	J-7	RS-7	SK-8	HU-9 SK-9		HU-10	SK-10	SK-12
Poor status	(Chem or Quant)	Chem	Chem	Chem	Quant	Chem	Quant	Quant	-	- Quant Chem			-	Chem
Risk (Chem	or Quant)	Chem	Chem	Chem	Quant	Chem	Quant	Quant	Chem	Chem Quant	Chem	Chem	Quant	Chem
Basic Meas	ures (BM) – Article 11(3)(a)													
BM-01	BathingWater													
BM-02	Birds													
BM-03	DrinkingWater	MO	MO						MO					
BM-04	Seveso													
BM-05	EnvironmentalImpact													
BM-06	SewageSludge													
BM-07	UrbanWasteWater	CO	CO	MO		MO			CO	MO	CO			
BM-08	PlantProtectionProducts			MO		MO			MO		MN			MO
BM-09	Nitrates	MO	MO	MO		MO			MO	MO	MN			MO
BM-10	Habitats													
BM-11	IPPC													
Other Basic	: Measures (OBM) – Article 11(3)(b-l)													
OBM-20	CostRecoveryWaterServices													
OBM-21	EfficientWaterUse													
OBM-22	ProtectionWaterAbstractions			MP		MP						MN		
OBM-23	ControlsWaterAbstraction				MP		MP			MP			MN	
OBM-24	RechargeAugmentationGroundwater													
OBM-25	PointSourceDischarge													
OBM-26	PollutantsDiffuse			MP		MP								
OBM-27	AdverseImpact													
OBM-28	PollutantDirectGroundwater													
OBM-29	SurfacePrioritySubstances													
OBM-30	AccidentalPollution													
Supplemen 11(4)&(5)	ntary Measures (SM) – Article	MO	MO	MP	MP	MP	MP		MO	MP	MN	MN		МО

MC...Measure implementation completed by end of 2020, MO...Measure implementation on-going after the end of 2020, PO...Construction planning on-going after the end of 2020, MN...Measure implementation not started by end 2020, MP...Measure implementation not started by end 2020, implementation not started by end 2020, MP...Measure implementation not started by end 2020, implementation not started by end 2020, MP...Measure implementation not started by end 2020, implementation not started by end 2020, MP...Measure implementation not started by end 2020, implementation not started by end 2020, MP...Measure implementation not started by end 2020, implementation not started by end 2020,

Detailed description of measures

[**BM** = basic measures, **OBM** = other basic measures, **SM** = supplementary measures].

GWB-4: Sarmatian

	C!	Press	ures	Statu	s/Risk	Mea	isures			
GWB Code	Size [km ²]	Chemical	Quantit y	Chemical	Quantity	Chemical	Quantity	Exemptions		
GWB-4 BG-RO	5,412	DS	-	Poor, Risk (RO)	Good	BM, SM	-	2027		
MC - Measu	re imple	ementation o	completed	by the end o	of 2020					
MO - Measu <u>RO - Chemi</u> BM-03 Ensu • description	 MO - Measure implementation on-going after the end of 2020 <u>RO - Chemical:</u> BM-03 Ensuring the protection areas for the drinking groundwater abstraction (MO) description of the measure: establishment of safeguard zones and buffer zones ensuring the protected area according to the water legislation in force (Water Law 107/1996 modified and completed GD 930/2005 and 									
Order 1278 water conta	8/2011); aminatio	banning me n risk/	asures for	some activit	ies and restr	ricted use of	land, in order	to prevent the		
• responsibl	e author	rity: water au	uthorities,	local authori	ties;					
• quantitative drinking grad the water re-	ve inform roundwa esources	mation: acco ter abstractio contamination	ording with ons are estation.	h the Water ablishing the	Law 107/19 safeguard zo	96 as amend ones and buf	ed and GD 93 fer zones, in o	30/2005, for all order to prevent		
BM-09 Appl (MO)	ying the	Action Prog	grams (wh	nole territor	y approach)	in accordai	nce to the Niti	rates Directive		
In Romania, f 221983/GC/1 the protection	following 2.06.201 1 of wate	g the discussi 13 of the Inte rs against po	ions with th r-ministeri llution cau	he EC, whole al Commissi used by nitrat	e territory ap ion for the ir es from agrid	proach is app nplementatic cultural source	blied according on of the Action ces.	g with Decision on Programs for		
• description reduce the	n of the effects o	measure – pof the agricult	programme ture activit	of measures	s applied for	the agricultu	re diffuse sou	rces in order to		
• responsib	le autho	ority: county	agriculture	e authorities,	local author	ities and farr	ners			
• quantitati Water Basi	ve infor in Admii	mation by a nistration term	ppropriat ritory.	e indicators	: This meas	ure is applie	d in whole Do	obrogea-Litoral		
SM - Resear transfer/deg	ch study radatior	r for evaluati 1 mechanism	ion of the t is (MO)	type and qua	antity of pol	lutants in so	il and ground	lwater and the		
• description pollutants and of the	n of the migratio pollutant	e measure : o n – the supp t trends.	levelopme ort tool for	nt of modell r finalising t	ling tools fo he evaluatio	or the evalua n methodolo	tion of spatia gy of the grou	l and temporal indwater status		
• responsibl Waters", N	e autho Iational I	rity : Ministr Institute for H	y of Envir Hydrology	onment, Wa and Water N	ters and For Ianagement.	ests, Nationa	ıl Administrat	ion "Romanian		
• quantitativ	ve infor	mation by aj	ppropriate	e indicators:	research stu	ıdy				
PO - Constru	uction m	ieasure plan	ning on-g	oing after th	e end of 202	20				
CO - Constr RO – Chemi	uction o cal:	f measure of	n-going af	ter the end o	of 2020					
BM – 07 Cor	nstructio	on of collecti	ng system	(CO)						
description	n of the	measure – e	xecution o	f the new sev	wage networ	ks				

