The EU’s PLATINA project and its implications for the Danube basin

9 March 2010 - Zagreb

Gert-Jan Muilerman
PLATINA project coordinator
NAIADES Action Programme

- Presented by the European Commission on 17th January 2006
- Multi-annual Action Programme in order to foster transport by inland waterways in Europe (2006 – 2013)
- **Objectives:**
 - Increase competitiveness of inland waterway transport
 - Integrate IWT into door-to-door logistic chains
 - More freight transport on European inland waterways

Addressees: EU member states, industry, social partners, river commissions, European Commission and other EU institutions
Political support for NAIADES

NAIADES action programme
Recommendations for actions on national and community level 2006 – 2013
on 17 January 2006

Adoption of the „Council Conclusions on the promotion of inland waterway transport“ on 8 – 9 June 2006 in Luxembourg

Resolution of the European Parliament on the promotion of inland waterway transport on 26 October 2006
PLATINA …

- is a project within the 7th Framework Programme for Research, Technology Development and Demonstration
- is aimed at coordinating and supporting research activities and policies
- runs from 06/2008 to 05/2012
- consists of 22 partners from 9 different countries
- is organised around the five NAIADES action areas
- is strategically guided by key industrial stakeholders, associations and Member States administrations
Work package leaders

<table>
<thead>
<tr>
<th>Work Package</th>
<th>WP Leader</th>
</tr>
</thead>
<tbody>
<tr>
<td>WP1 Markets</td>
<td>via donau (Austria)</td>
</tr>
<tr>
<td>WP2 Fleet</td>
<td>Voies navigables de France (France)</td>
</tr>
<tr>
<td>WP3 Jobs & Skills</td>
<td>Bundesverband der Deutschen Binnenschifffahrt (Germany)</td>
</tr>
<tr>
<td>WP4 Image</td>
<td>Promotie Binnenvaart Vlaanderen (Belgium)</td>
</tr>
<tr>
<td>WP5 Infrastructure</td>
<td>Dienst Verkeer and Scheepvaart (Netherlands)</td>
</tr>
<tr>
<td>WP6 Technical Secretariat</td>
<td>via donau (Austria)</td>
</tr>
</tbody>
</table>
WP1 Markets

Achievements so far:

- Launch of European IWT information portal (www.naiades.info)
- Publication of the Inland Waterway Transport (IWT) Funding Guide (EN)
- Online version of the IWT Funding Guide in EN, FR, NL, DE (www.naiades.info/funding)
- Good practice report I for the sector

Further activities in 2010:

- Extension and update of the IWT information portal
- Monitoring group on administrative barriers in IWT (including monitoring report)
- Good practice report II
Welcome!

On this website you will find topical information about inland waterway transport in Europe. Eco-friendly and efficient transport is a cornerstone of the EU’s transport policy. 2006 a multi-annual action programme was launched: NAIADES - Navigation and Inland Waterway Action and Development in Europe.

Why inland waterway transport?
Inland waterway transport is an innovative solution for sustainable logistics. It is a reliable, flexible, safe and environmentally friendly way to transport almost all commodities. The oldest transport mode becomes part of the hope for the future. [more]

Did you know that...
130,000 inland vessels enter the port of Rotterdam each year.

Interactive
The European Funding Database for Inland Waterway Transport is now online. Available in English, Dutch, French and German, an easy-to-use search function allows for...

Latest release
PLATINA conducted an investigation identifying the status quo of the current inland waterway transport educational situation. We...
10 reasons to choose inland navigation

Safety

Inland navigation has an exemplary safety record. There is a very low probability of accidents, and should an accident happen, the costs of that accident are low in economic and human terms. Barges lead the way in safe transport, especially for dangerous cargoes, with extremely high standards of inspection, training and licensing.

Environmental costs

All studies carried out to quantify environmental costs ultimately show the same result: Inland waterway transport is the most environmentally friendly mode of transport. Shipping more goods on water will help to reduce greenhouse gases and traffic congestion.

Time reliability

Every year congestion on the roads increases. This in turn increases costs and journey times, making Europe’s economy less and less competitive. Inland waterways are the alternative that bypasses congested transport routes and reliably gets freight to its end point on time.

Infrastructure costs

Shifting the transport of goods to waterways reduces the amount of money needed for investments in transport infrastructure. With comparably low investments transport volumes on waterways can be significantly increased. Inland waterways also have comparably low maintenance costs.

Carrying capacity

Inland vessels offer an enormous carrying capacity per transport unit. One motorized cargo vessel with a load of 2,000 tons carries as much
Welcome to your online resource for inland waterway transport funding!

The European Funding Database for Inland Waterway Transport is an easy-to-use guide for the inland waterway transport sector.