• responsible authority: local authority

- **quantitative information** construction of collecting systems and improvement of the waste water treatment plant performance
- MN Measure implementation not started by the end of 2020

GWB-5: Mures/Maros

	Size	Press	ures	Status/Risk Measures		F					
GWB Code	[km²]	Chemical	Quantity	Chemical	Quantity	Chemical	Quantity	Exemptions			
GWB-5 HU-RO	7,216	DS	WA	Poor, Risk (RO, HU)	Poor, Risk (HU)	BM, OBM, SM	OBM, SM	2027+ (HU) 2027 (RO)			
MC - Measure	MC - Measure implementation completed by the end of 2020										
MO - Measure	impleme	entation on-g	oing after t	he end of 202	20						
<u>RO – Chemica</u>	<u>RO – Chemical:</u>										
BM-03 Ensuring the protection areas for the drinking groundwater abstraction (MO)											
 description of the measure: establishment of safeguard zones and buffer zones ensuring the protected area according to the water legislation in force (Water Law 107/1996 modified and completed, GD 930/2005 and Order 1278/2011); banning measures for some activities and restricted use of land, in order to prevent the water contamination risk/ 											
• responsible	authori	ty: water auth	orities, local	authorities;							
quantitative groundwater contamination	• quantitative information: according with the Water Law 107/1996 as amended and GD 930/2005, for all drinking groundwater abstractions are establishing the safeguard zones and buffer zones, in order to prevent the water resources contamination.										
BM-09 Applyir	BM-09 Applying the Action Programs (whole territory approach) in accordance to the Nitrates Directive (MO)										
In Romania, 1 221983/GC/12 of waters again	following .06.2013 ist pollutio	the discussion of the Inter-mit	ons with th nisterial Con nitrates from	ne EC, whole mmission for t	e territory ap he implement sources.	proach is ap ation of the Ao	plied according	g with Decision for the protection			
description effects of the	of the m	easure – prog ure activities	gramme of r	neasures app	lied for the ag	riculture diffus	se sources in or	der to reduce the			
responsible	e authori	i ty: county agi	riculture aut	horities, local	authorities and	d farmers					
• quantitative Administratio	e informa on territor	ition by appr y.	opriate indi	i cators: This	measure is ap	oplied in whole	e Dobrogea-Litt	oral Water Basin			
SM - Researd transfer/degra	ch study	for evaluati nechanisms (on of the MO)	type and qu	antity of pol	llutants in s	oil and groun	dwater and the			
• description migration – t	of the in the suppo	measure: dev ort tool for final	velopment of ising the eva	of modelling taluation metho	ools for the e	evaluation of groundwater s	spatial and ter status and of the	nporal pollutants pollutants pollutant trends.			
 responsible National Inst 	e authori	i ty : Ministry of Hydrology and	of Environm Water Man	ent, Waters a agement.	and Forests,	National Adm	ninistration "Ro	manian Waters",			
• quantitative	e informa	tion by appro	opriate indi	cators: resea	rch study						
<u>HU – Chemica</u>	<u>d:</u>										
BM-07											
 description 	of the m	easure: BM0	7								
responsible	authori	ty: local gover	nments								
• quantitative	e informa	tion by appro	opriate indi	cators (numb	per of measur	es/projects a	ind costs):				