What can you find in the Funding Database?

- Topical information on national and regional funding available throughout Europe
- Easily accessible data sheets for European and national funding programmes
- Contact persons and information for institutions and organisations that handle applications for funding

For a quick start, simply choose a country from the map by clicking on it to display information on national funding programmes or click on the EU Reg to retrieve information on funding programmes available at the European level.
Inland Waterway Transport Funding

France

Add scheme for the development and operation of regular combined freight transport services as an alternative to road haulage

Title of the instrument (original language)
Aides au développement de l'exploitation de services réguliers de transport combiné de marchandises alternatifs au mode routier

Policy area

General objectives
Development of regular combined transport services

Type of aid
Direct grant
Soft loan

Actions able to be supported
Establishment and operation of regular container services (JIT, rail, short sea shipping), in particular the transhipment of intermodal transport units (ITUs)

Rate of co-financing and conditions
- Max. 20% of transport costs
- Aid is calculated on the basis of an amount per transhipped ITU (full or empty) which will be set annually by the Ministry of Transport

Eligible beneficiaries
EU operators of regular combined transport services

Other important information
Combination with either funding programmes is not allowed with the exception of the Community aid programme Marco Polo.

Time frame
01/01/2008 – 31/12/2012

Total budget
Max. 50,000,000 EUR (5,000,000 – 10,000,000 EUR p.a.)

Legal basis
Loi n° 82-1133 du 30 décembre 1982 d'orientation des transports intérieurs, modifiée notamment par arrêté du 01/01/2008.
PTATINA event calendar

Past events

The 2nd EDINNA General Assembly will take place from 22-23 September in Duisburg (Germany) under the auspices of Schiffsfluss Rhein and Schiff-beratungs-Kolleg Rhein. The educational network will discuss the further development of Standards of Training and Certification in Inland Navigation.

The representatives from IVT schools in Austria, Belgium, Germany, Netherlands, Poland, Romania and Serbia will be welcomed by the Minister of Education of North Rhine Westphalia, the mayor of the city of Duisburg as well as the President of the German Employers' Association of Inland Barge Operators (AuB).

The educational network will discuss the further development of Standards of Training and Certification in Inland Navigation. The new shallow water navigation simulator will be demonstrated during a visit to the Development Centre for Ship Technology and Transport Systems (DSI).

15.9.2009 - 16.9.2009 | Integrated planning of waterway projects

The second PTATINA workshop on integrated planning of waterway projects will take place on 15 and 16 September in Rousse, Bulgaria. The workshop will focus on how to apply the new forms of planning for waterway maintenance and construction projects.

The workshop is a follow up to previous dialogue which resulted from the Joint Statement on planning principles for IVT and environmental protection (2007) and aims to illustrate and specify best practices of IVT infrastructure projects that take into account the new EU environmental law.
Introduction

Cooperation and coordination between the public and the private sector is needed in order to effectively develop inland navigation as an essential element in Europe’s freight transport system. Inland navigation promotion and development centres (such as those in the Netherlands, Belgium, France and Austria) are important know-how pools and interfaces between shippers, the IVT sector and political decision makers. These centres significantly contribute to the improvement of the market’s framework conditions by making use of effective development strategies and lobbying activities. However, in several Member States such promotional and development structures are lacking or are in their infancy.

Please click on image to start poster download (0.5 MB)
WP2 Fleet

Achievements so far:
- Constitution of the innovation expert group
- Launch of an innovation database (based on wiki approach)
- Start of implementation of the European Hull Database, which shall facilitate international exchange of hull data

Further activities in 2010:
- Extension of IWT innovation database
- Consolidated publication of Directive 2006/87/EC on technical requirements for inland vessels including amendments
- Technical specification of the European server to enable European Position Information Service
- Publication of strategic research agenda
IDB groups

The following overview provides a categorization of the database contents based on the SFI-standards (Skipsteknisk Forskningsinstitutt - Ship Research Institute of Norway) set up in 1972 representing worldwide the most used classification system for the marine industry. By clicking on the group of concern (name or logo) the titles of all project examples related to the selected group will be displayed. At the bottom an overview on all projects is provided.