HU transposed the Urban Waste Water Directive by Gov. decree 25/2002. (II. 27.) on the National Wastewater Collection and Treatment program. The implementation of UWWD is ongoing. In the South Great Plain Region the rate of the settlements connected to the sewage system was 71,9 % in 2019.

BM-08

- description of the measure: BM08
- responsible authority: plant protection authority
- quantitative information by appropriate indicators (number of measures/projects and costs):

Implementation of EU the plant protection action program required by Sustainable Use of Pesticides Directive in the territory of the whole country with special regard to sensitive areas like drinking water protection zones, buffer strips of surface waters, etc. with additional voluntary measures planned under CAP 2021-27.

BM-09

- description of the measure: BM09
- responsible authority: authorities for soil protection and for water protection
- quantitative information by appropriate indicators (number of measures/projects and costs):

HU transposed the ND by the Gov. Decree No. 27/2006. (II.7.) on the protection of waters against pollution caused by nitrates of agricultural sources. Designation of nitrate vulnerable zones was revised in 2013 (NVZ; ~69% of Hungary). The Code of Good Agricultural Practice (GAP) is obligatory on NVZ's. Outside the NVZ's, the agri environmental measures assist the implementation of GAP on a voluntary basis.

RO – Quantity:

OBM-23

- description of the measure In Romania, the measures (basic and other basic measures) are taken for all groundwater bodies (even if they are in good status), to prevent deterioration of groundwater bodies status but also taking into consideration the precautionary principle.
- responsible authority: water authorities, local authorities
- quantitative information by appropriate indicators: according with the Water Law 107/1996, Annex 3 (C) as amended, the groundwater abstraction shall be authorized and controlled, and the water abstraction register is regularly update.

HU - Quantity:

SM: measure for the inland excess water retention

OBM-23: development of water information system concerning the electronic-authorisation; New regulation on water management elaborated to take action against the installation and use of illegal agricultural water wells.

PO - Construction measure planning on-going after the end of 2020

CO - Construction of measure on-going after the end of 2020

RO – Chemical:

BM-07 Construction of collecting system (CO)

- description of the measure execution of the new sewage networks
- responsible authority: local authority
- quantitative information construction of collecting systems and improvement of the waste water treatment plant performance
- •

MN - Measure implementation not started by the end of 2020

HU – Chemical:

OBM-22

- description of the measure: OBM22 protection of water abstractions
- responsible authority: authorities for water protection and water management

• quantitative information by appropriate indicators (number of measures/projects and costs):

The protection of drinking water abstraction sites is regulated by 123/1997. (VII. 18.) Gov. Decree, acc. to which protection zones of sensitive abstraction sites have to be revised every 10 years. Revision includes i. a. the review of potential pollution sources and activities in the protection zones and their impacts on water quality and taking restrictive measures or additional monitoring if necessary. In addition to the implementation of the risk-based approach in the protection zones of drinking water abstraction acc. to the new Drinking Water Directive, other basic measures to support water protective agricultural practices, e. g. forestation, special practices for areas prone to erosion, excess water or droughts, will be introduced and subsidised by CAP 2021-27.

OBM-26

- description of the measure: OBM26 poll. diffuse
- responsible authority: authorities for soil protection and for water protection
- quantitative information by appropriate indicators (number of measures/projects and costs):

New compulsory and voluntary measures to reduce erosion and prevent nutrient (esp. phosphorus) inputs into waters in CAP 2021-27 are under elaboration.

SM - Supplementary Measures

- description of the measure: SM education
- responsible authority: Ministry of Agriculture, farmers' advisors
- quantitative information by appropriate indicators (number of measures/projects and costs):

Expand farmers' advisory system and introduce consultation for farmers on water protecting agricultural practices in the fields of sustainable nutrient and pesticide management, water saving cultivation practices, irrigation, natural water retention, erosion to assist to a successful application and use of CAP subsidies, both compulsory and voluntary.

- description of the measure: SM research, development kiegészítő intézkedés
- responsible authority: Ministry of Interior, Ministry of Agriculture
- quantitative information by appropriate indicators (number of measures/projects and costs):

The request "Strengthening water monitoring in Hungary" (21HU07) for support under the first round of the Technical Support Instrument (TSI 2021) has been preliminarily accepted for funding by DG Reform. The project aims at ensuring high-quality monitoring and processing of water related information, integration of monitoring activity of the aquatic environment (soil, ecosystem, water, air) between sectors and organizations and closing the gap between research to practical application. (Planned budget: 650 000€, expected end: 2022)

WB-r. opper ramonan – Lower riestocene / Vojvodina / Duna-risza köze den r.									
CWP Code	Size	Pressures		Status	s/Risk	Меа	Evenations		
GWD Code	[km²]	Chemical	Quantity	Chemical	Quantity	Chemical	Quantity	Exemptions	
GWB-7 HU-RO-RS	28,959	DS	WA	Poor, Risk (HU)	Poor, Risk (HU, RS*)	BM, OBM, SM	OBM, SM	2027+ (HU) YYYY (RS*)	
MC - Measure HU - Quantity SM: measures OBM-23: deve management e	impleme from the elopment elaborated	ntation comp CAP in order to of water info to take actior	to protect the rmation system against the	e end of 2020 e groundwate stem concerni e installation a	r resources (C ing the electr nd use of illeg	CAP planning i onic-authorisa al agricultural	s ongoing) ation; New regu water wells.	ulation on water	
MO - Measure	impleme	ntation on-g	oing after tl	he end of 202	0				

GWB-7: Upper Pannonian – Lower Pleistocene / Vojvodina / Duna-Tisza köze deli r.

HU – Chemistry

BM-07

- description of the measure: BM07
- responsible authority: local governments
- quantitative information by appropriate indicators (number of measures/projects and costs):

HU transposed the Urban Waste Water Directive by Gov. decree 25/2002. (II. 27.) on the National Wastewater Collection and Treatment program. The implementation of UWWD is ongoing. In the South Great Plain Region the rate of the settlements connected to the sewage system was 71,9 % in 2019.

BM-08

- description of the measure: BM08
- responsible authority: plant protection authority
- quantitative information by appropriate indicators (number of measures/projects and costs):

Implementation of EU the plant protection action program required by Sustainable Use of Pesticides Directive in the territory of the whole country with special regard to sensitive areas like drinking water protection zones, buffer strips of surface waters, etc. with additional voluntary measures planned under CAP 2021-27.

BM-09

- description of the measure: BM09
- · responsible authority: authorities for soil protection and for water protection
- quantitative information by appropriate indicators (number of measures/projects and costs):

HU transposed the ND by the Gov. Decree No. 27/2006. (II.7.) on the protection of waters against pollution caused by nitrates of agricultural sources. Designation of nitrate vulnerable zones was revised in 2013 (NVZ; ~69% of Hungary). The Code of Good Agricultural Practice (GAP) is obligatory on NVZ's. Outside the NVZ's, the agri environmental measures assist the implementation of GAP on a voluntary basis.

PO - Construction measure planning on-going after the end of 2020

CO - Construction of measure on-going after the end of 2020

MN - Measure implementation not started by the end of 2020

HU – Chemistry

OBM-22

- description of the measure: OBM22 protection of water abstractions
- · responsible authority: authorities for water protection and water management
- quantitative information by appropriate indicators (number of measures/projects and costs):

The protection of drinking water abstraction sites is regulated by 123/1997. (VII. 18.) Gov. Decree, acc. to which protection zones of sensitive abstraction sites have to be revised every 10 years. Revision includes i. a. the review of potential pollution sources and activities in the protection zones and their impacts on water quality and taking restrictive measures or additional monitoring if necessary. In addition to the implementation of the risk-based approach in the protection zones of drinking water abstraction acc. to the new Drinking Water Directive, other basic measures to support water protective agricultural practices, e. g. forestation, special practices for areas prone to erosion, excess water or droughts, will be introduced and subsidised by CAP 2021-27.

OBM-26

- description of the measure: OBM26 poll. diffuse
- responsible authority: authorities for soil protection and for water protection
- quantitative information by appropriate indicators (number of measures/projects and costs):

New compulsory and voluntary measures to reduce erosion and prevent nutrient (esp. phosphorus) inputs into waters in CAP 2021-27 are under elaboration.