<table>
<thead>
<tr>
<th>Group</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ship general</td>
<td>(main particulars, hydrodynamic features, purpose ...)</td>
</tr>
<tr>
<td>2. Hull</td>
<td>(structure, deck houses, materials, material protection ...)</td>
</tr>
<tr>
<td>3. Equipment for cargo</td>
<td>(cargo holds, loading-discharging systems, hatches, ramps, cranes ...)</td>
</tr>
<tr>
<td>4. Ship equipment</td>
<td>(navigational, anchoring, mooring, steering gear, communication and information exchange ...)</td>
</tr>
<tr>
<td>5. Equipment for crew</td>
<td>(lifestyle, furniture, catering, ventilation and air conditioning, sanitary system ...)</td>
</tr>
<tr>
<td>6. Machinery</td>
<td>(main and auxiliary engines, generators, propeller plant ...)</td>
</tr>
<tr>
<td>7. Systems for machinery</td>
<td>(fuel and lubrication systems, starting, exhaust, automation system ...)</td>
</tr>
<tr>
<td>8. Ship common systems</td>
<td>(ballast, bilge, fire-fighting, wash down, electrical distribution ...)</td>
</tr>
</tbody>
</table>
Danube Ro-Ro vessel

The regular Ro-Ro transports on the Danube began in June 1992. After more than two decades of successful operation and gained experience, the design of a new generation of this for inland waterways unique type of vessel has been considered.

German Passau and Bulgarian Vidin were set up as parts of origin and destination. Ro-Ro reloading of road semi-trailers, and/or vans and passenger cars had to be adapted to fit with existing terminal facilities. The vessel had to be able to realise one turn over within maximum 2 weeks time.

<table>
<thead>
<tr>
<th>Keywords</th>
<th>Danube, intermodal service, Ro-Ro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length overall</td>
<td>134.00 m</td>
</tr>
<tr>
<td>Breadth max</td>
<td>22.80 m</td>
</tr>
<tr>
<td>Breadth moulded</td>
<td>20.60 m</td>
</tr>
<tr>
<td>Depth moulded</td>
<td>4.20 m</td>
</tr>
<tr>
<td>Draught without ballast</td>
<td>1.65 m</td>
</tr>
<tr>
<td>Fixed point height above 1.65 m draught</td>
<td>6.90 m</td>
</tr>
<tr>
<td>Deadweight</td>
<td>1900 tons</td>
</tr>
<tr>
<td>Empty weight</td>
<td>2030 tons</td>
</tr>
<tr>
<td>Maximum draught with ballast</td>
<td>2.70 m</td>
</tr>
<tr>
<td>Maximum loading capacity (payload)</td>
<td>1770 tons</td>
</tr>
<tr>
<td>Maximum speed in calm water ($h = 5.0$ m) in fully loaded condition</td>
<td>10 km/h</td>
</tr>
</tbody>
</table>

Fig. 1. General arrangement of the VLRRV – ‘Very Large Ro-Ro Vessel’
WP3 Jobs & Skills

Achievements so far:
- IWT education and training institutes and curricula
- Preparation of organisational structure and support for the foundation of a European IWT educational network (EDINNA)

Further activities in 2010:
- Draft strategy for harmonised IWT education and training standards in inland navigation (STCIN)
- Working programme for the European IWT educational network
EDINNA General Assembly 22/23 September 2009 in Duisburg

- Inventory of Demands (questionnaire and simulators)
- Riverspeak
- Exchange Programmes

ca. 30 participants from 7 countries (B, DE, F, NL, SR, PL, RO)
Welcome to EDINNA - Education in Inland Navigation

EDINNA is the educational network of inland waterway (navigation) schools and training institutes. During a Round Table conference of the Central Commission for the navigation on the Rhine (CCNR) in Strasbourg, in June 2008, directors and managers of the present institutes signed a Memorandum of Understanding (MoU) with the objective to formalise the EDINNA network.

The new network

In August 2008 a core working group met in Duisburg. During this meeting a temporary board was formed with the task to take all the necessary preparations for the establishment of the EDINNA network.
WP4 Image

Achievements by 12/2009:
- Analysis of the reputation of IWT and definition of the desired image
- Brand essence summary
- Inventory and analysis of current communication actions

Further activities in 2010:
- Strategic positioning of IWT’s reputation
- Concept for IWT lead event in second half of 2010 under Belgian EU Presidency
- Joint working programme of promotion and development agencies
- Development of a strategic communication agenda
WP5 Infrastructure

Achievements so far:
- Technical and administrative support for RIS Expert Groups
- Draft Terms of Reference of RIS Expert Groups
- Training workshops on integrated waterway planning

Further activities in 2010:
- Inventory and assessment of strategic inland waterway projects
- Technical Specification for the Inland Electronic Navigational Chart (IENC) Register and digital parts of IENC standard
- Technical specification of RIS reference data management systems
- Release of RIS community portal
- Publication of a best practice manual on waterway infrastructure planning following the Joint Statement
- Integrative study on hydro-morphological alterations
RIS standardization

The technical work towards European standardization is performed by experts organized in the so called RIS Expert Groups.

RISERI
Electronic Reporting International
Electronic reporting and electronic messaging is the way to a paperless environment in inland shipping.