SM - Supplementary Measures

- description of the measure: SM education
- responsible authority: Ministry of Agriculture, farmers' advisors
- quantitative information by appropriate indicators (number of measures/projects and costs):

Expand farmers' advisory system and introduce consultation for farmers on water protecting agricultural practices in the fields of sustainable nutrient and pesticide management, water saving cultivation practices, irrigation, natural water retention, erosion to assist to a successful application and use of CAP subsidies, both compulsory and voluntary.

- description of the measure: SM research, development
- responsible authority: Ministry of Interior, Ministry of Agriculture
- quantitative information by appropriate indicators (number of measures/projects and costs):

The request "Strengthening water monitoring in Hungary" (21HU07) for support under the first round of the Technical Support Instrument (TSI 2021) has been preliminarily accepted for funding by DG Reform. The project aims at ensuring high-quality monitoring and processing of water related information, integration of monitoring activity of the aquatic environment (soil, ecosystem, water, air) between sectors and organizations and closing the gap between research to practical application. (Planned budget: 650 000€, expected end: 2022)

Note

* The National Plan for the Republic of Serbia is still in progress (available as draft), therefore, the year for exemptions as well as information on measures for the national part of GWB 7 which is in quantitative risk cannot be provided before the deadline of data collection of this overview. The information will be provided, when the Plan is officially adopted.

	najska d		JS110V / 32	пуетког, па	iisay-nabua	1		
	Size	Press	ures	Statu	s/Risk	Меа	Evenntione	
GWB Code	[km²]	Chemical	Quantity	Chemical	Quantity	Chemical	Quantity	Exemptions
GWB-8 HU-SK	3,338	PS, DS		Risk (SK)	Good	BM, SM		
MC - Measure	impleme	entation comp	pleted by th	e end of 202	0			
MO - Measure	impleme	entation on-g	oing after tl	he end of 202	20			
<u> SK – Chemica</u>	<u>al</u>							
BM-03 Drinkiı	ng water j	protected are	as (DWPA)					
 description the quality of 	of the m of drinking	easure: Reco water source	nsider the sa s.	afeguard zone	and restrictio	ons in the DWF	PA, if they are su	ifficient to protect
 responsible Republic 	e authori	ty: Slovak En	vironmental	Inspection, N	linistry of Agr	iculture and R	tural Developme	ent of the Slovak
 quantitativ 	e informa	tion by appro	opriate indi	cators: DWP/	A Žitný ostrov	(area 1200 kr	m²)	
BM-08 Plant p	protection	products						
 description and Counci of this Direct apply meas of the EU P 	a of the main of the main of the main of the main of the second s	easure: Conti 2009/128/EC national Law a rning the plac and of the Co	nue to meet concerning and National ing of plant uncil.	the requirement the reduction action progra protection pro	ents arising fro of pesticides amme to achie ducts on the r	om the implem pollution from eve sustainabl market accord	entation of Euro agriculture and le use of pestici ing to Regulatio	ppean Parliament d implementation des. Continue to n No. 1107/2009
 responsible of the Slove 	e authorit Ik Republi	: y: Central Co c	ntrol and Te	sting Institute	in Agriculture,	Ministry of Ag	riculture and Ru	ıral Development

quantitative information by appropriate indicators:

BM-09 Nitrates Directive

- description of the measure: Continuing in application of requirements of the Council Directive 91/676/EEC concerning the protection of waters against pollution caused by nitrates from agricultural sources (Nitrates Directive). The Nitrates Directive requires the fulfilment of the task of the Action Programme, which is established in the SR by Act no. 136/2000 Coll. on fertilizers.
- **responsible authority:** Ministry of Agriculture and Rural Development of the Slovak Republic, Central Control and Testing Institute in Agriculture
- quantitative information by appropriate indicators: This measure is applied in groundwater body's vulnerable areas (1694 km²) according to Government Regulation no. 174/2017 Coll. (will be revised in 2021/2022).

SM - Supplementary Measures

- Remediation of contaminated sites continuing in remediation and monitoring of environmental burdens at priority sites listed in the Informational System of Environmental Burdens according to the State Remediation Programme of Environmental Burdens (2022–2027).
- Continuing in application of measures according to Rural Development Programme for SR (2014–2020) extended to 2022, when the new Common Agricultural Policy (CAP) enters into force. The measures include the advisory services for agriculture, support for organic farming, managed agricultural and forestry activities in NATURA 2000 areas, etc.
- Research, improvement of knowledge base reducing uncertainty support of research project, support of purpose monitoring to increase information about groundwater contamination and sources of contamination.
- Strengthening control activities (personnel ad financial) including increasing the number of controls.
- Education and training in the field of water protection for the professional and public (including school).

PO - Construction measure planning on-going after the end of 2020

CO - Construction of measure on-going after the end of 2020

SK – Chemical

BM-07 Measures to reduce pollution from urban areas

- description of the measure: Construction or upgrades of sewerage systems and wastewater treatment plants according
 to Plan of Public Sewerage System Development for years 2021 2027. Measures for sewerage systems (collecting
 systems for urban waste water) to comply article 3 of Council Directive 91/271/EEC and measures for urban waste water
 treatment to comply with article 4 and article 5 of Council Directive 91/271/EEC in ground water bodies.
- responsible authority: Ministry of Environment of the Slovak Republic
- quantitative information by appropriate indicators: measures for agglomerations >2000 PE: sewerage systems in 5 agglomerations and 3 WWTP need to be (re)constructed or upgraded; measures in DWPA Žitný ostrov for agglomerations <2000 PE: 41 agglomerations sewerage systems and 5 agglomerations sewerage systems and WWTP.

GWB-9: Bodrog

	Size	Pressures		Status/Risk		Measures		Evenetiene		
GWB Code	[km²]	Chemical	Quantity	Chemical	Quantity	Chemical	Quantity	Exemptions		
GWB-9 HU-SK	2,220	DS		Poor (SK), Risk (HU, SK)	Poor, Risk (HU)	BM, SM	SM, OBM	2027+		
MC - Measure	MC - Measure implementation completed by the end of 2020									
MO - Measure	IO - Measure implementation on-going after the end of 2020									
<u>HU – Chemica</u> BM-07	<u>10 – Chemical</u> 3M-07									
 description 	description of the measure: BM07									
 responsible 	 responsible authority: local governments 									
• quantitative	e informa	tion by appro	opriate indi	cators (numb	er of measur	es/projects a	ind costs):			
HU transposed and Treatment	the Urba program.	an Waste Wat The impleme	er Directive ntation of U	by Gov. decr WWD is ongo	ee 25/2002.(ing.	II. 27.) on the	National Waste	ewater Collection		
BM-09										
 description 	of the m	easure: BM0	9							
 responsible 	e authorit	y: authorities	for soil prote	ection and for	water protect	on				
 quantitative 	e informa	tion by appro	opriate indi	cators (numb	er of measur	es/projects a	ind costs):			
HU transposed	I the ND b	by the Gov. De	ecree No. 27	7/2006. (II.7.) (on the protect	ion of waters a	against pollution	caused by		
nitrates of agric		ources. Design	nation of nitra	ate vulnerable	e zones was re	evised in 2013	3 (NVZ; ~69% of	Hungary). The		
assist the imple	ementatio	n of GAP on a	a voluntary b	atory on NVZ: basis.	s. Outside the	NVZ S, the aç	gri environmenta	armeasures		
HU – Quantity	<u>/:</u>									
SM: measure f	or the inla	and excess wa	ater retentior	ו						
OBM-23: deve management e	lopment c laborated	of water inform I to take actior	nation syster n against the	m concerning e installation a	the electronic nd use of illeg	-authorisation al agricultural	; New regulatior water wells.	n on water		
PO - Construc	ction mea	sure plannin	g on-going	after the end	l of 2020					
CO - Construc	ction of m	neasure on-g	oing after tl	he end of 202	20					
<u>SK – Chemica</u>	<u>ul</u>	· ·								
BM-07 Measu	res to red	luce pollution	n from urba	n areas						
description to Plan of F systems for treatment to	o f the m Public Sev urban wa comply w	easure: Cons werage Syste ste water) to c vith article 4 a	truction or u m Developr comply articl nd article 5 d	pgrades of se nent for year e 3 of Council of Council Dire	werage syste s 2021–2027 Directive 91/2 ective 91/271/	ms and waste Measures fo 271/EEC and EEC in ground	water treatment or sewerage sys measures for un d water bodies.	plants according stems (collecting ban waste water		
• responsible	e authorit	y: Ministry of	Environmen	t of the Slova	k Republic					
quantitative need to be (e informa re)constru	tion by appro ucted or upgra	opriate indic aded	cators: sewer	age networks	in 2 agglome	rations (>2000 F	PE) and 1 WWTP		
MN - Measure	impleme	ntation not s	tarted by th	ne end of 202	0					
<u>SK – Chemica</u>	<u>1</u>									
BM-08 Plant p	rotection	products								
description and Council	of the me Directive	easure: Conti 2009/128/EC	nue to meet concerning	the requirement the reduction	ents arising fro	om the implem pollution from	entation of Euro	pean Parliament d implementation		