RISECDIS
Inland Electronic Chart Display and Information System
Inland ECDIS is a system for the display of electronic inland navigation charts and additional information.

RISVTT
Vessel Tracking and Tracing
Tracking and tracing of inland navigation vessels is essential for the improvement of safety and efficiency in the sector. The instrument used in Inland "Automatic Identification System" (AIS).

RISNTS
Notices to Skippers
The International Standard for Notices to Skippers ensures distribution of notices to skippers regardless of borders and language areas.
<table>
<thead>
<tr>
<th>Danube (E 80)</th>
<th>Upgrade to Class VIb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description of the bottleneck</td>
<td>km 1,921.0 – 1,873.0</td>
</tr>
<tr>
<td>The improvement of the nautical and ecological conditions in the Danube floodplains on the Danube's free-flowing section between Vienna and the Austrian-Slovak border is Austria's priority waterway project which was launched in 2002 (i.e. "Integrated River Engineering Project on the Danube to the East of Vienna"). Currently, the project is in the environmental impact assessment (EIA) phase, its implementation is foreseen to be started in 2010 and to be achieved by 2015/16. The project is included in the Transport Master Plan, in the NAP and is also part of the Trans-European Transport Network (TEN-T) project number 18, thus receiving European co-funding.</td>
<td></td>
</tr>
<tr>
<td>Type of physical problem(s)</td>
<td>• fairway depth and/or width (shallow water)</td>
</tr>
<tr>
<td>Type of shipping problem(s)</td>
<td>• Reduced draught of vessels (due to shallow water)</td>
</tr>
<tr>
<td>Status of solution</td>
<td>• Project defined and agreed upon</td>
</tr>
<tr>
<td></td>
<td>• Incorporated in national transport master plan / strategy document</td>
</tr>
<tr>
<td>Timeline removal of bottleneck</td>
<td>• Project finalised before 2020</td>
</tr>
<tr>
<td>Costs for removal of bottleneck</td>
<td>• Estimation: 220 mEUR</td>
</tr>
<tr>
<td>Co-financing by the EU</td>
<td>• Yes</td>
</tr>
<tr>
<td>Sava (E 80-12)</td>
<td>Upgrade to Class Va</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Description of the bottleneck</td>
<td>km 583.0 – 207.0</td>
</tr>
<tr>
<td>Upgrading from Serbian/Croatian State border to Sisak from class III to class Va is required. This bottleneck affects the 376 km long stretch from Sisak (km 583.0 – Kupa estuary) to the Serbian-Croatian state border (km 207.0). According to the Sava Feasibility Study upgrading is foreseen to class IV or Va.</td>
<td></td>
</tr>
<tr>
<td>The bottleneck is listed on the indicative list of major projects for the period 2007-2009 of the SOPT and includes dredging, the creation of waiting areas and traffic guidance in sharp river bends, an upgrading of the marking system and the replacement of two bridges to guarantee minimum vertical clearance.</td>
<td></td>
</tr>
<tr>
<td>The rehabilitation and improvement of the Croatian stretch of the Sava is also defined as Project Group 28 in the SEETO Multi-Annual Plan 2008–2012 (HRVIW038). In this document 14 river sections are identified for an upgrade to class IV with a cumulative length of 385 km (from Brčko at km 202.5 to Sisak at km 588.2).</td>
<td></td>
</tr>
<tr>
<td>Type of physical problem(s)</td>
<td>fairway depth and/or width (shallow water)</td>
</tr>
<tr>
<td>bridge clearance</td>
<td></td>
</tr>
<tr>
<td>sharp river bends</td>
<td></td>
</tr>
<tr>
<td>Type of shipping problem(s)</td>
<td>Reduced draught of vessels (due to shallow water)</td>
</tr>
<tr>
<td>Prolonged travel times (due to speed limits, overtaking and/or by-passing bans)</td>
<td></td>
</tr>
<tr>
<td>Reduced container capacity per vessel (due to low bridge clearance)</td>
<td></td>
</tr>
<tr>
<td>Status of solution</td>
<td>Pre-project phase (project identification/validation)</td>
</tr>
<tr>
<td>Incorporated in national transport master plan / strategy document</td>
<td></td>
</tr>
<tr>
<td>Timeline removal of bottleneck</td>
<td>Project finalised before 2020</td>
</tr>
<tr>
<td>Costs for removal of bottleneck</td>
<td>Estimation: 45 mEUR (for execution of works)</td>
</tr>
<tr>
<td>Co-financing by the EU</td>
<td>Yes</td>
</tr>
</tbody>
</table>
platina
platform for the implementation of NAIADES

www.naiades.info