of this Directive into national Law and National action programme to achieve sustainable use of pesticides. Continue to apply measure concerning the placing of plant protection products on the market according to Regulation No. 1107/2009 of the EU Parliament and of the Council.

- **responsible authority:** Central Control and Testing Institute in Agriculture, Ministry of Agriculture and Rural Development of the Slovak Republic
- quantitative information by appropriate indicators:

BM-09 Nitrates Directive

- description of the measure: Continuing in application of requirements of the Council Directive 91/676/EEC concerning
 the protection of waters against pollution caused by nitrates from agricultural sources (Nitrates Directive). The Nitrates
 Directive requires the fulfilment of the task of the Action Programme, which is established in the SR by Act no. 136/2000
 Coll. on fertilizers.
- **responsible authority:** Ministry of Agriculture and Rural Development of the Slovak Republic, Central Control and Testing Institute in Agriculture
- quantitative information by appropriate indicators: This measure is applied in groundwater body's vulnerable areas (1293 km²) according to Government Regulation no. 174/2017Coll. (will be revised in 2021/2022).

SM - Supplementary Measures

- Remediation of contaminated sites continuing in remediation and monitoring of environmental burdens at priority sites listed in the Informational System of Environmental Burdens according to the State Remediation Programme of Environmental Burdens (2022 - 2027).
- Continuing in application of measures according to Rural Development Programme for SR (2014 -2020) extended to 2022, when the new Common Agricultural Policy (CAP) enters into force. The measures include the advisory services for agriculture, support for organic farming, managed agricultural and forestry activities in NATURA 2000 areas, etc.
- Research, improvement of knowledge base reducing uncertainty support of research project, support of purpose monitoring to increase information about groundwater contamination and sources of contamination.
- Strengthening control activities (personnel ad financial) including increasing the number of controls.
- Education and training in the field of water protection for the professional and public (including school).

GWB-10: Slovensky kras /Aggtelek-hsg

	Size	Press	ures	Statu	s/Risk	Measures					
GWB Code	[km²]	Chemical	Quantity	Chemical	Quantity	Chemical	Quantity	Exemptions			
GWB-10 HU-SK	1,091	PS	WA	Risk (HU)	Risk (SK)	OBM, SM	OBM	-			
MC - Measure	<i>I</i> C - Measure implementation completed by the end of 2020										
MO - Measure	impleme	entation on-g	oing after t	he end of 202	20						
PO - Construction measure planning on-going after the end of 2020											
CO - Construe	CO - Construction of measure on-going after the end of 2020										
MN – Measure	e implem	entation not	started by t	he end of 202	20						
HU - Chemica	<u>I</u>										
• description	of the m	easure: OBM	122 - protec	tion of water a	hstractions						
 responsible 	e authori	tv: authorities	for water pr	otection and v	vater manage	ment					
quantitative	e informa	tion by appro	opriate indi	cators (numb	per of measu	res/proiects a	ind costs):				
zones of sensi sources and ac monitoring if ne abstraction acc e. g. forestation CAP 2021-27.	tive abstractivities in ecessary. c. to the non- n, special	the protection In addition to the w Drinking W practices for a	ve to be revi a zones and the impleme /ater Directiv areas prone	their impacts of their impacts of ntation of the r ve, other basic to erosion, ex	years. Revision on water quali risk-based app or measures to cess water or	on includes i. a ty and taking r proach in the p support water droughts, will	a the review of p estrictive measurotection zones protective agric be introduced a	ootential pollution ures or additiona of drinking water cultural practices ind subsidised by			
SM											
 description 	of the m	easure: SM -	- research, c	levelopment							
responsible	e authori	ty: Ministry of	Interior, Min	istry of Agricu	lture		• • • •				
quantitative The request "S Instrument (TS monitoring and ecosystem, wa (Planned budg	 quantitative information by appropriate indicators (number of measures/projects and costs): The request "Strengthening water monitoring in Hungary" (21HU07) for support under the first round of the Technical Support Instrument (TSI 2021) has been preliminarily accepted for funding by DG Reform. The project aims at ensuring high-quality monitoring and processing of water related information, integration of monitoring activity of the aquatic environment (soil, accessive, water, air) between sectors and organizations and closing the gap between research to practical application. (Planned budget: 650 000€, expected end: 2022) 										
<u>SK – Quantity</u> OBM-3 Contro	<u>/</u> ols of Wa	terAbstractio	ons								
description national Act	of the r	neasure: Cor 2004 Coll. on v	ntrols and powers.	eriodically rev	viewed abstra	ctions of grou	ndwater in acc	ordance with the			
• responsible Environmen	e authori Ital Inspec	ty: State wate ction, and loca	er managem Il authorities	ent institution	is - Ministry o	f Environment	of the Slovak	Republic, Slovak			
• quantitation											

quantitative information by appropriate indicators: water law permits

GWB-12: Ipel / Ipoly

	Size	Press	ures	Status	s/Risk	Меа	sures	Exampliant
GWB Code	[km²]	Chemical	Quantity	Chemical	Quantity	Chemical	Quantity	Exemptions
GWB-12 HU-SK	344	DS	WA	Poor, Risk (SK)	Good	BM, SM		2027+
MC - Measure	impleme	entation comp	pleted by th	e end of 2020)		L	I
MO - Measure SK – Chemica	impleme <u>I</u>	entation on-g	oing after tl	he end of 202	20			
 description and Council of this Direc apply measu of the EU Pa responsible 	of the m Directive tive into r ure conce arliament e authorit	easure: Conti 2009/128/EC national Law a rning the plac and of the Co ry: Central Col	nue to meet concerning and National ing of plant uncil. ntrol and Te:	the requirement the reduction action progra protection pro sting Institute i	ents arising fro of pesticides amme to achie ducts on the r in Agriculture,	om the implem pollution from eve sustainabl narket accordi Ministry of Ag	entation of Euro agriculture and le use of pestici ing to Regulatio riculture and Ru	opean Parliament d implementation ides. Continue to n No. 1107/2009 ural Development
of the Sloval	k Republi informa	c tion by appro	opriate indi	cators:	Ū,	, ,		·
 BM-09 Nitrates description the protection Directive rec Coll. on ferti 	s Directiv of the m on of wate quires the lizers.	ve neasure: Cont ers against po fulfilment of t	inuing in ap Ilution caus he task of th	plication of red ed by nitrates le Action Prog	quirements of from agricult ramme, whicl	the Council D ural sources (n is establishe	Directive 91/676, Nitrates Directi d in the SR by	/EEC concerning ve). The Nitrates Act no. 136/2000
responsible Institute in A	e authorit	y: Ministry of <i>i</i>	Agriculture a	and Rural Deve	elopment of th	e Slovak Repu	ublic, Central Co	ontrol and Testing
• quantitative (173 km ²) ac	e informatic ording t	t ion by appr o o Governmen	opriate indi t Regulation	i cators: This i no. 174/2017	measure is ap Coll. (will be	oplied in grour revised in 202	ndwater body's 21/2022).	vulnerable areas
SM - Supplem	entary M	easures						
Continuing in when the ne agriculture, s	n applicat ew Comn support fo	ion of measure non Agricultur or organic farm	es according al Policy (C ning, manag	g to Rural Deve CAP) enters ir ed agricultura	elopment Prog to force. The I and forestry	gramme for SF e measures in activities in N/	R (2014–2020) e iclude the advis ATURA 2000 ar	extended to 2022, sory services for reas, etc.
Research, in monitoring to the second s	mprovem o increase	ent of knowle e information a	edge base i about groun	reducing unce dwater contan	ertainty - sup	port of resear ources of con	rch project, sup tamination.	oport of purpose
 Strengthenir Education at 	ng control	activities (per	sonnel ad fi	nancial) inclue	ding increasing	g the number	of controls.	
			water prote					
PO - Construc	tion mea	sure plannin	g on-going	after the end	of 2020			
CO - Construc	ction of n	neasure on-g	oing after tl	he end of 202	0			
MN - Measure	not havi	ng started by	the end of	2020				